
Stat Biosci (2010) 2: 18–40
DOI 10.1007/s12561-010-9019-9

Non-parametric Decoding on Discrete Time Series
and Its Applications in Bioinformatics

Hsieh Fushing · Shu-Chun Chen ·
Chii-Ruey Hwang

Received: 8 December 2009 / Accepted: 8 April 2010 / Published online: 28 April 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We address the question: How do we non-parametrically decode the un-
known state-space vector underlying a lengthy discrete time series? The time series of
concern is governed by one non-autonomous dynamics with only two internal states.
This question pertinently reflects the dilemma of computing infeasibility against in-
ferential bias found in many scientific areas. This dilemma becomes an issue when
considering whether to have, or not to have likely very unrealistic structural assump-
tions on the state-space dynamics in most of real-world applications. To resolve this
dilemma, the decoding problem is transformed into an event-intensity change-point
problem without prior knowledge of the number of change-points involved. A new
decoding algorithm, called Hierarchical Factor Segmentation (HFS), is proposed to
achieve computability and robustness. Performance of the HFS algorithm in terms
of total decoding error is compared to the decoding benchmark Viterbi algorithm
through computer experiments. Under Hidden Markov Model (HMM) settings with
true parameter values, our HFS algorithm is competitive against the Viterbi algo-
rithm. Interestingly, when the Viterbi algorithm operates with maximum likelihood
estimated (MLE) parameter values, our HFS algorithm performs significantly bet-
ter. Similar favorable results are found when the Markov assumption is violated. We
further demonstrate one very important application of our HFS algorithm in bioin-
formatics as a promising computational solution for finding CpG islands—DNA seg-
ments with aggregated CpG dinucleotides—on a genome sequence. A real illustration
on a subsequence of human chromosome #22 is carried out and compared with one
popular search algorithm.
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1 Introduction

Decoding is most often referred to in information theory as an algorithm for recov-
ering a sequence of code words or messages, given a sequence of output signals in
communication through a noise channel [12]. It is a task corresponding to attempts to
understand non-autonomous dynamics in mathematics and physics [21]. In general,
a non-autonomous dynamics is described via a system of difference, or differential,
equations as:

ΔX(t + 1) = G
(
X(t), S(t), θ

);
ΔS(t + 1) = F

(
S̄(t), ϑ

)
.

(1)

Here changes in an observable response variable X are regulated by the unobservable
internal state variable S(t) through G(· : θ), while S(t), also called the driving force,
is self-regulated by its own past history S̄(t) through F(· : ϑ). Thus the information
about the state-space dynamics represented by F(· : ϑ) is the key to understanding
the whole dynamics.

In statistics, especially in time series literature, the idea of state-space models
can be traced back to a great extent to the non-autonomous dynamics given in (1)
[6, 17, 30]. The functional forms of G(· : θ) and F(· : ϑ) are usually assumed
known up to the unknown parameters, as in mathematics, but the time series of
Sn = {S(t) : t = 1,2, . . . , n}, generally called the state-space vector, is missing, as
is often found in physics. However, work on state-space models commonly focuses
on making inferences about the parameters θ and ϑ under structural assumptions on
G(·) and F(·) based on the observed time series Xn = {X(t) : t = 1,2, . . . , n}. Most
often, if not always, the state-space vector Sn is not the primary interest. It has be-
come routine that Sn is treated merely as missing data to be integrated out from the
complete data likelihood function of θ and ϑ in the EM-algorithm.

Here the specific task of recovering the unknown Sn based on Xn is called de-
coding. When G(· : θ) and F(· : ϑ) are assumed known up to θ and ϑ , this task is
called parametric decoding. Parametric decoding is popular in many real-world ap-
plications, especially related to the Hidden Markov Model (HMM) with finite states.
For example, parametric decoding is used to compute the sequence of words given
a sequence of acoustic signals in speech recognition [23]. It is also used to compute
the sequence of “business cycles,” or regime changes, given a time series of the un-
employment rate in quantitative finance and econometrics [13]. It is used to compute
a sequence of exons and introns given a genome sequence in computational genet-
ics [5]. And as mentioned, it is used in computing a sequence of messages given an
output signal sequence in information theory [12].

From a computational perspective in parametric decoding, when the state variable
S(t) has a finite number |S| of states, decoding generally involves finding the most
“probable” n-vector of S(·) among |S|n possible configurations. An exhaustive search
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for this most probable one is surely infeasible when n is large. Surprisingly, under cer-
tain parametric structural assumptions, the decoding computation can be reduced to
a much more feasible level, such as one of order O(n|S|k) for a fixed number k. Usu-
ally this significant reduction in computation is achieved by a dynamic programming
technique. Thus most popular decoding algorithms have a dynamic programming
backbone. For example, the most widely used decoding technique is the Viterbi algo-
rithm [29]. Its computation of the most likely configuration can be achieved within
O(n|S|2) operations [12]. Now several of its variant algorithms are also popular for
different purposes, such as the posterior-Viterbi algorithm.

To put the achievements in parametric decoding in perspective, in order to under-
stand non-autonomous dynamics as a whole, it should be noted that these parametric
decoding algorithms all intrinsically rest on the parametric structural assumptions.
Therefore we can expect that these decoding results will be sensitive to any assump-
tion violation. In other words, parametric decoding can be rather non-robust.

In this paper, decoding the unknown state-space vector Sn, given no structural
assumptions imposed on the functionals G(·) and F(·), is our primary interest. This
task is termed “non-parametric decoding.” Thus the chief merits of non-parametric
decoding are freedom from the sensitivity of parametric assumptions, and avoidance
of biased statistical inference when extracting information of F(·).

Our non-parametric decoding algorithm is called the Hierarchical Factor Segmen-
tation (HFS) algorithm. It was originally developed by Fushing et al. [7] for com-
pressing the recording of animal behavior. In addition to the study of animal behav-
ior, this technique has been shown to successfully provide very promising results in
the study of circadian rhythms, psychological and emotional coherence, and stock
dynamics in several separate reports by the authors.

From the computational perspective under a non-parametric setting, there is no
platform for dynamic programming techniques, neither is an exhaustive search possi-
ble. Since the state variable S(t) only takes two values, ideally the non-parametric
decoding can be thought of as a task in change-point analysis, but without prior
knowledge as to how many change-points are involved. This is still a problem with
computing infeasibility.

To overcome this difficulty, the theoretical aspect of the HFS algorithm is briefly
depicted as follows. Instead of directly analyzing the measurement of Xn, we trans-
form this time series into a 0 or 1 record of a recurrent characteristic event. Our HFS
algorithm is performed on this 0–1 time series to partition the whole time series into
segments, such that between adjacent segments intensities of the chosen characteris-
tic event are significantly different. Then a model selection problem in deduced, and
the Schwarz information criterion (BIC) [27] is applied to select the “best” partitions.
The computational aspect of the HFS algorithm, as will be see in Sect. 3, is indeed
very practical.

Regarding the decoding performance of the HFS algorithm, a series of computer
experiments are carried out, and the total number of decoding errors is used as the
performance index. Surprisingly, our HFS algorithm with its threshold parameters
selected via the Schwarz information criterion (BIC) achieves a very competitive
performance when compared to the benchmark Viterbi algorithm with the true para-
meter values under the HMM setting. Very importantly, again under the same HMM
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settings, the HFS algorithm is demonstrated to exhibit a performance much superior
to that of the Viterbi algorithm with maximum likelihood estimates (MLE) for the
parameter values. Furthermore, we also show that the performance of the Viterbi al-
gorithm is not as desirable as that of the HFS when the Markov structural assumption
is misspecified.

We then apply the HFS algorithm to identify CpG islands on a human genome
subsequence 1.4 × 105 base pairs long. We further demonstrate that our HFS algo-
rithm is a promising computational solution for finding CpG islands, which is one
very important issue in bioinformatics. The significance of finding CpG islands is
that this genome segment, with a high content of CpG dinucleotides (i.e., a cytosine
directly followed by a guanine), is found in most expressed genes (see [2, 3, 26]). Re-
cently its epigenome and functional properties in normal and diseased cells or tissues
have been under very intensive investigation in biological and biomedical research.
However, so far in bioinformatics and computational genetics literature the identifi-
cation of CpG islands is still carried out through more or less ad hoc algorithms, or
by the Viterbi algorithm and its variants, where the Markov assumption is known to
be invalid. Our HFS algorithm provides very efficient computations for identifying
CpG islands based on its original epigenomic property. Indeed, this is the problem
that motivated our study.

This paper is organized as follows. The setting of a non-autonomous dynamic sys-
tem and computational measurements of evidence for an event aggregating pattern
is discussed in Sect. 2. Our HFS algorithm is introduced in Sect. 3 and its optimal
threshold values are derived in Sect. 4. In Sect. 5, we report the results of computer
experiments under HMM and beyond HMM settings. Real data analysis of CpG is-
lands is reported in Sect. 6. The final discussion section collects several decoding-
related issues.

2 Heuristic Ideas, Event Aggregating Patterns and Maximum Entropy

In this section, we lay out the setting for decoding algorithms. To prepare the develop-
ment of the HFS algorithm, we discuss some related heuristic ideas, how to perceive
event aggregating patterns, and why the maximum entropy principle is needed.

Throughout this paper we work on a discrete time series Xn of length n, with X(t)

taking values from a finite set of symbols A = {A1, . . . ,AK }, for t = 1,2, . . . , n.
While the state variable S(t) takes only 0 or 1 value, X(t) is distributed according to
a discrete probability PS(t) defined on A = {A1, . . . ,AK }. Here we suppose that for
all symbols Ak ∈ A, 0 <

P0(Ak)
P1(Ak)

< ∞, so that no event can identify a state on S(t)

with certainty. As for the HMM setting, the Markov property of order one is used
for simplicity. This corresponds to a very simple linear graphic structure sequentially
linking S(1) through S(n). See Geman and Kochanek [12] for an example of a HMM
represented by a more complex graph.

2.1 Heuristic Ideas

The idea behind our development in this paper goes heuristically as follows: first, we
empirically choose an observable event that has the potential of separating P0 from
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P1; second, we then find evidence whether there exists an aggregating pattern of
such an event; third, the HFS algorithm is used to construct a segmentation on Xn as
a quasi-structure on Sn; fourth, by applying the maximum entropy principle to each
segment of the segmentation, a likelihood of two intensity parameters is derived; and
finally, the Schwarz information criterion is used to select the “best” segmentation
of Xn.

Therefore we do not construct a likelihood function for P0 and P1 and their tran-
sition probabilities as in the HMM setting. Once a decoded Sn is available from the
HFS algorithm, statistical inference about P0 and P1 and the governing dynamics
of Sn become possible. Discussion of these related issues is deferred to a separate
study because they involve inferences that are rather distinct from the decoding is-
sues, which are the focus here, and would certainly lengthen this paper considerably.

More specifically, a segmentation of Xn can be perceived as a spatial mapping for
heterogeneity of recurrence times of the chosen event. In Sect. 2.2 we try to evaluate
the evidence of whether this particular event indeed reveals uneven aggregating pat-
terns on Xn. In Sect. 2.3, we look at an aspect of evidence of aggregating patterns by
comparing the empirical one to its maximum entropy background, which supposedly
contains no aggregating patterns at all.

2.2 Null Recurrence Time Distribution via Maximum Entropy Principle

At first we consider the hypothetical setting that Xn is generated under one constant
state-space trajectory. For a chosen event, its average recurrence time is empirically
computable from Xn. We take this average as the only available information to be
employed as a constraint in derivation of the recurrence time distribution under the
null hypothesis. Via the maximum entropy principle [15, 16], this null recurrence
time distribution is found in form of geometric distribution with intensity parameter
specified by the average recurrence time. Though this principle is not commonly ap-
plied outside of Bayesian statistics, it is popularly used in physics for constructing a
distribution that rightly fits the information conveyed by the known constraints. This
distribution ideally and conceptually should not contain any feature beyond what is
specified by the constants. In the next subsection, this null recurrence time distribu-
tion would be compared with its empirical counterpart for detecting whether Xn is
indeed generated under one constant state-space trajectory or not. If this null hypoth-
esis is rejected, then we would take the collection of observed recurrence times as
being generated from two different geometric distributions corresponding to the two
different states.

Consider a generic event of interest A taken from a σ -field constructed based on
Ak with small constant integer k (� n). With event A, the observed time series Xn

is transformed into a 0–1 digital string, denoted by C 0 = (C0(k), . . . ,C0(n− k + 1)),
according to the following coding scheme: C0(t) = 1 if event A is observed at time t

on Xn; otherwise, C0(t) = 0. A schematic coding on a genome subsequence and an
illustrative real example of C 0 with k = 2 are given respectively in panels (a) and (b)
of Fig. 1.

Further, we use the notations TA and c = Ê[TA] = Ê[TA|C 0] to respectively de-
note the recurrence time random variable and the average recurrence time of code
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Fig. 1 Event and event-time series, recurrence time histogram and the maximum entropy distribution.
(a) The CG (one C followed by G) as the chosen event, and a schematic transformation of genome subse-
quence into an event-time series; (b) the event-time series; (c) the histogram of recurrence time (H∗) and its
corresponding maximum entropy geometric distribution (GME(λ̂)); (d) H∗ vs. GME(λ̂) on log-probability
and log-time scale

word 1 on C 0, which is equivalent to the recurrence time random variable and its aver-
age of event A along Xn. We take the observable average recurrence time c = Ê[TA]
as the only available piece of information regarding the distribution of TA. We then
derive such a distribution via maximum entropy principle as follows. Let the proba-
bility distribution of Ta be denoted by pi = Pr[TA = i], i = 0,1, . . . and the infinity
vector p̃ = (p0,p1, . . .). Consider a target function subject to the two constraints:
E[T ] = c = ∑∞

i=1 ipi and 1 = ∑∞
i=0 pi :

Q(p̃,λ) =
∞∑

i=0

pi logpi + η1

( ∞∑

i=1

ipi − c

)

+ η2

( ∞∑

i=1

pi − 1

)

.

By applying the Lagrange Multiplier approach, the maximum entropy distribution of
TA as a maximizer of Q(p̃,λ) is specified by:

p1 = 1/c;
pi = 1/ceλ(i−1);

λ = log

{
c

c − 1

}
.
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We denote this geometric distribution by GME(λ) with characteristic intensity λ =
log { c

c−1 }. Then we take GME(λ) as the null distribution. We test the null hypothe-
sis of constant state-space trajectory by comparing GME(λ) with the empirical one
summarized from C 0 in the next subsection. An illustrative comparison of the two
distributions is given in panels (c) and (d) of Fig. 1.

2.3 Evidence of Event Aggregating Patterns

We construct the empirical recurrence time distribution, or histogram, of TA from C 0

and denote it as H∗. In order to perceive whether H∗ contains information about an
aggregating pattern of event A, we compare H∗ with the maximum entropy geomet-
ric distribution GME(λ̂) with λ̂ = log { c

c−1 } and average recurrence time E[T̂A] = c.

Heuristically, when there exist aggregating patterns along C 0, H∗ should manifest one
vivid distinction from GME(λ̂): H∗ has higher probabilities on relatively extremely
small as well as relatively extremely large recurrence times than that of GME(λ̂),
while the pattern is reversed on the middle region of recurrence time. This distinct
feature is illustrated in Fig. 1 based on a genome subsequence from human chromo-
some #22. Visually, Fig. 1(b) shows a rather clear alternating pattern of aggregation
and sparsity of CG dinucleotides. These visual patterns are reflected in the aforemen-
tioned distinction between GME(λ̂) and R̂A as shown in panel (c), and even more
vividly in panel (d), of the figure.

Though Fig. 1 reveals pictorial evidence of aggregating patterns, how to effectively
summarize such evidence quantitatively may not be obvious. For instance, consider
the Kullback distance between GME(λ̂) and H∗ defined as

K
(

H∗,GME(λ̂)
) =

∞∑

i=1

H∗(i) log
H∗(i)

GME(i : λ̂)
.

From Fig. 1(d), the log-probability ratios log H∗(i)
GME(i:λ̂)

are positive for the two tail

regions, but negative on the middle region. Although the three regions are all coher-
ent with the aggregating pattern, the positive and negative cancelation would make
the Kullback distance a less effective summarizing statistic for evaluating the charac-
teristic feature. In order to resolve this shortcoming of Kullback distance, one must
determine how to mark the three regions first before evaluating a proposed summa-
rizing statistic. This task could involve smoothing techniques and possibly some ad
hoc choices of thresholds. Hence it is not at all a simple task that can be done without
potential disagreement.

Given the foundation that the recurrence time of CG dinucleotides is not likely
being generated by one single geometric distribution, there must exist several state-
switching embeddings underlying the segment of genome sequence. Under the bi-
nary state-space assumption, this fact implies the existence of aggregating and sparse
patterns of event of interest. In the next section, from the segmentation perspective,
instead of comparing GME(λ̂) and H∗, we propose a more effective methodology for
evaluating the event aggregation vs. sparsity patterns on Xn. Thus we are free from
the above difficulty pertaining to Kullback distance.
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3 Hierarchical Factor Segmentation (HFS) Algorithm

The Hierarchical Factor Segmentation (HFS) algorithm is constructed based on the
event-recurrent time distribution and multi-level coding schemes in this section.
Functionally it is designed to find where the aggregating patterns begin and end along
the temporal span of the time series of interest. Consequently the time series is parti-
tioned into alternating sequences of high and low event-intensity segments.

Hierarchical factor segmentation (HFS) algorithm: With a chosen observable
event A on the time series Xn, the construction procedure of the HFS algorithm is
depicted via the following steps:

HFS-1. By the event definition, Xn is transformed into 0–1 digital string of base 2 via
the following coding scheme: code 1 for X(t) when the event is observed
at time t , otherwise code 0 for X(t). This first-level 0–1 digital string is
denoted by the code sequence C 0.

HFS-2. Construct a histogram, say H∗, of the event-recurrent time distribution
from C 0, and denote the sequence of recurrence time (inter-event spacing)
by R∗.

HFS-3. Choose the first threshold value as an upper p∗ percentile on H∗, say Cs,
to transform the R∗ sequence into a 0∗–1∗ digital string via the second-
level coding scheme: (1) a recurrent time less than Cs is coded by a 0∗;
(2) a recurrent time greater than Cs is coded by a 1∗. The resultant digital
string of base 2 is denoted by the code sequence C∗.

HFS-4. Upon code sequence C∗, we take code word 1∗ as another “new” event and
construct its corresponding recurrent time histogram H@ and the sequence
of inter-1∗-event spacing as R@.

HFS-5. Choose the second threshold value as an upper p@ percentile from H@,
say Cs∗, to transform R@ into another 0@–1@ digital string via the top
level coding scheme: (1) an inter-1∗-event spacing less than Cs∗ is coded
by 0@; (2) an inter-1∗-event spacing greater than Cs∗ is coded by a 1@. The
third digital string of base 2 is denoted by C @.

HFS-6. The resultant code sequence C @ is mapped back onto the time series C 0 or
Xn as a partition of |R@|(= m) segments on the time span [1, n]. Denote
this partition as N (Xn) = {[NLi,NRi)}mi=1.

This partition or segmentation N (Xn) will be seen to achieve an aggregating pat-
tern by separating the high-event-intensity segments against the low-event-intensity
ones. A segment, say [NLi,NRi), corresponding to 1@-code, is a period of time
points falling in-between two widely separated 1∗-codes. The wide separation of two
successive 1∗-codes implies that there are many 1-codes on the particular segment of
code sequence C 0, or equivalently, many events are observed on the segment of Xn.
Thus this is a segment of high event-intensity. In contrast, a segment, say [NLi′ ,NRi′),
corresponding to 0@-code (including segments corresponding to the two 1∗-codes on
both of its ends) would present an extended period of having many 0-codes, but very
sparse 1-codes. Thus it is a segment of low event-intensity.
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The computational essence of the HFS algorithm is that, under no parametric
assumptions, the number of partitions N (Xn) pertaining to all the possible integer
threshold values (Cs,Cs∗) with regard to a chosen event is much less than 2n. It is
this small set of candidate partitions on Xn that will facilitate the computing feasibil-
ity for model selection techniques, as discussed in the next section.

4 Intensity Change-point Analysis and Schwarz Information Criterion (BIC)

After application of the HFS algorithm with threshold parameters (Cs,Cs∗), Xn is
partitioned into two classes of segments corresponding to code words 0@ and 1@

defining the segmentation N (Xn). Furthermore, we consider that the recurrence time
of event A within all segments corresponding to code word 0@ is stationary and
geometrically distributed as G(· : λ0). In contrast, the recurrence time within all 1@

segments is stationary and G(· : λ1) distributed. Therefore any transition between
0@ and 1@ segments is taken as an intensity change-point. Denote the number of
change-points by H 0(τ̃ ) with τ̃ = (Cs,Cs∗) for notational simplicity.

Let {k0j }m0
j=1 and {k1j ′ }m1

j ′=1 denote the observed recurrent time in the 0@ and 1@

segments respectively. Next we compute the likelihood function of (λ0, λ1) based on
the observed recurrence times within the two classes of segments, assuming they are
independent copies, as

L(λ0, λ1) = P
m0
0 (λ0)

∏
e−λ0(k0j −1)P

m1
0 (λ1)

∏
e
−λ1(k1j ′−1) (2)

where P0(λ) = (1 − e−λ), and m0 and m1 are the total numbers of recurrence times
on 0@ segments and 1@ segments, respectively.

The maximum likelihood estimates of (λ0, λ1) are derived as follows:

λ̂0 = log

{
c̄0

c̄0 − 1

}
,

λ̂1 = log

{
c̄1

c̄1 − 1

}
,

where c̄0 =
∑

k0j

m0
and c̄1 =

∑
k1j ′

m1
are the average recurrence times on 0@ segments

and 1@ segments, respectively.
As in the null case when no segmentation is imposed on Xn with the maximum

entropy applicable on its whole time span, the event-recurrent time distribution is
again geometrically distributed. Indeed, its maximum likelihood estimate coincides
with the maximum entropy distribution. This is due to the fact that the number of
events on Xn is a fixed constant. Denote this geometric distribution G(· : λ̂) with
λ̂ = log 1+c̄

c̄
, c̄ = n/m and m = m0 + m1. The maximum likelihood affiliated with

G(· : λ̂) is calculated as L(λ̂|σ) = P m
0 (λ̂)e−λ̂(n−m).
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Thus the log-likelihood ratio is computed as

Δ0(τ̃ ) = logL(λ0, λ1|σ) − logL(λ̂|σ)

=
1∑

k=0

[
mk log

{
1

c̄k − 1

}
− lk log

{
c̄k

c̄k − 1

}]

−
[
m log

{
1

c̄ − 1

}
− n log

{
c̄

c̄ − 1

}]

where l0 + l1 = n, and l0 = ∑
k0j and l1 = ∑

k1j ′ are the total lengths of the 0@ and
1@ segments, respectively.

It is clear that Δ0(τ̃ ) can be a reasonable and effective candidate for a test statistic
of the hypothesis of whether there exist aggregating patterns within Xn, as briefly dis-
cussed in the previous section. It is worth emphasizing again here that the number of
change-points of event-intensity is unknown. Hence the lack of this prior information
raises an important question: Is Δ0(τ̃ ) approximately chi-squared distributed, and, if
so, with how many degrees of freedom under the null and the alternative hypotheses?
This question and the related regime change issues will be addressed in detail in a
separate report. Here we focus on the decoding issue.

To make use of Δ0(τ̃ ) for selecting an optimal threshold parameter τ̃ in the HFS
algorithm, we apply the Schwarz’ information criterion, also called the BIC criterion.
That is, we perform the following optimization:

Γ (τ̃ ) = Δ0(τ̃ ) − logm

2

(
H 0(τ̃ ) + 1

)
,

τ̃ opt = arg max
τ̃

[
Γ (τ̃ )

]
.

From here on, the HFS algorithm is meant to be performed according to the choice
of optimal threshold parameter τ̃ opt.

Another closely related alternative model selection procedure is based on the min-
imum description length (MDL) of Rissanen [24, 25] (see also [19] and [20], for
review and tutorial). The MDL criterion applied in our setting is the following:

Γ ∗(τ̃ ) = Δ0(τ̃ ) − logn
(
H 0(τ̃ ) + 1

) − 1

2
[log l0 + log l1],

τ̃ opt∗ = arg max
τ̃

[
Γ ∗(τ̃ )

]
.

Based on experience from our computer experiments, the penalty for increasing the
number of change-points is too high. In fact, it might not be surprising, since this
criterion was derived when the order of the set of candidate partitions is 2n. In sharp
contrast, our set of candidate partitions via HFS is indeed many orders smaller.

5 Computer Experiments Under Hidden Markov Models and Beyond

In this section we conduct computer experiments to numerically evaluate the decod-
ing performance of our HFS algorithm with the BIC-selected threshold parameter
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τ̃ opt. The performance index is measured through the average decoding error rate.
In the experiments, we also compute fully parametric decoding procedures via the
Viterbi and posterior-Viterbi algorithms under Hidden Markov Models (HMM) and
non-HMM models with the parameter values being either completely known or esti-
mated via the maximum likelihood estimation (MLE) approach. Their performances
are meant to serve as benchmarks for the decoding efficiency of the HFS algorithm.

5.1 HMM Setting

Here we make use of the Hidden Markov Model setting with two dice: one is
fair; the other is loaded, an example considered in [5, Chap. 3]. The alphabet is
A = {1,2, . . . ,6}, and the state P0(i) = 1/6 for the fair die is designated as the state
S(t) = 0, while the state P1(i) = 1/10 for i = 1,2, . . . ,5, and P1(6) = 1/2 for the
loaded die are designated as the state S(t) = 1. The Markov dynamics governed by
the transition probability matrices of the two states 0 and 1 is specified by p01 =
Pr[S(t + 1) = 1 | S(t) = 0] and p10 = Pr[S(t + 1) = 0 | S(t) = 1]. Three cases of
(p01,p10) are considered: (I) (p

(1)
01 ,p

(1)
10 ) = (0.05,0.1); (II) (p

(2)
01 ,p

(2)
10 ) = (0.1,0.2);

(III) (p
(3)
01 ,p

(3)
10 ) = (0.4,0.5).

The MLEs for all involved parameters are computed via the Baum–Welch algo-
rithm [1], which is equivalent to the EM algorithm [4]. The Viterbi algorithm, avail-
able in R-code, computes the most likely configuration as:

S V
n = arg max Pr[Sn | Xn, P1, P0,p10,p01]

with either the true parameter values of P1, P0,p10,p01 or their MLE estimates.
In contrast, the posterior-Viterbi algorithm computes the most likely S(t) for each

t individually as:

SPV(t) = arg max Pr
[
S(t)

∣∣ Xn, P1, P0,p10,p01
]
, t = 1, . . . , n,

also with either the true parameter values of P1, P0,p10,p01 or their MLE estimates.
In case I the state-space vector Sn is expected to have 11 . . .11 segments (each of

expected length 10) being well-separated by 000 . . .00 segments (each of expected
length 20). This kind of aggregating pattern in Sn is slightly blurred in case II due to
larger values of (p01,p10) and shorter expected lengths of repeating states. In case III,
it is very difficult to decode Sn, since the aggregating pattern almost disappears into
a fashion very close to that of a random fair coin toss.

As an illustration of our computational decoding results with the side-6 as the
chosen event, the Occasionally Dishonest Casino example of Chap. 3 in [5] is re-
analyzed and reported in Fig. 2. Different choices of event could be used, but the
results are expected to be less efficient in distinguishing the two dices. Based on the
same data, the concave shape of Γ functions in the BIC procedure over a region of
threshold values is reported in Fig. 3. It is very interestingly demonstrated as well
that the modes of the concave curves are shown to correspond to very low error
rates, which is comparable to the benchmarks set by the Viterbi and posterior-Viterbi
algorithms with true parameter values. This corresponding relationship indicates that
the HFS algorithm with BIC-selected threshold parameters captures the aggregating
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Fig. 2 Decoding on Occasionally Dishonest Casino example via HFS (16 errors), Viterbi (28 errors) and
posterior-Viterbi (28 errors) algorithms. Discrepancies in decoding are marked and total decoding errors
are reported in parentheses

pattern on Sn fairly well in this data set. In fact, this case turns out to be rather typical
under the case I setting, as indicated by results from a simulation study reported in
Fig. 4.

Figure 4 presents the performance of the HFS algorithm with the optimal thresh-
old parameter τ̃ opt in comparison to the Viterbi and posterior-Viterbi algorithms with
both true and MLE-estimated parameter values on 100 simulated time series data in
case I. In panel (a), the HFS algorithm outperforms the Viterbi and posterior-Viterbi
algorithms with true parameter values in around 30% of the simulated time series. In
contrast, it is better in more than 60% of the replications when the two algorithms are
carried out with MLE parameter values. The correlation between the error rate and
the Kullback distance between the maximum entropy geometric distribution and the
empirical recurrence time distribution are rather significant among the 100 replica-
tions of the Viterbi and posterior-Viterbi algorithms with MLE-estimated parameter
values, but less so among those with true parameter values. This implies that the
Viterbi and posterior-Viterbi algorithms are not robust with MLE-estimated parame-
ter values, but also that this problem will become worse when the decoding task gets
more difficult.
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Fig. 3 BIC criterion and
corresponding error rates based
on Occasionally Dishonest
Casino example. (a) The Γ

functional curves pertaining to
various threshold values of H∗
with total number of
change-points H0 as the X-axis;
(b) Total decoding error rate
corresponding to each curve

In panel (b) via (smoothed) density of error rates, overall the Viterbi and posterior-
Viterbi algorithms with true parameter values perform better than the HFS algorithm.
But this overall pattern is reversed when the two algorithms are implemented with
MLE-estimated parameter values. In panel (c), the performance comparisons are
summarized in terms of operation characteristic (ROC) curves having the error rate
histogram of the HFS algorithm as the baseline [14]. Here we use the following ver-
sion of ROC curve for comparing a distribution function G(·) with a baseline dis-
tribution F(·): G(F−1(t)), 0 ≤ t ≤ 1, with F−1(t) the quantile function of F(). If
G(·) ≡ F(·), then the ROC curve is the diagonal segment of the unite square. If G(·)
is located on the left of F(·), or equivalently the ransom variable corresponding to
G(·) is stochastically smaller than the one corresponding to F(·), then the ROC curve
would be above the diagonal. The farther away from the diagonal the ROC curve is,
the stronger evidence of G(·) being on left of F(·) is. On the other hand, if the ROC
curve is below the diagonal, then G(·) is located on the right of F(·). That is, the rela-
tionship of stochastic ordering of the two corresponding random variables is reverse.
Therefore these ROC curves in panel (c) reconfirm the pattern in the sense that the
densities of error rates of the Viterbi and posterior-Viterbi algorithms with true para-
meter values are located on the left-hand side of the HFSs, while the two densities
of the Viterbi and posterior-Viterbi algorithms with MLE-estimated parameter values
are located on the right-hand side of the HFSs.
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Fig. 4 HMM case I: total error rate for HFS vs. Viterbi and posterior-Viterbi (with true and
MLE-estimated parameter values) algorithms. (a) Scatter plot of error rates w.r.t. Kullback distances;
(b) densities of total decoding errors of the five decoding algorithms; (c) ROC curves with HFS histogram
as the baseline

The decoding task in case II becomes more difficult than that in case I as shown
in Fig. 5. In panel (a), the HFS algorithm only outperforms the Viterbi and posterior-
Viterbi algorithms with true parameter values in around 20% of the simulated time
series, while it remains at more than 60% when the two algorithms are carried out
with MLE parameter values. Though panels (b) and (c) show decoding performance
results similar to those in Fig. 4, panel (c) especially reveals a very important phe-
nomenon: that the gap in performance between the Viterbi algorithm with true and
MLE parameter values becomes larger; likewise for the posterior-Viterbi algorithm.

In case III with the dynamics of Sn being nearly equivalent to that of fair coin toss-
ing, as shown in Fig. 6, the HFS algorithm is not comparable in decoding performance
to both the Viterbi and posterior-Viterbi algorithms with true parameter values. This
is mainly due to the fact that there is almost no aggregating pattern to be found on the
simulated time series. However, the HFS algorithm surprisingly still performs better
than the Viterbi and posterior-Viterbi algorithms with MLE-estimated parameter val-
ues. In panel (c), once again the performance gap of the Viterbi, or posterior-Viterbi,
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Fig. 5 HMM case II: total error rate for HFS vs. Viterbi and posterior-Viterbi (with true and
MLE-estimated parameter values) algorithms. (a) Scatter plot of error rates w.r.t. Kullback distances;
(b) densities of total decoding errors of the five decoding algorithms; (c) ROC curves with HFS histogram
as the baseline

algorithm with both true and MLE parameter values relative to the HFSs is enlarged
even more.

By summarizing the results reported in Figs. 3 through 6, we can conclude with
confidence that the HFS algorithm is an effective and robust non-parametric decoding
methodology under HMM setting. This computer experiment also pertinently points
out that the robustness issues of the two benchmark decoding algorithms, Viterbi and
posterior-Viterbi, need more research attention, and have to be used with caution.

5.2 Beyond HMM Setting

In another computer experiment, we consider a setting whose Sn dynamics has a
regular pattern of being in 0 and 1 states for equal and fixed lengths of duration.
This regularity violates the Markov property. By keeping P0 and P1 as in case I in
the previous subsection, time series of length 300 is generated with Sn alternating
its states every 10, 15 or 20 units of time. The Viterbi algorithm is carried out by
using MLE estimations for the parameters of P0 and P1 and (p01,p10). From the
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Fig. 6 HMM case III: total error rate for HFS vs. Viterbi and posterior-Viterbi (with true and
MLE-estimated parameter values) algorithms. (a) Scatter plot of error rates w.r.t. Kullback distances;
(b) densities of total decoding errors of the five decoding algorithms; (c) ROC curves with HFS histogram
as the baseline

experimental results reported in Fig. 7, we can see that the Viterbi algorithm is also
sensitive to the violation of the Markov assumption.

Finally, we emphasize again here that the demonstrated non-robustness of the
Viterbi and posterior-Viterbi algorithms with respect to MLE estimates and the
Markov assumption deserve proper caution in their real-world applications. Our HFS
algorithm is surely more than an alternative to these two benchmarks for decoding
purposes.

At the end of this section it is worth making further remarks regarding the com-
parison of HFS and Viterbi algorithms beyond the setting of binary latent state that
we have discussed so far. In a case of the time series involving only one state, without
state-change, both algorithms could overfit the state trajectory. Nevertheless, HFS al-
gorithm is equipped with a safety check via geometric mixture analysis. As in cases
with more the two latent states, Viterbi is mathematically more convenient than HFS
algorithm, since multiple applications of HFS algorithm on the same time series are
needed for marking multiple states. However, the non-parametric nature of HFS al-
gorithm might always deserve consideration in most of real-world applications.
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Fig. 7 Non-HMM case: total error rate for HFS vs. Viterbi (with MLE-estimated parameter values) algo-
rithms. (a) Scatter plot of error rates w.r.t. Kullback distances; (b) densities of total decoding errors of the
two decoding algorithms

6 CpG-island Data Analysis

The CpG dinucleotides (i.e., a cytosine directly followed by a guanine) were found
to be relatively rare in vertebrates [2, 11]. It occurs that approximately three quar-
ters (≈75%) as often as would be expected via the product of G (guanine) and C
(cytosine) proportions in DNA of whole human genomes under an independence as-
sumption. The striking feature is that CpG is very unevenly distributed throughout
all 23 human chromosomes. Clusters of CpG—so-called CpG islands—are found to
be associated with house-keeping genes and are typically near the transcription start
sites. It is also highly associated with promoters, especially with coding exons, but not
with non-coding exons or intons [26]. One explanation put forth is that DNA methy-
lation in the human genome is largely confined to CpG dinucleotides, and methylated
CpGs restrict transcription, while unmethylated CpGs in the vicinity of a gene allow
the gene to be expressed. This gene expression property has led to intensive investiga-
tion and development for linking CpG islands with many disease states [18]. Another
theory as to why many expressed genes have a very high CpG content is through
evolution via natural selection.

While the CpG islands and their association are very actively studied in genetics,
their identification is typically based on the algorithm proposed in Gardiner-Garden
and Frommer [11] and its variant [28]. For convenience, the following criteria are
listed below (see also the website http://genome.ucsc.edu/cgi-bin/hgTrack):

http://genome.ucsc.edu/cgi-bin/hgTrack
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CpG filtering criteria: CpG islands were predicted by searching the sequence one
base at a time, scoring each dinucleotide (+17 for CG and −1 for others) and identi-
fying maximal scoring segments. Each segment was then evaluated for the following
criteria:

• GC content of 50% or higher
• length greater than 200 bp
• ratio greater than 0.6 of observed number of CpG dinucleotides to the expected

number on the basis of the number of Gs and Cs in the segment.

This set of criteria has been widely used in many CpG island-finder algorithms in
genetics, many of them available on the Web (http://www.ebi.ac.uk/emboss/cpgplot).

On the one hand, the above set of criteria does not embrace epigenetic and func-
tional properties, with which CpG islands were originally identified [3]. On the other
hand, this set of criteria is not mathematically complete so as to be taken as the
CpG island “definition” on a genome sequence. This set of threshold-based criteria
is somehow ad hoc, because no objective standards are available for defining CpG is-
lands. Therefore, from a biological perspective, any research attempt to analyze CpG
islands related to properties of promoters encounters the dual difficulty of defining
what constitutes a CpG island and what constitutes a CpG island-promoter associa-
tion [26].

Very importantly, from a computational perspective, this incompleteness would
render that finding all the CpG islands on a long enough genome is nearly infeasible
when no mathematical structural assumptions are imposed on the CpG dinucleotides
occurrence mechanism. Hence we can expect that many ad hoc CpG finder algorithms
run into the danger of missing many segments of a genome satisfying the above set
of criteria. We illustrate this in the following real example.

Here we apply our HFS algorithm to the bA111E21 subsequence of human chro-
mosome 22 with computed optimal threshold parameter τ̃ opt = (48,6). The genome
information of the genome subsequence bA111E21 is summarized in Fig. 8, while
Fig. 9 shows the HFS-decoded CpG islands marked on the genome sequence, and
Table 1 reports CpG-island filtering information for each computed CpG island.

From Fig. 8 we see that the proportion of CpG dinucleotides on this genome
subsequence bA111E21 is less than one quarter of the expected proportion (1/16).
Its recurrence-time histogram and log-probability plot together indicate rather vivid
aggregating patterns. By visualizing Fig. 9, the HFS algorithm seems to cap-
ture all potential aggregating segments on the genome subsequence. The perfor-
mance of HFS is confirmed in Table 1. All computed CpG islands are very close
to the three CpG filtering criteria, except some are slightly shorter than 200bp.
In comparison, two islands located at (30312 . . .30696) and (113102 . . .113307)

are identified through the EMBOSS program, available online at the website
(http://www.ebi.ac.uk/emboss/cpgplot). These two islands are almost completely
covered by two HFS-decoded CpG islands located at (30338,30844) and (113128,

113452). Apparently, the EMBOSS program has missed many segments that satisfy
the CpG filtering criteria.

The next important questions are: How many CpG islands are missed by the HFS
algorithm? Are all HFS-decoded CpG islands real? These two questions will be ad-

http://www.ebi.ac.uk/emboss/cpgplot
http://www.ebi.ac.uk/emboss/cpgplot
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Fig. 8 Summarized information of the genome subsequence bA111E21. (a) The A, G, T, and C nu-
cleotides proportions; (b) 16 dinucleotides contents; (c) the recurrence time of CpG dinucleotides and the
maximum entropy geometric distribution (the smooth curve) based on average recurrence time 1/P̂GC

and the red line for maximum-entropy geometric distribution; (d) the same comparison as of panel (c) on
log-probability vs. log-length scales

dressed thoroughly in a companion report. The latter question is addressed by match-
ing HFS-decoded CpG islands with existing databases on promoters as proposed in
[26] and other experimentally confirmed databases. Finding CpG islands is such an
active field nowadays. Potentially the HFS algorithm together with some learning
rules sustained by experimental databases will allow scientists to compute and recog-
nize CpG islands with high reliability in the near future.

7 Discussion

The HFS algorithm is proposed in this paper as a brand-new method of non-
parametric decoding for lengthy discrete time series. We reveal that HFS indeed has
high potential for decoding a binary state-space vector through the evidence derived
from computer experiments and real genetic data analysis on CpG islands. Since it
requires no structural assumptions, its performance naturally is very robust and free
of systematic bias. For the same reason, its spectrum of applicability will be rather
wide. Here we mention a few successful applications of variant versions of our non-
parametric decoding computations. For instance, the HFS algorithm is used to dissect
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Fig. 9 HFS-decoded CpG islands marked with braces on the genome subsequence bA111E21

the circadian rhythmic cycles of cockroach [8], and to identify the patterns of coher-
ent vs. non-coherent dyadic interaction of a human couple [9]. In fact, our develop-
ment can also be applied to discrete-time series of continuous measurement, such as
stock price in financial market [10]. The potentially wide applicability of HFS algo-
rithm rests on its very minimum requirement. Hopefully this simple computational
approach is found useful in many studies of dynamic systems with various data types.

Rigorous and theoretical developments for the HFS algorithm, beyond the inten-
sity change-point perspective considered here, will be further studied from the per-
spectives of coding and data compression and Rissanen’s statistical complexity. The
fact that its construction rests on a hierarchy of recurrent time sequences and distri-
butions seems solid enough to allow it to be able to bring out dynamic patterns of
the observed time series, especially the aggregating pattern of certain chosen events.
This objective segmentation algorithm can be further extended to decoding discrete
time series generated from non-autonomous systems with internal state variables tak-
ing values for more than two states. The computer experimental results reported here
also raise important theoretical and practical issues regarding the robustness of the
Viterbi algorithm as the most popular decoding technique. More future research ef-
fort and attention is necessary to adequately address these issues.

We further mention the modeling difficulties that the Viterbi and its variant algo-
rithms would face in the CpG-islands example. Originally any genome subsequence,
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such as the one labeled by bA111E21, is a symbolic string of A, G, T, and C (nu-
cleotides). So there are 16 possible pairs of dinucleotides, and one of them, the CG
ordered pair, is taken as an event of interest. The application of HMM will face two
deterministic constraints: (1) given the previous symbol, there are only 4 possible
dinucleotides to be seen, not 16; (2) after observing a CpG, the next pair is certainly
not to be a CpG. To a great extent, these constraints will complicate the Markovian
structure underlying the Viterbi and its variant algorithms as natural candidates for
decoding. These complications will change the graphic representation for the Markov
chain and consequently cause computational complexity. It is worth noting that these
constraints have no impact at all on our HFS algorithm. We simply represent the
genome sequence as a 0–1 digital string, as in Fig. 9. The HFS algorithm takes the
0–1 string as its data and performs the decoding computations. This is the great ad-
vantage of our HFS algorithm.

In fact, the CpG-islands example is not particular; all dynamic programming based
decoding techniques are prone to sensitivity to the structural assumptions on the state
variable S(t), especially when analyzing lengthy dynamic time series. Hence a non-
parametric decoding algorithm would be not only desirable, but also crucial in scien-
tific endeavors.

A popular statistical technique called scan statistics [22] is often applied to mark or
detect defective regions without assuming the state-space structure in quality control
literature. It employs the sliding window idea as EMBOSS program does. And its
main developments are focused on the distributions of the maximum and minimum
numbers of data points, or events, contained in the window. To perform the quality
control, these distributions are used as the bases for judging where the events of
interest might be too aggregating, and where the events might be too sparse. Again,
the efficiency of scan statistics critically depends on the window width. Hence it
is expected to also share the same drawback of EMBOSS program on CpG-islands
example. Thus this technique likely misses a large percentage of target regions that
are lengthier than the window width, but have heterogeneous intensity of event.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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