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Abstract This paper presents an overview of significant

advances made in the emerging field of nature-inspired

computing (NIC) with a focus on the physics- and biology-

based approaches and algorithms. A parallel development

in the past two decades has been the emergence of the field

of computational intelligence (CI) consisting primarily of

the three fields of neural networks, evolutionary computing

and fuzzy logic. It is observed that NIC and CI inter-

sect. The authors advocate and foresee more cross-fertili-

sation of the two emerging fields.

Keywords Nature-inspired computing � Physics-based
algorithms � Biology-based algorithms � Meta-heuristic

algorithms � Search and optimisation

Inspiration from the Nature

Nature does things in an amazing way. Behind the visible

phenomena, there are innumerable invisible causes hidden

at times. Philosophers and scientists have been observing

these phenomena in the nature for centuries and trying to

understand, explain, adapt and replicate the artificial sys-

tems. There are innumerable agents and forces within the

living and non-living world, most of which are unknown

and the underlying complexity is beyond human compre-

hension as a whole. These agents act in parallel and very

often against each other giving form and feature to nature,

and regulating the harmony, beauty and vigour of life. This

is seen as the dialectics of nature which lies in the concept

of the evolution of the natural world. The evolution of

complexity in nature follows a distinctive order. There is

also information processing in nature performed in a dis-

tributed, self-organised and optimal manner without any

central control [1]. This whole series of forms, mechanical,

physical, chemical, biological and social, is distributed

according to complexity from lower to higher. This

sequence expresses its mutual dependence and relationship

in terms of structure and history. The activities change due

to changed circumstances. All these phenomena known or

partially known so far are emerging as new fields of sci-

ence and technology, and computing that study problem-

solving techniques inspired by nature as well as attempts to

understand the underlying principles and mechanisms of

natural, physical, chemical and biological organisms that

perform complex tasks in a befitting manner with limited

resources and capability.

Science is a dialogue between the scientists and the

nature [2] which has evolved over the centuries enriching

with new concepts, methods and tools and developed into

well-defined disciplines of scientific endeavour. Mankind

has been trying to understand the nature ever since by

developing new tools and techniques. The field of nature-

inspired computing (NIC) is interdisciplinary in nature

combining computing science with knowledge from dif-

ferent branches of sciences, e.g. physics, chemistry,
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biology, mathematics and engineering, that allows devel-

opment of new computational tools such as algorithms,

hardware, or wetware for problem-solving, synthesis of

patterns, behaviours and organisms [3, 4]. This Keynote

paper presents an overview of significant advances made in

the emerging field of nature-inspired computing (NIC) with

a focus on the physics- and biology-based approaches and

algorithms.

Search and Optimisation

All the living and non-living world, the planetary, galactic,

stellar system and the heavenly bodies in the universe

belong to nature. One common aspect can be observed in

nature, be it physical, chemical or biological, that the

nature maintains its equilibrium by any means known or

unknown to us. A simplified explanation of the state of

equilibrium is the idea of optimum seeking in nature. There

is optimum seeking in all spheres of life and nature [5–7].

In all optimum seeking, there are goals or objectives to be

achieved and constraints to be satisfied within which the

optimum has to be found [8–11]. This optimum seeking

can be formulated as an optimisation problem [12–15].

That is, it is reduced to finding the best solution measured

by a performance index often known as objective function

in many areas of computing and engineering which varies

from problem to problem [16–19].

Many methods have emerged for the solution of opti-

misation problems which can be divided into two cate-

gories based on the produced solutions [20], namely

deterministic and nondeterministic (stochastic) algorithms

as shown in Fig. 1. Deterministic algorithms in general

follow more rigorous procedures repeating the same path

every time and providing the same solution in different

runs. Most conventional or classic algorithms are deter-

ministic and based on mathematical programming. Many

different mathematical programming methods have been

developed in the past few decades. Examples of deter-

ministic algorithms are linear programming (LP), convex

programming, integer programming, quadratic program-

ming, dynamic programming, nonlinear programming

(NLP), and gradient-based (GB) and gradient-free (GF)

methods. These methods usually provide accurate solutions

for problems in a continuous space. Most of these methods,

however, need the gradient information of the objective

function and constraints and a suitable initial point.

On the other hand, nondeterministic or stochastic

methods exhibit some randomness and produce different

solutions in different runs. The advantage is that these

methods explore several regions of the search space at the

same time and have the ability to escape from local optima

and reach the global optimum. Therefore, these methods

are more capable of handling NP-hard problems (i.e.

problems that have no known solutions in polynomial time)

[21]. There are a variety of derivative-free stochastic

optimisation algorithms which are of two types: heuristic

algorithms (HA) and meta-heuristic algorithms (MHA)

(Fig. 1).

Heuristic means to find or discover by means of trial and

error. Alan Turning was one of the first to use heuristic

algorithms during the Second World War and called his

search methods heuristic search. Glover [22] possibly

revived the use of heuristic algorithms in 1970s. The

general problem with heuristic algorithms (e.g. scatter

search) is that there is no guarantee that optimal solutions

are reached though quality solutions are found in a rea-

sonable amount of time. The second generation of the

optimisation methods is meta-heuristic proposed to solve

more complex problems and very often provides better

solutions than heuristic algorithms. The 1980s and 1990s

saw a proliferation of meta-heuristic algorithms. The recent

trends in meta-heuristic algorithms are stochastic algo-

rithms with certain trade-off of random and local search.

Every meta-heuristic method consists of a group of search

agents that explore the feasible region based on both ran-

domisation and some specified rules. These methods rely

extensively on repeated evaluations of the objective func-

tion and use heuristic guidelines for estimating the next

search direction. The guidelines used are often simple, and

the rules are usually inspired by natural phenomena or

laws. Glover and Kochenberger [23] present a review of

the field of meta-heuristics up to 2003.

There are different classifications of meta-heuristic

algorithms reported in the literature [24, 25]. They can be

classified as population based (PB) and neighbourhood or

trajectory based (TB) (Fig. 1). Neighbourhood-based meta-

heuristics such as simulated annealing [26] and tabu search

[27] evaluate only one potential solution at a time and the

solution moves through a trajectory in the solution space.

Optimisation 
algorithms 

Deterministic 

NLP GB GF 

Stochastic 

HA MHA 

PB TB 

LP 

Fig. 1 Classification of optimisation algorithms

Cogn Comput (2015) 7:706–714 707

123



The steps or moves trace a trajectory in the search space,

with nonzero probability that this trajectory can reach the

global optimum. In the population-based meta-heuristics, a

set of potential solutions move towards goals simultane-

ously. For example, genetic algorithm (GA) [28, 29] and

particle swarm optimisation (PSO) [30, 31] are population-

based algorithms and use a population of solutions.

Nature-Inspired Computing Paradigm

The nature-inspired computing paradigm is fairly vast.

Even though science and engineering have evolved over

many hundred years with many clever tools and methods

available for their solution, there is still a diverse range of

problems to be solved, phenomena to be synthesised and

questions to be answered. In general, natural computing

approaches should be considered when:

• The problem is complex and nonlinear and involves a

large number of variables or potential solutions or has

multiple objectives.

• The problem to be solved cannot be suitably modelled

using conventional approaches such as complex pattern

recognition and classification tasks.

• Finding an optimal solution using traditional

approaches is not possible, difficult to obtain or cannot

be guaranteed, but a quality measure exists that allows

comparison of various solutions.

• The problem lends itself to a diversity of solutions or a

diversity of solutions is desirable.

Nature-inspired computing (NIC) refers to a class of

meta-heuristic algorithms that imitate or are inspired by

some natural phenomena explained by natural sciences

discussed earlier. A common feature shared by all nature-

inspired meta-heuristic algorithms is that they combine

rules and randomness to imitate some natural phenomena.

Many nature-inspired computing paradigms have emerged

in recent years. They can be grouped into three broad

classes: physics-based algorithms (PBA), chemistry-based

algorithms (CBA) [32] and biology-based algorithms

(BBA) (Fig. 2).

Physics-Based Algorithms

Physics-inspired algorithms employ basic principles of

physics, for example, Newton’s laws of gravitation, laws of

motion and Coulomb’s force law of electrical charge dis-

cussed earlier in the paper. They are all based on deter-

ministic physical principles. These algorithms can be

categorised broadly as follows:

(a) Inspired by Newton’s laws of motion, e.g. Colliding

Bodies Optimisation (CBO),

(b) Inspired by Newton’s gravitational force, e.g. Grav-

itational Search Algorithm (GSA), Central Force

Optimisation (CFO), Space Gravitation Optimisation

(SGO) and Gravitational Interaction Optimisation

(GIO)

(c) Inspired by celestial mechanics and astronomy, e.g.

Big Bang–Big Crunch search (BB–BC), Black Hole

Search (BHS), Galaxy-based Search Algorithm

(GbSA), Artificial Physics-based Optimisation

(APO) and Integrated Radiation Search (IRS),

(d) Inspired by electromagnetism, e.g. Electromag-

netism-like Optimisation (EMO), Charged System

Search (CSS) and Hysteretic Optimisation (HO),

(e) Inspired by optics, e.g. Ray Optimisation (RO),

(f) Inspired by acoustics, e.g. Harmony Search Algo-

rithm (HSA),

(g) Inspired by thermodynamics, e.g. Simulated Anneal-

ing (SA),

(h) Inspired by hydrology and hydrodynamics, e.g.

Water Drop Algorithm (WDA), River Formation

Dynamics Algorithm (RFDA) and Water Cycle

Algorithm (WCA).

The earliest of all these algorithms was the Simulated

Annealing (SA) algorithm based on the principle of

thermo-dynamics [26]. The algorithm simulates the cooling

process by gradually lowering the temperature of the sys-

tem until it converges to a steady state. The idea to use

simulated annealing to search for feasible solutions and

converge to an optimal solution was very stimulating and

led researchers to explore other areas of physics.

An idea from the field of sound and acoustics led to the

development of HSA inspired by a phenomenon commonly

observed in music. The concept behind the HSA is to find a

perfect state of harmony determined by aesthetic estima-

tion [33]. A review of harmony search algorithms and its

variants is provided by Siddique and Adeli [34]. Hybrid

harmony search algorithms are presented by Siddique and

Adeli [35]. Applications of HSA are reviewed in Siddique

and Adeli [36].

PBA 

NIC 

CBA BBA 

Fig. 2 Broad classification of NIC
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Zaránd et al. [37] proposed a method of optimisation

inspired by demagnetisation, called hysteretic optimisation

(HO). This is a process similar to simulated annealing

where the material achieves a stable state by slowly

decreasing the temperature. That is, finding the ground

states of magnetic samples is similar to finding the optimal

point in the search process. Based on the principles of

electromagnetism, Birbil and Fang [38] introduced the

electromagnetism-based optimisation. The EM-based

algorithm imitates the attraction–repulsion mechanism of

the electromagnetism theory in order to solve uncon-

strained or bound constrained global optimisation prob-

lems. It is called electromagnetism-like optimisation

(EMO) algorithm. A solution in EMO algorithm is seen as

a charged particle in the search space and its charge relates

to the objective function value.

Motivated by natural physical forces, Spears et al. [39]

introduced the Artificial Physics Optimisation (APO)

where particles are seen as solutions sampled from the

feasible region of the problem space. Particles move

towards higher fitness regions and cluster to optimal region

over time. Heavier mass represents higher fitness value and

attracts other masses of lower fitness values. The individual

with the best fitness attracts all other individuals with lower

fitness values. The individuals with lower fitness values

repel each other. That means the individual with best fit-

ness has the biggest mass and move with lower velocity

than others. Thus, the attractive–repulsive rule can be

treated as the search strategy in the optimisation algorithm

which ultimately leads the population to search the better

fitness region of the problem. In the initial state, individuals

are randomly generated within the feasible region. In APO,

mass is defined as the fitness function for the optimisation

problem in question. A suitable definition of mass of the

individuals is necessary.

Central Force Optimisation (CFO) uses a population of

probes that are distributed across a search space [40]. The

basic concept of the CFO is the search for the biggest mass

that has the strongest force to attract all other masses dis-

tributed within a decision space towards it considered as

the global optimum of the problem at hand. A review of

articles on CFO and its applications to various problems is

presented in a recent article by Siddique and Adeli [41].

Gravitational Search Algorithm (GSA) is a population-

based search algorithm inspired by the law of gravity and

mass interaction [42]. The algorithm considers agents as

objects consisting of different masses. The entire agents

move due to the gravitational attraction force acting

between them, and the progress of the algorithm directs the

movements of all agents globally towards the agents with

heavier masses [42]. Gravitational Interactions Optimisa-

tion (GIO) is inspired by Newton’s law [43]. It has some

similarities with GSA and was introduced around the same

time independently of GSA. The gravitational constant

G in GSA decreases linearly with time, whereas GIO uses a

hypothetical gravitational constant G as constant. GSA

uses a set of best individuals to reduce computation time,

while GIO allows all masses to interact with each other.

Based on the simple principle of continuous collision

between bodies, Kaveh and Mahdavi [44] proposed the

Colliding Bodies Optimisation (CBO). Hsiao et al. [45]

proposed an optimal searching approach, called Space

Gravitational Optimisation (SGO) using the notion of space

gravitational curvature inspired by the concept of Einstein

equivalence principle. SGO is an embryonic form of CFO

[46]. Based on the notion of Big Bang and shrinking phe-

nomenon of Big Crunch, Erol and Eksin [47] proposed Big

Bang and Big Crunch (BB–BC) algorithm. In the Big Bang

phase, a population of masses is generated with respect to

centre of mass. In the Big Crunch phase, all masses collapse

into one centre of mass. Thus, the Big Bang phase explores

the solution space, while Big Crunch phase performs nec-

essary exploitation as well as convergence. Chuang and

Jiang [48] proposed Integrated Radiation Optimisation

(IRO) inspired by the gravitational radiation in the curva-

ture of space–time. Hosseini [49] proposed Galaxy-based

Search Algorithm (GbSA) inspired by the spiral arm of

spiral galaxies to search its surrounding. GbSA uses a spi-

ral-like movement in each dimension of the search space

with the help of chaotic steps and constant rotation around

the initial solution. The spiral optimisation (SpO) is a

multipoint search for continuous optimisation problems.

The SpO model is composed of plural logarithmic spiral

models and their common centre [50].

Inspired by the phenomenon of the black hole, Hatam-

lou [51] proposed the Black Hole (BH) algorithm where

candidate solutions are considered as stars and the solution

is selected to be black hole. At each iteration, the black

hole starts attracting other stars around it. If a star gets too

close to the black hole, it will be swallowed and a new star

(candidate solution) is randomly generated and placed in

the search space to start a new search.

The basic idea of Snell’s law is utilised in Ray Opti-

misation (RO) proposed by Kaveh and Khayatazad [52]

where a solution consisting of a vector of variables is

simulated by a ray of light passing through space treated as

media with different refractive indices. Based on the

principles of hydrodynamics and water cycles, Intelligent

Water Drop (IWD) was proposed by Shah-Hosseini [53].

Considering the natural phenomenon of river formations

through land erosion and sediment deposits, Rabanal et al.

[54] proposed River Formation Dynamics (RFD). Eskandar

et al. [55] proposed Water Cycle Algorithm (WCA) based

on the principle of water cycle that forms streams and

rivers where all rivers flow to the sea which is the ultimate

destination and optimal solution in terms of optimisation.
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Biology-Based Algorithms

Biology-based algorithms can be classified into three

groups: Evolutionary Algorithms (EA), Bio-inspired

Algorithms (BIA) and Swarm Intelligence-based Algo-

rithms (SIA) (Fig. 3).

The fundamental idea of evolutionary algorithms is

based on Darwin’s theory of evolution, which gained

momentum in the late 1950s nearly a century after publi-

cation of the book ‘Origin of Species’. Fraser [56] first

conducted a simulation of genetic systems representing

organisms by binary strings. Box [57] proposed an evolu-

tionary operation to optimising industrial production.

Friedberg [58] proposed an approach to evolve computer

programs. The fundamental works of Lowrence Fogel [59]

in evolutionary programming, John Holland [60] in genetic

algorithms, Ingo Rechenberg [61] and Hans-Paul Schwefel

[62] in evolution strategies had great influences on the

development of evolutionary algorithms and computation

as a general concept for problem-solving and as a powerful

tool for optimisation. Since the development years of

1960s, the field evolved into three main branches [63]:

evolution strategies [64], evolutionary programming and

genetic algorithms. In the 1990s there was another set of

development in the evolutionary algorithms such as Koza

[65] developed genetic programming, Reynolds [66]

developed cultural algorithms and Storn and Price [67]

developed differential evolution. Evolutionary algorithms

have now found wide spread applications in almost all

branches of science and engineering [68–70]. Different

variants of EAs such as Evolutionary Programming (EP)

[71], Evolution Strategies (ES) [72, 73], Genetic Algorithm

(GA) [74–76], Genetic Programming (GP), Differential

Evolution (DE) and Cultural Algorithm (CA) are discussed

in the book by Siddique and Adeli [77].

The BIA are based on the notion of commonly observed

phenomenon in some animal species and movement of

organisms. Flocks of birds, herds of quadrupeds and

schools of fish are often shown as fascinating examples of

self-organised coordination [1, 78]. Particle Swarm Opti-

misation (PSO) simulates social behaviour of swarms such

as birds flocking and fish schooling in nature [79–81].

Particles make use of the best positions encountered and

the best position of their neighbours to position themselves

towards an optimum solution [82]. There are now as many

as about 20 different variants of PSO [83–86].

Bird Flocking (BF) is seen as feature of coherent

manoeuvring of a group of individuals due to advantages

for protecting and defending from predators, searching for

food, and social and mating activities [87]. Natural flocks

maintain two balanced behaviours: a desire to stay close to

the flock and a desire to avoid collisions within the flock

[88]. Reynolds [89] developed a model to mimic the

flocking behaviour of birds using three simple rules: col-

lision avoidance with flockmates, velocity matching with

nearby flockmates and flock centring to stay close to the

flock [90, 91]. Fish School (FS) shows very interesting

features in their behaviour. About half the fish species are

known to form fish schools at some stage in their lives. FS

is observed as self-organised systems consisting of indi-

vidual autonomous agents [92, 93] and come in many

different shapes and sizes [87, 94, 95].

MacArthur and Wilson [96] developed mathematical

models of biogeography that describe how species migrate

from one island to another, how new species arise and how

species become extinct. Since 1960s biogeography has

Biology-based 
algorithms 

EP 

EA 
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Fig. 3 Classification of

biology-based algorithms
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become a major area of research that studies the geo-

graphical distribution of biological species. Based on the

concept of biogeography, Simon [97] proposed Biogeog-

raphy Based Optimisation (BBO). Based on the principles

of biological immune systems, models of Artificial

Immune Systems (AIS) were proposed by Farmer et al.

[98] in the 1980s that stipulated the interaction between

antibodies mathematically. In 1968, Lindenmayer [99]

introduced formalism for simulating the development of

multi-cellular organisms, initially known as Lindenmayer

systems and subsequently named L-systems which attrac-

ted the interest of theoretical computer scientists. Aono and

Kunii [100] and Smith [101] used L-systems to create

realistic-looking images of trees and plants. There are other

bio-inspired search and optimisation algorithms reported in

the literature which haven’t attract much attention in the

research community such as atmosphere clouds model

[102], dolphin echolocation, Japanese tree frogs calling,

Egyptian vulture, flower pollination algorithm, great sal-

mon run, invasive weed optimisation, paddy field algo-

rithm, roach infestation algorithm and shuffle frog leaping

algorithm.

The SIA are based on the idea of collective behaviours

of insects living in colonies such as ants, bees, wasps and

termites. Researchers are interested in the new way of

achieving a form of collective intelligence called swarm

intelligence. SIAs are also advanced as a computational

intelligence technique based around the study of collective

behaviour in decentralised and self-organised systems. The

inspiring source of Ant Colony Optimisation (ACO) is

based on the foraging behaviour of real ant colonies [103,

104]. While moving, ants leave a chemical pheromone trail

on the ground. When choosing their way, they tend to

choose paths marked by strong pheromone concentrations.

The pheromone trails will guide other ants to the food

source. It has been shown that the indirect communication

between the ants via pheromone trails enables them to find

the shortest paths between their nest and food sources.

Honey bees search for food sources and collect by for-

aging in promising flower patches. The simple mechanism

of the honey bees inspired researchers to develop a new

search algorithm, called Bee Algorithm [105, 106]. Simi-

larly, Artificial Bee Colony (ABC) algorithm was proposed

by Karaboga [107] and virtual bee algorithm was proposed

by Yang [108]. Bat Algorithm (BatA) is based on the

echolocation behaviour of bats. The capability of micro-

bats is fascinating as they use a type of sonar, called

echolocation, to detect prey, avoid obstacles and locate

their roosting crevices in the dark. Yang [109] simulated

echolocation behaviour of bats. Quite a number of cuckoo

species engage the obligate brood parasitism by laying

their eggs in the nests of host birds of different species.

Yang and Deb [110] describe the Cuckoo Search (CS)

algorithm based on the breeding behaviour of certain

cuckoo species. The flashing of fireflies in the summer sky

in the tropical regions has been attracting the naturalists

and researchers for many years. The rhythm, the rate and

the duration of flashing form part of the signalling system

that brings two fireflies together. Based on some idealised

rules, Yang [111] proposed the Firefly Algorithm (FA).

Individual and groups of bacteria forage for nutrients,

e.g. chemotactic (foraging) behaviour of E. coli bacteria.

Based on this concept, Passino [112] proposed Bacterial

Foraging Optimisation Algorithm (BFOA). There are many

swarm intelligence-based search and optimisation algo-

rithms reported in the literature which haven’t attract much

attention in the research community such as wolf search,

cat swarm optimisation, fish swarm optimisation, eagle

strategy, krill herd, monkey search and weightless swarm

algorithms.

Conclusion

It is obvious from this review that the field of nature-in-

spired computing is large and expanding. This invited

paper provided a brief summary of significant advances

made in this exciting area of research with a focus on the

physics- and biology-based approaches and algorithms.

A parallel development has been the emergence of the

field of computational intelligence (CI) mainly consisting of

neural networks [113–120], evolutionary computing [121]

and fuzzy logic [122–125] in the past twenty years starting

with the seminal book of Adeli and Hung [126] which

demonstrated how a multi-paradigm approach and integra-

tion of the three CI computing paradigms can lead to more

effective solutions of complicated and intractable pattern

recognition and learning problems. It is observed that NIC

and CI intersect. Some researchers have argued that swarm

intelligence provides computational intelligence. The

authors advocate and foresee more cross-fertilisation of the

two emerging fields. Evolving neural networks is an example

of such cross-fertilisation of two domains [127, 128].
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