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Abstract The present manuscript tackles the problem of

learning the average of a set of symmetric positive-definite

(SPD) matrices. Averages are computed via the notion of

Fréchet mean, and the associated metric dispersion is

interpreted as the variance of the patterns around the

Fréchet mean. Also, the problem of continuous interpola-

tion of two SPD patterns is tackled within the manuscript.

The property of volume conservation of the Fréchet mean

and of the considered interpolatory scheme for SPD

matrices is discussed as well. The paper describes several

applications where the technique could be readily exploi-

ted, including in machine learning, intelligent control,

pattern classification, speech emotion classification and

diffusion tensor data analysis in medicine.
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Introduction

A branch of cognitive computation is about the computa-

tional foundations of intelligent behavior and about the

development of theories and systems pertaining to intelli-

gent behavior. Research on such branch of cognitive

computation ranges from theoretical questions in machine

learning to intelligent data processing and draws on

methods from statistics, artificial intelligence and experi-

mental computer science.

The ensemble statistical features of acquired data and

the algorithms to estimate them are of prime importance in

intelligent data processing. In particular, computing the

mean value of a set of data, like a set of measures of a

variable of a physical process, is a widely used technique to

smooth out irregularities in the data and to filter out the

noise and the measurement errors.

Let us consider a set of real scalar data. The average of a

set of real numbers may be computed by the standard

arithmetic average, which provides, as a mean value, a real

number. If some little extra structure in the data is con-

sidered, we may observe a bigger richness of chances to

define averages. Consider, for instance, a set of real scalar

positive data: in this case, at least three kinds of averages

are known and used in applications, namely, arithmetic,

harmonic and geometric averages. No matter what kind of

average is invoked for real positive numbers, they share a

common feature: they return an average number which is

real and positive. The definition of ‘mean value’ of a set of

data becomes then richer and more complicated with the

increasing amount of structure that the data to average

possess.

From the above-mentioned examples, we may learn that

the definition of mean value of a set of data is not unique

nor straightforward and may depend of a series of factors.

Every procedure for computing an average, however,

should at least meet the following condition: The returned

mean value should be of the same nature of the data that it

is computed from.

As an instructive example, let us consider the problem of

averaging over the general real linear group GðpÞ of invert-

ible matrices, defined asGðpÞ ¼deffy 2 R
p�pj detðyÞ 6¼ 0g:Let
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us suppose a data-set S ¼ fy1; y2; . . .; yNg of GðpÞ-matrices

is available and an average matrix needs to be computed. It is

instructive to note that average matrix may not be the sample

arithmetic mean:

1

N
ðy1 þ y2 þ � � � þ yNÞ;

because, in general, a sum of invertible matrices is not

necessarily invertible. Likewise, the geometric mean:

ðy1 � y2 � � � yNÞ
1
N;

is not acceptable because it depends on the order of com-

putation of matrix products (the group GðpÞ is not

Abelian).

The question of defining a procedure to compute aver-

ages over curved spaces is intimately connected to a dif-

ferent question, namely, to the definition of a continuous

interpolator between two objects on a manifold.

An example of interpolation readily arises in random

number generation. Let us suppose that a random number

generator is sought for that yields a scalar random variable

x 2 R which is neither Gaussian nor Laplacian, but whose

distribution may vary with continuity between these limits.

Let us imagine the Gaussian limit is specified by the dis-

tribution 1
2p exp � x2

2

� �
and that the Laplacian limit is

specified by the distribution 1
6

exp � jxj
3

� �
: Then, a possible

interpolation between the two distributions would be the

mixture:

1� h
2p

exp � x2

2

� �
þ h

6
exp � jxj

3

� �
;

with h 2 ½0 1�: The above-mentioned function is indeed a

probability distribution, because it appears non-negative

and integrates to one, which varies with continuity between

a Gaussian distribution (h ¼ 0) and a Laplacian distribution

(h ¼ 1) as the parameter h varies. Figure 1 illustrates an

example of interpolation between the two probability

distributions.

The present paper addresses the problem of learning the

average of a set of symmetric positive-definite matrices

(SPD) as well as their variance. The problem has wide

ramifications and potential applications in several areas of

artificial intelligence and cognition, some of which are

identified below.

Symmetric positive-definite matrices find a wide range

of applications in science. For instance:

• Analysis of deformation [15, 16]. Spatially organized

data of the SPD-matrix type may arise from measure-

ments of strain/stress and deformation in materials

science and earth science.

• Image analysis [1]. Symmetric positive-definite matri-

ces are now widely used in image analysis, in

applications such as segmentation, grouping, motion

analysis and texture segmentation.

• Statistical analysis of diffusion tensor data in medicine

[7]. The tensors yield by diffusion tensor magnetic

resonance imaging represent the covariance within a

Brownian motion model of water diffusion. Current

approaches to statistical analysis of diffusion tensor

data take the SPD geometry into account, due to the

fact that the space of diffusion tensors does not form a

vector space.

• Automatic and intelligent control [3]. In robotics, the

mass-inertia matrix of a robotic system is SPD and the

accuracy of its estimate affects control performance.

Likewise, controlling vibrations and precise positions

of robotic structures often requires the estimation of the

structure’s mass-inertia and stiffness matrices. In

intelligent control, control decisions are often made

based on estimation of covariance matrices.

Also, symmetric positive-definite matrices with unitary

trace are termed ‘density matrices’ and are used in quantum

physics (see, e.g., [2]).

Symmetric positive-definite matrices plays an important

role in machine intelligence, machine learning and cogni-

tion. For instance:

• Human detection via classification on the space of SPD

matrices [20]. Human detection in still images is

considered a challenging example of object detection

problems, due to the structure and variable appearance

of the human body as well as the variation of

illumination. An approach in human detection is based

on sequentially applying a classifier to all the possible

sub-windows in a given image, where covariance

features are used as human descriptors. As classical

machine learning techniques to train the classifiers are

not adequate, since the covariance matrices lie on a

curved manifold, it is necessary to define an approach

for clustering data points lying on the space of SPD

matrices.

• Pattern recognition [13, 19]. Two important subclasses

of pattern recognition problems can be reformulated as

optimization on the manifold of SPD matrices: Data

clustering and template matching. In data clustering, in

order to solve the problem related to the use of the

Euclidean metric in the data space that favors spherical

clusters, a general (e.g., Mahalanobis) metric is used

which bases on SPD kernel matrices to be optimized. In

template matching, the matching of a pattern with a

prototype should be discovered up to, e.g., rotations and

dilations, which may be represented by SPD matrices to

be estimated.

• Speech emotion classification [22]. Speech emotion

classification [4] is a research domain in intelligent
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human–machine communication, with applications to

tutoring, customer service, robotics and entertainment.

Speech emotion classification may be performed by

extracting features from speech signals and by detect-

ing emotions with a classifier. Covariance matrices may

be used as feature descriptors.

• Modeling of cognitive evolution [14]. Cognition is not

directly measurable. It is assessed using psychometric

tests which can be regarded as quantitative measures of

cognition with error. Proust et al. [14] proposed a model

to describe the evolution in continuous time of unob-

served cognition in the elderly and assessed the impact

of covariates directly on it. The latent cognitive process

was defined using a linear mixed model including a

Brownian motion and time-dependent covariates.

• Analysis of the multifactorial nature of cognitive aging

[17]. Research has indicated that there may be age-

related and Alzheimer’s disease-related reductions in

regional cerebral blood flow in the brain. Siedlecki

et al. [17] explored differences in age-related and

Alzheimer’s disease-related reductions in regional

cerebral blood flow patterns in the context of cognitive

aging using a multivariate approach to the analysis of

positron emission tomography data.

• Modeling of functional brain imaging data [9]. In

neuroimaging studies of human cognitive abilities,

brain activation patterns that include regions that are

strongly interactive in response to experimental task

demands are of particular interest. Existing analysis

tools have been highly successful in identifying group

differences in regional functional connectivity, includ-

ing differences associated with states of awareness and

normal aging. Habeck et al. [9] addresses the need for a

within-group model that identifies patterns of regional

functional connectivity that exhibit sustained activity

across graduated changes in task parameters (e.g., task

difficulty).

• Design and analysis of wireless cognitive dynamic

systems [10]. A new discipline is emerging, called

‘cognitive dynamic systems’, which builds on ideas in

statistical signal processing, stochastic control and

information theory and weaves those well-developed

ideas into new ones drawn from neuroscience, statis-

tical learning theory and game theory. The discipline of

cognitive dynamic systems will allegedly provide

principled tools for the design and development of a

new generation of wireless dynamic systems exempli-

fied by cognitive radio and cognitive radar.
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The space of symmetric positive-definite matrices may

be regarded as a smooth manifold, that is, a curved space,

and learning a mean symmetric positive-definite matrix

falls in the field of computing mean values on curved

spaces. Upon a proper metrization of the space, the concept

of mean value may be defined as the Fréchet mean. In

particular, we will deal with an intrinsic mean, namely,

with an instance of Fréchet mean that does not depend on

any embedding of the space of interest into an ambient

Euclidean space. The formulation of learning in terms of

Fréchet mean requires to solve an optimization problem

over a manifold, which will be tackled by first computing

the covariant derivative of the Fréchet criterion and then by

setting up a numerical optimization algorithm over the

space of symmetric positive-definite matrices. The volume-

conservation feature of the solution will be studied as well.

Associated to the concept of Fréchet mean is the concept

of metric dispersion or Fréchet mean variance, that, like-

wise covariance for random data that lie on a Euclidean

space, measures the dispersion of the data around their

mean value. Also, the notion of learning a Fréchet mean

leads very naturally to the notion of learning a continuous

interpolator between two SPD matrices on a manifold,

which will be discussed within the present paper as well,

along with its volume-conservation property.

Learning the Fréchet Mean over Riemannian

Manifolds and Related Concepts

In the present section, we briefly survey the geometry of

smooth manifolds by recalling concepts as tangent spaces,

covariant derivatives, geodesic arcs and geodesic distance.

For a reference on differential geometry, see e.g., Spivak

[18]. We also recall the notion of Fréchet mean on a

metrizable space and define the associated metric variance.

The notion of interpolation over a smooth manifold will be

treated as well.

A Survey of Some Geometrical Concepts

Let us denote the data space of interest as Y; which is

supposed to be a Riemannian manifold. Its tangent space at

point y 2 Y is denoted as TyY:

Given any pair of points v;w 2 TyY; it is defined a inner

product hv;wiy 2 R: The specification of a inner product

for a Riemannian manifold turns it into a metric space. In

fact, the length of a curve cy;v : ½0 1� ! Y; such that

cy;vð0Þ ¼ y 2 Y and _cy;vð0Þ ¼ v 2 TyY; is given by:

‘ðcy;vÞ ¼
def
Z 1

0

h _cy;vðtÞ; _cy;vðtÞi
1
2

cy;vðtÞdt: ð1Þ

Given arbitrary y 2 Y and v 2 TyY; the curve gy;v :

½0 1� ! Y of shortest length is termed geodesic. Such

minimal length, namely ‘ðgy;vÞ; is termed geodesic distance

between endpoints, namely between points gy,v(0) = y and

gy,v(1). The Riemannian distance between endpoints is

denoted by:

dðgy;vð0Þ; gy;vð1ÞÞ ¼
def
‘ðgy;vÞ: ð2Þ

It is clear that if a manifold Y is such that any pair of

points may be connected by a geodesic arc, then it is

possible to measure the distance between any given pair of

points on it.

Given a regular function f : Y! R; its covariant

derivative ryf in the direction of the vector v 2 TyY

measures the rate of change of the function f in the direc-

tion v. Namely, given any smooth curve cy;v : ½0 1� ! Y;

such that cy,v(0) = y and _cy;vð0Þ ¼ v; the covariant deriv-

ative ryf is the unique vector in TyY such that:

hv;ryf iy ¼
d

dt
f ðcy;vðtÞÞ

����
t¼0

: ð3Þ

A common method to optimize on Euclidean spaces,

namely gradient steepest descent, may be readily extended

to smooth manifolds [21]. To this purpose, let us consider

the differential equation on the manifold Y :

_yðtÞ ¼ �ryðtÞf ; yð0Þ ¼ �y 2 Y: ð4Þ

In the function f : Y! R is bounded and the smooth

manifold Y is compact, then the solution of such

differential equation tends to a local minimum of the

function f in Y; depending on the boundary point �y: In fact,

by definition of covariant derivative:

d

dt
f ðyðtÞÞ ¼ h _yðtÞ;ryðtÞf iyðtÞ ¼ �hryðtÞf ;ryðtÞf iyðtÞ � 0:

ð5Þ

The notion of pushforward map or tangent map is of

primal importance in the following calculations. Let us

consider two smooth manifolds Y and U and a smooth map

u : Y! U: Let y 2 Y: A pushforward map:

u0y : TyY! TuðyÞU ð6Þ

is defined such that for every smooth curve cy;vðtÞ 2 Y with

t 2 ½�a a�; a [ 0, cy;vð0Þ ¼ y 2 Y and _cy;vð0Þ ¼ v 2 TyY; it

holds:

u0yðvÞ ¼
def d

dt
uðcy;vðtÞÞ

����
t¼0

: ð7Þ

The pushforward map is linear in the argument v.

In the present paper, the smooth manifolds of interest

are of matrix type, therefore maps between manifolds are

matrix-to-matrix functions. In this case, if the function u
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above is analytic about a matrix-point y0 2 Y; namely, if it

may be expressed as:

uðyÞ ¼
X1
k¼0

akðy� y0Þk; ð8Þ

then the tangent map u0y(v) in a point y 2 Y applied to the

tangent direction v 2 TyY may be expressed as:

u0yðvÞ ¼
X1
k¼1

ak

Xk

r¼1

ðy� y0Þr�1vðy� y0Þk�r: ð9Þ

Below it is recalled the analytic expansion of three

matrix-to-matrix maps of particular interest in the context

of the present paper:

• Matrix inverse function, u : GðpÞ ! GðpÞ; u(y) =

y-1. The expansion has center y0 = e and coefficients

ak = (-1)k.

• Matrix exponential, u : glðpÞ ! GðpÞ; u(y) = exp(y).

The expansion has center y0 = 0 and coefficients

ak = (k!)-1.

• Matrix principal logarithm u : BðpÞ ! glðpÞ; u(y) =

log(y). The expansion has center y0 = e and coeffi-

cients a0 = 0, ak ¼ �ð�1Þkk�1 for k C 1. The subset B

is defined by B ¼deffy 2 GðpÞjky� ek\1g; for any

matrix norm k � k:

In the expressions mentioned above, symbol glðpÞ
denotes the Lie algebra associated to the Lie group GðpÞ;
and symbol e denotes the identity element of the Lie group

GðpÞ:

Learning a Sample Fréchet Mean and its Associated

Variance

In order to define the notion of ‘mean value’ in a metriz-

able matrix set Y; we should consider the following

requirements to be fundamental:

• The mean value of a set of objects in a space Y must be

of the same nature of the objects that it is compute

from, namely, it must belong to the same space Y;
• The notion of mean value of a set of objects in a

metrizable space should embody the intuitive under-

standing that it must locate as close as possible to all

the objects. Therefore, a fundamental notion in the

definition of mean value is a measure of how far two

elements in the space Y fall apart.

Accordingly, the notion of variance of objects in a

metrizable space will be defined in a way that accounts for

the amount of dispersion of the objects about the mean

value and also depends on how the dissimilarity of such

objects is measured.

A way of defining the mean value of a set of objects

y1; . . .; yN 2 Y is provided by the notion of Fréchet mean.

The Fréchet mean and associated variance [8] may be

defined as:

l ¼def
arg min

y2Y

1

N

XN

n¼1

d2ðy; ynÞ; ð10Þ

r2 ¼def
min
y2Y

1

N

XN

n¼1

d2ðy; ynÞ; ð11Þ

where operator d : Y� Y! R
þ
0 denotes a distance func-

tion in the metrizable space Y: There is no warranty, in

general, that the optimization problem (10) admits a unique

solution. In the case of interest in the present manuscript,

however, uniqueness of the solution is ensured.

In the present manuscript, we assume that the space of

interest Y is a Riemannian manifold, therefore, the tools

introduced in ‘‘A survey of some geometrical concepts’’

may be taken advantage of in the definition and in the

learning of a Fréchet mean and associated variance.

In order to find a minimizer for the criterion
1
N

PN
n¼1 d2ðy; ynÞ; we may make use of the differential

equation (4). The (unique, by hypothesis) minimum is

apparently achieved for a value l such that:

ry

XN

n¼1

d2ðy; ynÞ
�����
y¼l

¼ 0 2 TlY: ð12Þ

Once the space of interest Y and its geometrical features

are set, it is necessary to solve the optimization problem

(10) by a numerical optimization algorithm that takes the

geometry of the space Y into account. In particular, starting

from an initial guess l0 2 Y; it is possible to envisage an

iterative learning algorithm that generates a pattern ls 2 Y

at any learning step s 2 N: Such sequence may be

generated by moving from each point ls 2 Y to the next

point ls?1 along a short geodesic arc [11] in the opposite

direction of the covariant derivative of the criterion

function evaluated at point ls. Namely, if we set:

vs ¼
def 1

2
rls

XN

n¼1

d2ðls; ynÞ; ð13Þ

then the learning algorithm may be expressed as:

lsþ1 ¼ gls;�vs
ðtsÞ; ð14Þ

where ts [ [0 1] denotes any suitable learning stepsize

schedule that drives the iterative learning algorithm (14) to

convergence and s = 0,..., S, with the number of iterations

S being sufficiently large.

A learning stepsize schedule ts may be defined as fol-

lows. Let us denote by rs
2 the variance of the samples

around the mean value ls at iteration s, namely:

Cogn Comput (2009) 1:279–291 283
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r2
s ¼

1

N

XN

n¼1

d2ðls; ynÞ: ð15Þ

The stepsize ts should be evaluated in such a way that at

step s ? 1 the variance rs?1
2 is reduced as much as possible

with respect to the variance rs
2. We may regard the

variance rs?1
2 as a function of the stepsize ts, in fact:

r2
sþ1 ¼

1

N

XN

n¼1

d2ðgls;�vs
ðtsÞ; ynÞ: ð16Þ

We might thus optimize the value of ts so that the

difference jr2
sþ1 � r2

s j be as large as possible. Clearly, this

is a difficult non-linear problem to solve and in practice, it

is advisable to choose some sub-optimal approximation.

Under the hypothesis that the stepsize value ts is small

enough, we may invoke the expansion of the function

rs?1
2 around the point ts = 0:

r2
sþ1 � r2

s þ C1;sts þ
1

2
C2;st

2
s ; ð17Þ

so that the optimal stepsize tIs that maximizes the

difference jr2
sþ1 � r2

s j is readily found to be:

tIs ¼
def�C1;s

C2;s
: ð18Þ

The coefficients C1;s;C2;s 2 R may be calculated as the

first-order and second-order derivatives of the function

r2
sþ1ðtsÞ with respect to the parameter ts in the point ts = 0.

After the mean value l 2 Y has been learnt by the

algorithm (14), the associated Fréchet variance may be

computed as:

r2 ¼ 1

N

XN

n¼1

d2ðl; ynÞ: ð19Þ

As expected, the variance r2 measures the dispersion of

the points yn 2 Y around the mean value l 2 Y according

to the predefined distance function d(�, �).

Continuous Binary Interpolation

The same considerations made about the definition of a

mean value hold true for the definition of the notion of

continuous interpolation of two objects in a matrix

manifold.

Continuous geometric interpolation of two (or more)

objects has the noticeable purpose of filling-in missing data

in curved spaces. A continuous interpolation lh 2 Y

between two points y1; y2 2 Y may be defined and learnt

through the optimization problem [12]:

lh ¼
def

arg min
y2Y
½ð1� hÞd2ðy; y1Þ þ hd2ðy; y2Þ�; ð20Þ

with the variable h 2 ½0 1� providing a parametrization for

the interpolation between the two given points.

A Learning Algorithm for Averaging SPD Matrices

We may now proceed to develop an algorithm to learn an

average SPD matrix, its associate variance and an inter-

polation matrix for SPD matrices.

Design of an Averaging Algorithm over the Space

S
þðpÞ

Let us consider the manifold of symmetric positive-defi-

nite matrices, defined implicitly by S
þðpÞ ¼deffy 2

R
p�pjyT ¼ y; y [ 0g: We recall that a matrix y 2 R

p�p is

termed positive definite if for every non-zero vector n 2
R

p it holds nTyn[ 0.

The tangent space at a point y 2 S
þðpÞ is given by

TyS
þðpÞ ¼ fv 2 R

p�pjvT ¼ vg: The canonical inner prod-

uct in the space S
þðpÞ is defined as:

hw; viy ¼
def

tr½wy�1vy�1�; ð21Þ

for every y 2 S
þðpÞ and w; v 2 TyS

þðpÞ; where symbol tr[�]
denotes matrix-trace. With the above setting, the geodesic

gy,v(t) and the associated (squared) Riemannian distance

between two points x; y 2 S
þðpÞ write:

gy;vðtÞ ¼ y
1
2 expðty�1

2vy�
1
2Þy1

2 ð22Þ

d2ðx; yÞ ¼ tr½log2ðyx�1Þ�: ð23Þ

The function to optimize in order to learn the Fréchet

mean of a set of SPD matrices yn is, therefore,
1
2

PN
n¼1 tr½log2ðyy�1

n Þ�:
A preliminary observation about the matrix-variable at

hand is in order. In the following equations, the product

x-1y appears often, where x; y 2 S
þðpÞ : It should be noted

that, in general, the quantity x�1y 6¼ S
þðpÞ; however, it is

true that x�1y 2 GðpÞ; also, note that (x-1y)T = yx-1.

With the aim to employ the learning algorithm (13)- (14),

we first need to compute the covariant derivative of the

criterion to optimize. In the definition of covariant deriva-

tive (3), the generic smooth curve cy,v may be replaced with

a geodesic. Let us, therefore, consider the following prob-

lem: Solve for the covariant derivative ryf within:

tr½vy�1ðryf Þy�1� ¼ d

dt
f ðy1

2 expðty�1
2vy�

1
2Þy1

2Þ
����
t¼0

; ð24Þ

f ðzÞ ¼def 1

2
tr log2ðzx�1Þ
� �

; z 2 S
þðpÞ; ð25Þ

for arbitrary x; y 2 S
þðpÞ and v 2 TyS

þðpÞ: Let us set

w ¼def
y�

1
2vy�

1
2 and note, first, that:
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d

dt
f ðy1

2 expðtwÞy1
2Þ ¼ 1

2

d

dt
tr log2ðy1

2 expðtwÞy1
2x�1Þ

h i

¼ tr

�
d

dt
logðy1

2 expðtwÞy1
2x�1Þ

� �

� logðy1
2 expðtwÞy1

2x�1Þ
	
:

Thanks to the concept of pushforward map, we may

compute the inner derivative in the last line as follows:

d

dt
logðy1

2 expðtwÞy1
2x�1Þ ¼ log0

y
1
2 expðtwÞy

1
2x�1

� y
1
2

d

dt
expðtwÞ

� �
y

1
2x�1

� �

¼ log0
y

1
2 expðtwÞy

1
2x�1
ðy1

2 exp0twðwÞy
1
2x�1Þ:

Now, by setting t = 0, we obtain:

d

dt
f y

1
2 expðtwÞy1

2

� �����
t¼0

¼ tr

�
log0

y
1
2y

1
2x�1

y
1
2 exp00ðwÞy

1
2x�1

� �� �

�log y
1
2y

1
2x�1

� �
�

¼ tr log0yx�1 y
1
2wy

1
2x�1

� �� �
log yx�1

 �h i

¼ tr

�
log0yx�1 y

1
2y�

1
2vy�

1
2y

1
2x�1

� �� �

�log yx�1

 �	

¼ tr log0yx�1ðvx�1Þlogðyx�1Þ
h i

:

From the expansion formula (9), it is immediate to

verify that:

log0yx�1 vx�1

 �

¼
X1
k¼1

ak

Xk

r¼1

yx�1�e

 �r�1

vx�1

 �

yx�1�e

 �k�r

;

with ak = - (- 1)k/k, consequently, by further making

use of the analytic expansion of the matrix logarithm and of

the properties of the trace operator, we obtain:

According to the expansions recalled in ‘‘A survey of

some geometrical concepts’’, the first infinite sum is equal

to (yx-1)-1, while the second sum is equal to log(yx-1).

The covariant derivative ryf ; as a solution of the problem

(24–25), should thus satisfy equation:

tr vy�1ðryf Þy�1
� �

¼ tr vx�1

 �

yx�1

 ��1

logðyx�1Þ
h i

; ð26Þ

which readily leads to the result:

ry
1

2
tr log2ðyx�1Þ
� �� �

¼ y logðx�1yÞ: ð27Þ

The above-mentioned result may be easily made use of

in order to compute the covariant derivative of the total

variance in the expression of the Fréchet mean in (10),

namely:

ry
1

2

XN

n¼1

tr log2ðyy�1
n Þ

� � !
¼ y

XN

n¼1

logðy�1
n yÞ: ð28Þ

As the total variance is a sum of convex functions, its

minimum is achieved for a value of y 2 S
þðpÞ that make its

covariant derivative vanish to zero.

In the present case, the optimization algorithm (14)

becomes:

d

dt
f ðy1

2 expðtwÞy1
2Þ
����
t¼0

¼ tr
X1
k¼1

ak

Xk

r¼1

ðyx�1 � eÞr�1ðvx�1Þðyx�1 � eÞk�r
logðyx�1Þ

" #

¼ tr ðvx�1Þ
X1
k¼1

ak

Xk

r¼1

ðyx�1 � eÞk�r
logðyx�1Þðyx�1 � eÞr�1

" #

¼ tr ðvx�1Þ
X1
k¼1

ak

Xk

r¼1

X1
h¼1

ahðyx�1 � eÞk�rðyx�1 � eÞhðyx�1 � eÞr�1

" #

¼ tr ðvx�1Þ
X1
k¼1

ðkakÞ
X1
h¼1

ahðyx�1 � eÞkþh�1

" #

¼ tr ðvx�1Þ
X1
k¼1

ð�1Þkþ1ðyx�1 � eÞk�1

 ! X1
h¼1

ahðyx�1 � eÞh
 !" #

:
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lsþ1 ¼ l
1
2
s exp �tsl

�1
2

s ls

XN

n¼1

log y�1
n ls


 � !
l
�1

2
s

 !
l

1
2
s

¼ l
1
2
s exp �tsl

1
2
s

XN

n¼1

log y�1
n ls


 � !
l
�1

2
s

 !
l

1
2
s

¼ ls exp �ts

XN

n¼1

log y�1
n ls


 � !
;

¼ ls exp ts
XN

n¼1

log l�1
s yn


 � !
; ð29Þ

because it holds expða�1baÞ ¼ a�1 expðbÞa; whenever matri-

ces a and b are such that the above expressions make sense.

Once a suitably accurate mean special-orthogonal-

matrix-type connection-pattern l 2 S
þðpÞ has been com-

puted, its associated variance may be calculated by:

r2 ¼ 1

N

XN

n¼1

tr log2ðl�1ynÞ
� �

: ð30Þ

Optimal Stepsize Schedule for the Learning Algorithm

on S
þðpÞ

With the aim to compute the optimal learning stepsize

schedule for the averaging algorithm (29), it is necessary to

compute the first-order and second-order derivative of the

variance (16) with respect to the parameter ts in the point

ts = 0.

In order to accomplish such calculation, let us rewrite

the iterative learning algorithm (29) as follows:

lsþ1 ¼ ls exp tswsð Þ; ð31Þ

ws ¼
def�

XN

n¼1

log y�1
n ls


 �
: ð32Þ

According to the expression (16), the variance r2
sþ1ðtsÞ

may thus be customized as:

r2
sþ1ðtsÞ ¼

1

N

XN

n¼1

tr log2 y�1
n ls expðtswsÞ


 �� �
: ð33Þ

The calculation of the derivatives of the function r2
sþ1ðtsÞ

may thus be performed by studying aside the function:

FðtÞ ¼def 1

2
tr log2ðm expðtwÞÞ
� �

; ð34Þ

with m 2 GðpÞ; t [ [0 1] and expðtwÞ 2 S
þðpÞ: For the

first-order derivative, it holds:

dF

dt
¼ tr

d

dt
logðm expðtwÞÞ

� �
logðm expðtwÞÞ

� 	

¼ tr log0m expðtwÞ m
d

dt
expðtwÞ

� �
logðm expðtwÞÞ

� 	

¼ tr log0m expðtwÞ m exp0twðwÞ

 �

logðm expðtwÞÞ
h i

:

Now, by plugging the series expansion of the

pushforward map log0 into the last line above, we obtain:

tr log0m expðtwÞ m exp0twðwÞ

 �

logðm expðtwÞÞ
h i

¼ tr logðm expðtwÞÞðm expðtwÞÞ�1ðm exp0twðwÞÞ
h i

;

where, by the series expansion of the pushforward map exp0:

exp0twðwÞ ¼ expðtwÞw;

therefore, the first-order derivative of function (34)

assumes the expression:

_FðtÞ ¼ tr w logðm expðtwÞÞ½ �: ð35Þ

The first-order derivative _FðtÞ in the point t = 0 has thus

the value:

_Fð0Þ ¼ tr w log m½ �: ð36Þ

On the basis of the first-order derivative (35), the

second-order derivative €F is readily found, in fact:

d2F

dt2
¼ tr w log0m expðtwÞðm exp0twðwÞÞ

h i
;

which, in the point t = 0, assumes the value:

€Fð0Þ ¼ tr½w log0mðmwÞ�: ð37Þ

Under the hypothesis that the mean value ls is close

enough to all available SPD matrices yn, we may consider

m � e in the above formulas, which allows to come to an

approximation of the optimal learning stepsize as a

constant value. First, note that:

log0mðmwÞ ¼ ðm� eÞ log0mðwÞ þ log0mðwÞ;

and that a first-order approximation of log0mðwÞ is w. As a

consequence, we may assume that the following

approximation is acceptable:

tr½w log0mðmwÞ� � tr½w2�: ð38Þ

On the basis of the above findings, we may compute the

following coefficients for the expansion of the variance

r2
sþ1ðtsÞ (16):

C1;s ¼
d

dts

1

N

XN

n¼1

d2ðgls;�vs
tsð Þ; ynÞ

�����
ts¼0

¼ � 2

N
tr

XN

n¼1

log y�1
n ls


 � !2
2
4

3
5;

ð39Þ

C2;s ¼
d2

dt2
s

1

N

XN

n¼1

d2ðgls;�vs
ðtsÞ; ynÞ

�����
ts¼0

� 2tr
XN

n¼1

logðy�1
n lsÞ

 !2
2
4

3
5; ð40Þ
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therefore, it holds C1;s � �C2;s=N: The optimal stepsize

schedule has then the approximate constant value:

tIs �
1

N
: ð41Þ

The iteration algorithm (29) with stepsize (41) may be

rewritten explicitly as:

lsþ1 ¼ ls exp
1

N

XN

n¼1

log l�1
s yn


 � !
: ð42Þ

When computing the average of real-world data, it is

customary to normalize the data in a way that brings all

data points in the vicinity of some particular point of the

space. If we make the hypothesis that all data points

y1; . . .; yN 2 S
þðpÞ belong to a neighborhood of the identity

e 2 S
þðpÞ; we may start the iteration of the algorithm (29)

with l0 = e. In this case, it is possible to calculate

explicitly the first approximate solution l1, along with

the associate variance r1
2, that write, respectively:

l1 ¼ exp
1

N

XN

n¼1

log yn

 !
; ð43Þ

r2
1 ¼

1

N

XN

n¼1

tr ðlog ynÞ2
h i

: ð44Þ

The above-mentioned quantities play an important role

in the theory of averaging of SPD matrices. As a matter of

fact, in some papers they are used as mean value and

associated variance, respectively, of a set of SPD matrices

[1].

On the Feature of Volume Conservation

The iteration algorithm (29) endowed with the stepsize (41)

enjoys an interesting property that we refer to as ‘volume

conservation’. Namely, at each iteration the determinant of

the mean value ls equals the geometric average of the

determinants of data points yn. Volume conservation is

particularly important in applications such as diffusion

magnetic resonance imaging [1, 7].

In order to prove volume conservation, let us recall two

properties of determinant operator det, namely, for each

a; b 2 GðpÞ; it holds:

detðabÞ ¼ detðaÞ detðbÞ; ð45Þ
detðexpðaÞÞ ¼ expðtrðaÞÞ; ð46Þ

detða�1Þ ¼ ðdetðaÞÞ�1: ð47Þ

By applying the determinant operator to both sides of

equation (42), we obtain:

detðlsþ1Þ ¼ detðlsÞ exp
1

N

XN

n¼1

tr½logðl�1
s ynÞ�

 !

¼ detðlsÞ
YN
n¼1

exp
1

N
tr½logðl�1

s ynÞ�
� �

¼ detðlsÞ
YN
n¼1

exp tr½logðl�1
s ynÞ

1
N �

� �

¼ detðlsÞ
YN
n¼1

det exp logðl�1
s ynÞ

1
N

� �

¼ detðlsÞ
YN
n¼1

det yn

det ls

� �1
N

:

Therefore, the following property holds true:

detðlsÞ ¼
YN
n¼1

det yn

 !1
N

;

for every s = 1,..., S. It obviously holds true for the final

average matrix l 2 S
þðpÞ: An important consequence of

this property is that whenever the SPD matrices to average

come with approximately the same determinant values,

then it holds:

detðlÞ � detðy1Þ � � � � � detðyNÞ; ð48Þ

namely, the averaging algorithm does not cause any

inflation or deflation of volumes and truly obeys to the

basic principle that the computed mean value is of the same

nature of the data that it is computed from.

Interpolation over the Space of SPD Matrices

In the present section, we deal with the problem of learning

a matrix that interpolates two SPD matrices and study its

volume-conservation feature.

Let us assume two points y1; y2 2 S
þðpÞ are given and

that we are looking for a geometrically sound interpolation

of such two points in S
þðpÞ: The solution to such problem

may be looked for in the sense of the optimization problem

(20). Let us define the criterion C : SþðpÞ ! R
þ
0 as:

CðyÞ ¼ ð1� hÞtr½log2ðyy�1
1 Þ� þ htr½log2ðyy�1

2 Þ�; ð49Þ

with h 2 ½0 1� assigned.

As the criterion C(�) is a convex combination of two

convex function, it is convex as well. Its minimum may be

thus determined by setting to zero its covariant derivative,

which has the expression:

ryC ¼ ð1� hÞy logðy�1
1 yÞ þ hy logðy�1

2 yÞ: ð50Þ

Setting the above-mentioned covariant derivative to zero

leads to the expression for the interpolation matrix:
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lh ¼ y1 expðh logðy�1
1 y2ÞÞ: ð51Þ

Note that l0 = y1 and l1 = y2, coherently with the

optimization principle (20).

Let us now investigate the volume-conservation prop-

erty of the interpolating scheme (51). By taking the

determinant of both sides of equation (51) and by using the

already-mentioned properties of the determinant operator,

it is straightforward to show that:

detðlhÞ ¼ ðdetðy1ÞÞ1�hðdetðy2ÞÞh: ð52Þ

Whenever the two SPD matrices to interpolate come

with approximately the same determinant values, it holds:

detðlhÞ � detðy1Þ � detðy2Þ; ð53Þ

for every h 2 ½0 1�: We should, therefore, conclude that the

interpolatory scheme (51) does not cause any inflation or

deflation of data volumes for equal-volume data.

Examples and Numerical Experiments

In the present section, the behavior of the proposed

algorithms is illustrated via examples and numerical

experiments.

Numerical Tests on Learning Averages over the Space

of SPD Matrices

In order to test numerically the learning algorithm (42), we

may generate N random matrices yn 2 S
þðpÞ by exploiting

geodesic arcs departing from the identity e 2 S
þðpÞ :

yn ¼ ge;vn
fnð Þ; ð54Þ

where vn are random symmetric matrices, g�,�(�) denotes the

geodesic form (22) and fn 2 ½0 1� are randomly generated

with uniform distribution. Symmetric matrices vn may be

generated by the rule vn ¼
def 1

2
ðun þ uT

n Þ; with matrices un 2
R

p�p being random with each entry being a normal random

variable. Note that geodesic arcs departing from the iden-

tity have the simple expression ge;vðtÞ ¼ expðtvÞ for v 2
TeS

þðpÞ and t [ [0 1].

Figure 2 displays the result of a single run obtained with

N = 99 patterns and p = 10. The number of iterations of

the algorithm was set to S = 10.

The initial guess l0 was chosen randomly in S
þð10Þ:

As it is readily seen from the top panel of Fig. 2, the

learning algorithm converges steadily. Also, convergence

was achieved in a few iterations. The middle panel of

Fig. 2 shows that the distance dðe; lÞ is almost zero. The

bottom panel of Fig. 2 also confirms that the determinant
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Fig. 2 Experiment on

averaging over the space S
þð5Þ:

Top panel relative variance

r2
s=r

2
0 versus iteration index s.

Middle panel distances of the

patterns yn to the identity e
(bars) compared to the distance

of the computed mean matrix l
to the identity (horizontal solid
line). Bottom panel
determinants of the patterns yn

(bars) compared with the

determinant of the computed

mean value l (horizontal solid
line)
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detðlÞ tends to align to most of the similar determinants

detðynÞ:
In order to get a better insight of the numerical behavior of

the averaging method (42), we may consider the case p = 3.

In this case, the matrices yn and l possess three positive

eigenvalues that can be represented by points of the spaceR3:

The algorithm was tested with N = 49 points, S = 10 iter-

ations. The initial guess l0 was chosen randomly in S
þð3Þ:

First, it is necessary to make sure the learning algorithm

achieved convergence, as can be seen from the Fig. 3.

Now, we may consider this representation in terms of

eigenvalues, which is used here as a graphical representa-

tion of the behavior of the averaging algorithm only. The

closer the eigenvalues of the mean matrix l look to the

eigenvalues of the identity, the better the averaging is.

Figure 4 illustrates the obtained result.

The numerical test confirms that the eigenvalue-coor-

dinates of the point l is closer to those of the identity than

to those of most of the points yn.

Numerical Tests on Interpolating Two SPD Matrices

A test on the interpolation of two SPD matrices was con-

ducted as well in order to gain insights into the behavior of

the rule (51). The two matrices y1; y2 2 S
þðpÞ to average

may again be generated via the rule (54).

Again, if we choose p = 3, it is possible to give a

graphical representation of the matrices at hand. For

example, each column of a S
þð3Þ matrix may be
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Fig. 3 Test on averaging over

the space S
þð3Þ: Top panel

relative variance r2
s=r

2
0 versus

iteration index s. Middle panel
distances of the patterns yn to

the identity e (bars) compared

to the distance of the computed

mean matrix l to the identity

(horizontal solid line). Bottom
panel determinants of the

patterns yn (bars) compared

with the determinant of the

computed mean value l
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represented as a vector of proportional length, so that a

S
þð3Þ matrix may be represented by a frame of three (non-

orthogonal, non-unitary) three-dimensional vectors. Fig-

ure 5 illustrates the result of interpolation of two matrices.

As it is easily observed, the interpolation rule (51) provides

a set of learnt matrices that vary with continuity between

the templates y1 and y2.

Also, Fig. 6 illustrates each of the nine entries of the

matrix lh; denoted as lðr;cÞh ; versus the variable h: Of

course, Fig. 6 is redundant because the nine panel are

symmetric.

To conclude, Fig. 7 illustrates the function detðlhÞ
versus the variable h: As it is readily seen, the function

h 7!lh provides a matrix that varies with continuity in the

interval ½minfdetðy1Þ; detðy2Þg maxfdetðy1Þ; detðy2Þg�:

Fig. 5 Experiment on learning interpolates over the space S
þð3Þ
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Conclusions

The present manuscript is devoted to the problem of

learning the average of a set of symmetric positive-definite

matrices as well as their variance. Averaging over the

curved manifold of symmetric positive-definite matrices

was defined via the notion of Fréchet mean and the asso-

ciated metric dispersion was interpreted as the variance of a

set of symmetric positive-definite matrices around their

Fréchet mean. The problem of continuous interpolation of

two symmetric positive-definite matrices was considered as

well. The property of volume conservation of the Fréchet

mean and of the considered interpolatory scheme for

symmetric positive-definite matrices was also discussed.

The manuscript described several applications where the

considered learning algorithm could be readily exploited,

including in machine learning, pattern classification,

speech emotion classification, diffusion tensor data analy-

sis in medicine and intelligent control.

The behavior of the learning algorithm was tested

numerically. Numerical experiments show that the aver-

aging algorithm converges steadily and in a few iterations.

The present research study may be framed into a more

general investigation about the learning of the statistical

features of patterns belonging to curved manifolds [5, 6].

Such broader investigation field may include the learning

of probability density functions and related statistical

descriptors on manifold, the generation of (pseudo) random

events on manifolds as well as dimensionality reduction of

high-dimensional data on manifolds.

The above-mentioned statistical techniques might be

applied in the future to artificial intelligence and cognition,

as for example in pattern recognition/detection from cam-

era imagery and automatic emotion classification. Some

related statistical techniques on manifolds are under

investigation, as for instance a manifold-valued-data

dimensionality reduction technique based on multi-

dimensional scaling (known in the scientific literature with

the acronym MDS) adapted to metrizable data manifolds.
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21. Udrişte C. Convex functions and optimization methods on rie-

mannian manifolds. Dordrecht: Kluwer; 1994.

22. Ye C, Liu J, Chen C, Song M, Bu J. Speech emotion classification

on a Riemannian manifold. In: Proceedings of Advances in Mul-

timedia Information Processing (PCM 2008), Lecture Notes in

Computer Science, vol 5353/2008. Berlin/Heidelberg: Springer.

pp. 61–9.

Cogn Comput (2009) 1:279–291 291

123


	Learning the FrÕchet Mean over the Manifold of Symmetric Positive-Definite Matrices
	Abstract
	Introduction
	Learning the FrÕchet Mean over Riemannian Manifolds and Related Concepts
	A Survey of Some Geometrical Concepts
	Learning a Sample FrÕchet Mean and its Associated Variance
	Continuous Binary Interpolation

	A Learning Algorithm for Averaging SPD Matrices
	Design of an Averaging Algorithm over the Space {\mathbb{S}}^+(p)
	Optimal Stepsize Schedule for the Learning Algorithm on {\mathbb{S}}^+(p)
	On the Feature of Volume Conservation

	Interpolation over the Space of SPD Matrices
	Examples and Numerical Experiments
	Numerical Tests on Learning Averages over the Space of SPD Matrices
	Numerical Tests on Interpolating Two SPD Matrices

	Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


