Skip to main content
Log in

Rolling-element bearing modeling: A review

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

For the past several decades, significant efforts have been devoted to modeling and analysis of rolling-element bearings to aid in their design and application. This paper reviewed the modeling and analysis of rolling-element bearings with emphasis on single-row ball and roller bearings. The application of bearing models was reviewed as well along with illustrative results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stribeck, R., “Ball Bearing for Various Loads,” Transactions of the ASME, Vol. 29, pp. 420–463, 1907.

    Google Scholar 

  2. Sjovall, H., “The Load Distribution within Ball and Roller Bearings under Given External Radial and Axial Load,” Teknisk Tidskrift, Mek., h. 9, 1933.

    Google Scholar 

  3. Lundberg, G. and Palmgren, A., “Dynamic Capacity of Roller Bearings,” Acta Polytechnica; Mechanical Engineering Series, Royal Swedish Academy of Engineering Sciences, Vol. 2, No. 4, pp. 96–127, 1952.

    Google Scholar 

  4. Palmgren, A., “Ball and Roller Bearing Engineering,” Philadelphia: SKF Industries Inc., 1959.

    Google Scholar 

  5. Jones, A. B., “A General Theory for Elastically Constrained Ball and Radial Roller Bearings under Arbitrary Load and Speed Conditions,” Journal of Basic Engineering, Vol. 82, No. 2, pp. 309–320, 1960.

    Article  Google Scholar 

  6. Harris, T. A., “Rolling Bearing Analysis,” Wiley, pp. 1–481, 1966.

    Google Scholar 

  7. Joki, M., “Improved Fuel and Energy Efficiency through Optimized Bearing Design and Selection,” Power Transmission Engineering, pp. 34–39, 2008.

    Google Scholar 

  8. SKF, “SKF Calculation Tools,” http://www.skf.com/group/products/bearings-units-housings/roller-bearings/principles/selection-ofbearing-size/skf-calculation-tools/index.html (Accessed 7 NOV 2016)

    Google Scholar 

  9. NTN, “Development of the Industry's Highest Precision and Fastest Integrated Bearing Dynamic Analysis System (IBDAS),” http://www. ntnglobal.com/en/news/new_products/news201100013.html (Accessed 7 NOV 2016)

    Google Scholar 

  10. Fleming, D. P. and Poplawski, J. V., “Transient Vibration Prediction for Rotorson Ball Bearings Using Load-Dependent Nonlinear Bearing Stiffness,” International Journal of Rotating Machinery, Vol. 10, No. 6, pp. 489–494, 2004.

    Article  Google Scholar 

  11. INA, “Products & Services Calculation,” http://www.ina.de/content.ina.de/en/products_services/calculating/Calculation_and_testing.jsp (Accessed 7 NOV 2016)

    Google Scholar 

  12. http://www.pradeepkguptainc.com (Accessed SEP 21, 2016).

  13. Gupta, P. K., “Advanced Dynamics of Rolling Elements,” Springer, p. 5, 1984.

    Book  Google Scholar 

  14. ISO 76, “Rolling Bearings-Static Load Ratings,” 1978.

    Google Scholar 

  15. Rumbarger, J., “Thrust Bearings with Eccentric Loads,” Mechanical Design, pp. 172–179, 1962.

    Google Scholar 

  16. Liao, N. T. and Lin, J. F., “A New Method Developed for the Analysis of Ball Bearing Fatigue Life Considering Variable Contact Angles,” Tribology Transactions, Vol. 46, No. 3, pp. 435–446, 2003.

    Article  Google Scholar 

  17. De Mul, J., Vree, J., and Maas, D., “Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom while Neglecting Friction-Part I: General Theory and Application to Ball Bearings,” Journal of Tribology, Vol. 111, No. 1, pp. 142–148, 1989.

    Article  Google Scholar 

  18. Chen, C. H., Wang, K. W., and Shin, Y. C., “An Integrated Approach Toward the Dynamic Analysis of High-Speed Spindles: Part I -System Model,” Journal of Vibration and Acoustics, Vol. 116, No. 4, pp. 506–513, 1994.

    Article  Google Scholar 

  19. Cao, Y. and Altintas, Y., “A General Method for the Modeling of Spindle-Bearing Systems,” Journal of Mechanical Design, Vol. 126, No. 6, pp. 1089–1104, 2004.

    Article  Google Scholar 

  20. Cao, Y. and Altintas, Y., “Modeling of Spindle-Bearing and Machine Tool Systems for Virtual Simulation of Milling Operations,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 9, pp. 1342–1350, 2007.

    Article  Google Scholar 

  21. Altintas, Y. and Cao, Y., “Virtual Design and Optimization of Machine Tool Spindles,” CIRP Annals-Manufacturing Technology, Vol. 54, No. 1, pp. 379–382, 2005.

    Article  Google Scholar 

  22. Antoine, J.-F., Abba, G., and Molinari, A., “A New Proposal for Explicit Angle Calculation in Angular Contact Ball Bearing,” Journal of Mechanical Design, Vol. 128, No. 2, pp. 468–478, 2006.

    Article  Google Scholar 

  23. Holkup, T., Cao, H., Kolár, P., Altintas, Y., and Zelený, J., “Thermo-Mechanical Model of Spindles,” CIRP Annals-Manufacturing Technology, Vol. 59, No. 1, pp. 365–368, 2010.

    Article  Google Scholar 

  24. Liew, A., Feng, N., and Hahn, E., “Transient Rotordynamic Modeling of Rolling Element Bearing Systems,” Journal of Engineering for Gas Turbines and Power, Vol. 124, No. 4, pp. 984–9991, 2002.

    Article  Google Scholar 

  25. Shin, Y. C., “Bearing Nonlinearity and Stability Analysis in High Speed Machining,” Journal of Engineering for Industry (Transactions of the ASME) (USA), Vol. 114, No. 1, pp. 23–30, 1992.

    Google Scholar 

  26. Daidi, A., Chaib, Z., and Ghosn, A., “3D Simplified Finite Elements Analysis of Load and Contact Angle in a Slewing Ball Bearing,” Journal of Mechanical Design, Vol. 130, No. 8, Paper No. 082601, 2008.

    Google Scholar 

  27. Cao, H., Li, B., and He, Z., “Chatter Stability of Milling with Speed-Varying Dynamics of Spindles,” International Journal of Machine Tools and Manufacture, Vol. 52, No. 1, pp. 50–58, 2012.

    Article  Google Scholar 

  28. Lee, D.-S. and Choi, D.-H., “Reduced Weight Design of a Flexible Rotor with Ball Bearing Stiffness Characteristics Varying with Rotational Speed and Load,” Journal of Vibration and Acoustics, Vol. 122, No. 3, pp. 203–208, 2000.

    Article  MathSciNet  Google Scholar 

  29. Xu, T., Xu, G., Zhang, Q., Hua, C., Tan, H., et al., “A Preload Analytical Method for Ball Bearings Utilising Bearing Skidding Criterion,” Tribology International, Vol. 67, pp. 44–50, 2013.

    Article  Google Scholar 

  30. Zhao, C., Yu, X., Huang, Q., Ge, S. and Gao, X., “Analysis on the Load Characteristics and Coefficient of Friction of Angular Contact Ball Bearing at High Speed,” Tribology International, Vol. 87, pp. 50–56, 2015.

    Article  Google Scholar 

  31. Wang, W.-Z., Hu, L., Zhang, S.-G., and Kong, L.-J., “Modeling High-Speed Angular Contact Ball Bearing under the Combined Radial, Axial and Moment Loads,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 228, No. 5, pp. 852–864, 2013.

    Google Scholar 

  32. Andréason, S., “Load Distribution in a Taper Roller Bearing Arrangement Considering Misalignment,” Tribology, Vol. 6, No. 3, pp. 84–92, 1973.

    Article  Google Scholar 

  33. Liu, J., “Analysis of Tapered Roller Bearings Considering High Speed and Combined Loading,” Journal of Lubrication Technology, Vol. 98, No. 4, pp. 564–572, 1976.

    Article  Google Scholar 

  34. Jorgensen, B. R. and Shin, Y. C., “Dynamics of Machine Tool Spindle/Bearing Systems under Thermal Growth,” Journal of Tribology, Vol. 119, No. 4, pp. 875–882, 1997.

    Article  Google Scholar 

  35. Jorgensen, B. R. and Shin, Y. C., “Dynamics of Spindle-Bearing Systems at High Speeds including Cutting Load Effects,” Journal of Manufacturing Science and Engineering, Vol. 120, No. 2, pp. 387–394, 1998.

    Article  Google Scholar 

  36. Changqing, B. and Qingyu, X., “Dynamic Model of Ball Bearings with Internal Clearance and Waviness,” Journal of Sound and Vibration, Vol. 294, No. 1, pp. 23–48, 2006.

    Article  Google Scholar 

  37. Guo, Y. and Parker, R. G., “Stiffness Matrix Calculation of Rolling Element Bearings using a Finite Element/Contact Mechanics Model,” Mechanism and Machine Theory, Vol. 51, pp. 32–45, 2012.

    Article  Google Scholar 

  38. Lostado, R., García, R. E., and Martinez, R. F., “Optimization of Operating Conditions for a Double-Row Tapered Roller Bearing,” International Journal of Mechanics and Materials in Design, Vol. 12, No. 3, pp. 353–373, 2016.

    Article  Google Scholar 

  39. Lostado, R., Martinez, R. F., and Mac Donald, B. J., “Determination of the Contact Stresses in Double-Row Tapered Roller Bearings using the Finite Element Method, Experimental Analysis and Analytical Models,” Journal of Mechanical Science and Technology, Vol. 29, No. 11, pp. 4645–4656, 2015.

    Article  Google Scholar 

  40. Tibbits, P. A., “FEM Simulation and Life Optimization of Tandem Roller Thrust Bearing,” Proc. of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 79–88, 2005.

    Google Scholar 

  41. Kang, Y., Shen, P.-C., Huang, C.-C., Shyr, S.-S., and Chang, Y.-P., “A Modification of the Jones-Harris Method for Deep-Groove Ball Bearings,” Tribology International, Vol. 39, No. 11, pp. 1413–1420, 2006.

    Article  Google Scholar 

  42. Changan, D., Fuzhang, Z., Jun, Z., and Lei, Z., “Raceway Control Assumption and the Determination of Rolling Element Attitude Angle,” Chinese Journal of Mechanical Engineering, Vol. 37, No. 2, pp. 58–61, 2001. (In Chinese)

    Article  Google Scholar 

  43. Bozet, J.-L. and Servais, C., “Influence of the Balls Kinematics of Axially Loaded Ball Bearings on Coulombic Frictional Dissipations,” Journal of Tribology, Vol. 139, No. 1, Paper No. 011502, 2016.

    Google Scholar 

  44. Wang, W.-Z., Hu, L., Zhang, S.-G., Zhao, Z.-Q., and Ai, S., “Modeling Angular Contact Ball Bearing without Raceway Control Hypothesis,” Mechanism and Machine Theory, Vol. 82, No. pp. 154–172, 2014.

    Article  Google Scholar 

  45. Noel, D., Ritou, M., Furet, B., and Le Loch, S., “Complete Analytical Expression of the Stiffness Matrix of Angular Contact Ball Bearings,” Journal of Tribology, Vol. 135, No. 4, Paper No. 041101, 2013.

    Google Scholar 

  46. Jones, A. B. and Harris, T. A., “Analysis of a Rolling-Element Idler Gear Bearing Having a Deformable Outer-Race Structure,” Journal of Basic Engineering, Vol. 85, No. 2, pp. 273–278, 1963.

    Article  Google Scholar 

  47. Cavallaro, G., Nelias, D., and Bon, F., “Analysis of High-Speed Intershaft Cylindrical Roller Bearing with Flexible Rings,” Tribology Transactions, Vol. 48, No. 2, pp. 154–164, 2005.

    Article  Google Scholar 

  48. Filetti, E. G. and Rumbarger, J. H., “A General Method for Predicting The Influence of Structural Support Upon Rolling Element Bearing Performance,” Journal of Lubrication Technology, Vol. 92, No. 1, pp. 121–127, 1970.

    Article  Google Scholar 

  49. Tadina, M. and Boltežar, M., “Improved Model of a Ball Bearing for the Simulation of Vibration Signals due to Faults During Run-Up,” Journal of Sound and Vibration, Vol. 330, No. 17, pp. 4287–4301, 2011.

    Article  Google Scholar 

  50. Cheng, W., “Experimental and Numerical Study of Multibody Contact System with Roller Bearing -Part II: Semi-Finite Element Analysis and Optimal Design of Housing,” Tribology Transactions, Vol. 39, No. 1, pp. 166–172, 1996.

    Article  Google Scholar 

  51. Defaye, C., Nelias, D., Leblanc, A., and Bon, F., “Theoretical Analysis of High-Speed Cylindrical Roller Bearing with Flexible Rings Mounted in a Squeeze Film Damper,” Tribology Transactions, Vol. 51, No. 6, pp. 762–770, 2008.

    Article  Google Scholar 

  52. Wensing, J. A., “On the Dynamics of Ball Bearings,” Ph.D. Thesis, Department of Mechanical Engineering, University of Twente, 1998.

    Google Scholar 

  53. Leblanc, A., Nelias, D., and Defaye, C., “Nonlinear Dynamic Analysis of Cylindrical Roller Bearing with Flexible Rings,” Journal of Sound and Vibration, Vol. 325, No. 1, pp. 145–160, 2009.

    Article  Google Scholar 

  54. Timoshenko, S., “Strength of Materials -Part I Elementary Theory and Problems,” D. Van Nostrand Company, Inc., 2nd Ed., 1940.

    Google Scholar 

  55. Lundberg, G., “Elastische Berührung zweier Halbräume,” Forschung auf dem Gebiet des Ingenieurwesens A, Vol. 10, No. 5, pp. 201–211, 1939. (in German)

    Article  MATH  Google Scholar 

  56. Lundberg, G., “Elastische Berührung Zweier Halbräume,” Forschung auf dem Gebiet des Ingenieurwesens A, Vol. 10, No. 5, pp. 201–211, 1939.

    Article  MATH  Google Scholar 

  57. Houpert, L., “An Engineering Approach to Hertzian Contact Elasticity -Part I,” Journal of Tribology, Vol. 123, No. 3, pp. 582–588, 2001.

    Article  Google Scholar 

  58. Teutsch, R. and Sauer, B., “An Alternative Slicing Technique to Consider Pressure Concentrations in Non-Hertzian Line Contacts,” Journal of Tribology, Vol. 126, No. 3, pp. 436–442, 2004.

    Article  Google Scholar 

  59. Hartnett, M. J., “The Analysis of Contact Stresses in Rolling Element Bearings,” Journal of Lubrication Technology, Vol. 101, No. 1, pp. 105–109, 1979.

    Article  Google Scholar 

  60. Ahmadi, N., Keer, L. M., and Mura, T., “Non-Hertzian Contact Stress Analysis for an Elastic Half Space -Normal and Sliding Contact,” International Journal of Solids and Structures, Vol. 19, No. 4, pp. 357–373, 1983.

    Article  MATH  Google Scholar 

  61. Tong, V.-C. and Hong, S.-W., “Fatigue Life of Tapered Roller Bearing Subject to Angular Misalignment,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vols. 230, No. 2, pp. 147–158, 2016.

    Google Scholar 

  62. Kabus, S., Hansen, M. R., and Mouritsen, O., “A New Quasi-Static Cylindrical Roller Bearing Model to Accurately Consider Non-Hertzian Contact Pressure in Time Domain Simulations,” Journal of Tribology, Vol. 134, No. 4, Paper No. 041401, 2012.

    Google Scholar 

  63. Kabus, S., Hansen, M. R., and Mouritsen, O., “A New Quasi-Static Multi-Degree of Freedom Tapered Roller Bearing Model to Accurately Consider Non-Hertzian Contact Pressures in Time-Domain Simulations,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 228, No. 2, pp. 111–125, 2014.

    Google Scholar 

  64. Harris, T. A. and Kotzalas, M. N., “Advanced Concepts of Bearing Technology: Rolling Bearing Analysis,” CRC Press, 5th Ed., p. 13, 2007.

    Google Scholar 

  65. Zantopulos, H., “The Effect of Misalignment on the Fatigue Life of Tapered Roller Bearings,” Journal of Lubrication Technology, Vol. 94, No. 2, pp. 181–186, 1972.

    Article  Google Scholar 

  66. Ye, Z., Wang, L., Gu, L., and Zhang, C., “Effects of Tilted Misalignment on Loading Characteristics of Cylindrical Roller Bearings,” Mechanism and Machine Theory, Vol. 69, pp. 153–167, 2013.

    Article  Google Scholar 

  67. Zhenhuan, Y. and Liqin, W., “Effects of Axial Misalignment of Rings on the Dynamic Characteristics of Cylindrical Roller Bearings,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 230, No. 5, pp. 525–540, 2016.

    Article  Google Scholar 

  68. Tong, V.-C. and Hong, S.-W., “Characteristics of Tapered Roller Bearings in Relation to Roller Profiles,” Journal of Mechanical Science and Technology, Vol. 29, No. 7, pp. 2913–2919, 2015.

    Article  Google Scholar 

  69. Tong, V.-C. and Hong, S.-W., “Characteristics of Tapered Roller Bearing with Geometric Error,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2709–2716, 2015.

    Article  Google Scholar 

  70. ISO/TS 16281, “Rolling Bearings -Methods for Calculating the Modified Reference Rating Life for Universally Loaded Bearings,” 2008.

    Google Scholar 

  71. Creju, S., Bercea, I., and Mitu, N., “A Dynamic Analysis of Tapered Roller Bearing under Fully Flooded Conditions Part 1: Theoretical Formulation,” Wear, Vol. 188, No. 1-2, pp. 1–10, 1995.

    Article  Google Scholar 

  72. Tong, V.-C. and Hong, S.-W., “Characteristics of Tapered Roller Bearing Subjected to Combined Radial and Moment Loads,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 323–328, 2014.

    Article  Google Scholar 

  73. Lin, C.-W., Lin, Y.-K., and Chu, C.-H., “Dynamic Models and Design of Spindle-Bearing Systems of Machine Tools: A Review,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 3, pp. 513–521, 2013.

    Article  Google Scholar 

  74. Gargiulo, E. P., “A Simple Way to Estimate Bearing Stiffness,” Machine Design, Vol. 52, No. 17, pp. 107–110, 1980.

    Google Scholar 

  75. Lim, T. C. and Singh, R., “Vibration Transmission through Rolling Element Bearings, Part I: Bearing Stiffness Formulation,” Journal of Sound and Vibration, Vol. 139, No. 2, pp. 179–199, 1990.

    Article  Google Scholar 

  76. Wardle, F. P., Lacey, S. J., and Poon, S. Y., “Dynamic and Static Characteristics of a Wide Speed Range Machine Tool Spindle,” Precision Engineering, Vol. 5, No. 4, pp. 175–183, 1983.

    Article  Google Scholar 

  77. Lin, C.-W., Tu, J. F., and Kamman, J., “An Integrated Thermo-Mechanical-Dynamic Model to Characterize Motorized Machine Tool Spindles during Very High Speed Rotation,” International Journal of Machine Tools and Manufacture, Vol. 43, No. 10, pp. 1035–1050, 2003.

    Article  Google Scholar 

  78. Lin, C.-W., “Optimization of Bearing Locations for Maximizing First Mode Natural Frequency of Motorized Spindle-Bearing Systems using a Genetic Algorithm,” Applied Mathematics, Vol. 5, No. 14, pp. 2137–2152, 2014.

    Article  Google Scholar 

  79. Lin, C.-W., “Simultaneous Optimal Design of Parameters and Tolerance of Bearing Locations for High-Speed Machine Tools using a Genetic Algorithm and Monte Carlo Simulation Method,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 11, pp. 1983–1988, 2012.

    Article  Google Scholar 

  80. Bollinger, J. G. and Geiger, G., “Analysis of the Static and Dynamic Behavior of Lathe Spindles,” International Journal of Machine Tool Design and Research, Vol. 3, No. 4, pp. 193–209, 1964.

    Article  Google Scholar 

  81. While, M. F., “Rolling Element Bearing Vibration Transfer Characteristics: Effect of Stiffness,” Journal of Applied Mechanics, Vol. 46, No. 3, pp. 677–684, 1979.

    Article  MATH  Google Scholar 

  82. Sheng, X., Li, B., Wu, Z., and Li, H., “Calculation of Ball Bearing Speed-Varying Stiffness,” Mechanism and Machine Theory, Vol. 81, pp. 166–180, 2014.

    Article  Google Scholar 

  83. Tong, V.-C. and Hong, S.-W., “The Effect of angular Misalignment on the Stiffness Characteristics of Tapered Roller Bearings,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, In Press, DOI No. 10.1177/0954406215621098, 2016.

    Google Scholar 

  84. Lim, T. C. and Singh, R., Vibration Transmission through Rolling Element Bearings, Part V: Effect of Distributed Contact Load on Roller Bearing Stiffness Matrix, Journal of Sound and Vibration, Vol. 169, No. 4, pp. 547–553, 1994.

    Article  MATH  Google Scholar 

  85. Bourdon, A., Rigal, J. F., and Play, D., “Static Rolling Bearing Models in a CAD Environment for the Study of Complex Mechanisms: Part I -Rolling Bearing Model,” Journal of Tribology, Vol. 121, No. 2, pp. 205–214, 1999.

    Article  Google Scholar 

  86. Alfares, M. A. and Elsharkawy, A. A., “Effects of Axial Preloading of Angular Contact Ball Bearings on the Dynamics of a Grinding Machine Spindle System,” Journal of Materials Processing Technology, Vol. 136, No. 1, pp. 48–59, 2003.

    Article  Google Scholar 

  87. Ali, N. J. and García, J. M., “Experimental Studies on the Dynamic Characteristics of Rolling Element Bearings,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 224, No. 7, pp. 659–666, 2010.

    Article  Google Scholar 

  88. Gunduz, A. and Singh, R., “Stiffness Matrix Formulation for Double Row Angular Contact Ball Bearings: Analytical Development and Validation,” Journal of Sound and Vibration, Vol. 332, No. 22, pp. 5898–5916, 2013.

    Article  Google Scholar 

  89. Gunduz, A., Dreyer, J. T., and Singh, R., “Effect of Bearing Preloads on the Modal Characteristics of a Shaft-Bearing Assembly: Experiments on Double Row Angular Contact Ball Bearings,” Mechanical Systems and Signal Processing, Vol. 31, pp. 176–195, 2012.

    Article  Google Scholar 

  90. Lin, C.-W. and Tu, J. F., “Model-based Design of Motorized Spindle Systems to Improve Dynamic Performance at High Speeds,” Journal of Manufacturing Processes, Vol. 9, No. 2, pp. 94–108, 2007.

    Article  MathSciNet  Google Scholar 

  91. Gurumoorthy, K., Dayma, J. P., Rawat, V., and Khaire, M. V., “Failure Investigation of Differential Pinion Tapered Roller Bearing,” Journal of Failure Analysis and Prevention, Vol. 15, No. 5, pp. 593–599, 2015.

    Article  Google Scholar 

  92. Cao, H., Holkup, T., and Altintas, Y., “A Comparative Study on the Dynamics of High Speed Spindles with Respect to Different Preload Mechanisms,” The International Journal of Advanced Manufacturing Technology, Vol. 57, No. 9-12, pp. 871–883, 2011.

    Article  Google Scholar 

  93. Stein, J. L. and Tu, J. F., “A State-Space Model for Monitoring Thermally Induced Preload in Anti-Friction Spindle Bearings of High-Speed Machine Tools,” Journal of Dynamic Systems, Measurement, and Control, Vol. 116, No. 3, pp. 372–386, 1994.

    Article  MATH  Google Scholar 

  94. Hwang, Y.-K. and Lee, C.-M., “A Review on the Preload Technology of the Rolling Bearing for the Spindle of Machine Tools,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 3, pp. 491–498, 2010.

    Article  MathSciNet  Google Scholar 

  95. Ozturk, E., Kumar, U., Turner, S., and Schmitz, T., “Investigation of Spindle Bearing Preload on Dynamics and Stability Limit in Milling,” CIRP Annals-Manufacturing Technology, Vol. 61, No. 1, pp. 343–346, 2012.

    Article  Google Scholar 

  96. Hwang, Y. K. and Lee, C. M., “Development of Automatic Variable Preload Device for Spindle Bearing by Using Centrifugal Force,” International Journal of Machine Tools and Manufacture, Vol. 49, No. 10, pp. 781–787, 2009.

    Article  Google Scholar 

  97. Jiang, S. and Mao, H., “Investigation of Variable Optimum Preload for a Machine Tool Spindle,” International Journal of Machine Tools and Manufacture, Vol. 50, No. 1, pp. 19–28, 2010.

    Article  Google Scholar 

  98. Hwang, Y. K. and Lee, C. M., “Development of a Newly Structured Variable Preload Control Device for a Spindle Rolling Bearing by using an Electromagnet,” International Journal of Machine Tools and Manufacture, Vol. 50, No. 3, pp. 253–259, 2010.

    Article  MathSciNet  Google Scholar 

  99. Hwang, Y.-K., Park, I.-H., Paik, K.-S., and Lee, C.-M., “Development of a Variable Preload Spindle by using an Electromagnetic Actuator,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 2, pp. 201–207, 2014.

    Article  Google Scholar 

  100. Choi, C.-H., Kim, D.-H., and Lee, C.-M., “A Study on the Development of a Deformable Rubber Variable Preload Device,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 12, pp. 2685–2688, 2014.

    Article  Google Scholar 

  101. Choi, C.-H. and Lee, C.-M., “A Variable Preload Device using Liquid Pressure for Machine Tools Spindles,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 6, pp. 1009–1012, 2012.

    Article  MathSciNet  Google Scholar 

  102. Choi, C. H., Cha, N. H., and Lee, C. M., “A Fundamental Study on the Development of a Variable Preload Device using Toggle Joint Mechanism,” J. Korean Soc. Precis. Eng., Vol. 30, No. 3, pp. 260–265, 2013. (in Korean)

    Article  Google Scholar 

  103. Razban, M. and Movahhedy, M. R., “A Speed-Dependent Variable Preload System for High Speed Spindles,” Precision Engineering, Vol. 40, pp. 182–188, 2015.

    Article  Google Scholar 

  104. Tu, J. and Stein, J., “Active Thermal Preload Regulation for Machine Tool Spindles with Rolling Element Bearings,” Journal of Manufacturing Science and Engineering, Vol. 118, No. 4, pp. 499–505, 1996.

    Article  Google Scholar 

  105. ESA, “Active Variable Preload Bearings,” http://www.esa-tec.eu/workspace/assets/files/1345714104_1365-51ccafd660431.pdf (Accessed 9 NOV 2016)

    Google Scholar 

  106. Li, H. and Shin, Y. C., “Analysis of Bearing Configuration Effects on High Speed Spindles using an Integrated Dynamic Thermo-Mechanical Spindle Model,” International Journal of Machine Tools and Manufacture, Vol. 44, No. 4, pp. 347–364, 2004.

    Article  Google Scholar 

  107. Jedrzejewski, J. and Kwasny, W., “Modelling of Angular Contact Ball Bearings and Axial Displacements for High-Speed Spindles,” CIRP Annals-Manufacturing Technology, Vol. 59, No. 1, pp. 377–382, 2010.

    Article  Google Scholar 

  108. Chen, J.-S. and Hwang, Y.-W., “Centrifugal Force Induced Dynamics of a Motorized High-Speed Spindle,” The International Journal of Advanced Manufacturing Technology, Vol. 30, No. 1-2, pp. 10–19, 2006.

    Article  MathSciNet  Google Scholar 

  109. Kolar, P., Sulitka, M., and Janota, M., “Simulation of Dynamic Properties of a Spindle and Tool System Coupled with a Machine Tool Frame,” The International Journal of Advanced Manufacturing Technology, Vol. 54, No. 1-4, pp. 11–20, 2011.

    Article  Google Scholar 

  110. Jiang, S. and Zheng, S., “Dynamic Design of a High-Speed Motorized Spindle-Bearing System,” Journal of Mechanical Design, Vol. 132, No. 3, Paper No. 034501, 2010.

    Google Scholar 

  111. Jiang, S. and Zheng, S., “A Modeling Approach for Analysis and Improvement of Spindle-Drawbar-Bearing Assembly Dynamics,” International Journal of Machine Tools and Manufacture, Vol. 50, No. 1, pp. 131–142, 2010.

    Article  Google Scholar 

  112. Kurvinen, E., Sopanen, J., and Mikkola, A., “Ball Bearing Model Performance on Various Sized Rotors with And without Centrifugal and Gyroscopic Forces,” Mechanism and Machine Theory, Vol. 90, pp. 240–260, 2015.

    Article  Google Scholar 

  113. Wang, K. W., Shin, Y. C., and Chen, C. H., “On the Natural Frequencies of High-Speed Spindles with Angular Contact Bearings,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 205, No. 3, pp. 147–154, 1991.

    Google Scholar 

  114. Carmichael, G. D. T. and Davies, P. B., “Measurement of Thermally Induced Preloads in Bearings,” Strain, Vol. 6, No. 4, pp. 162–165, 1970.

    Article  Google Scholar 

  115. Takabi, J. and Khonsari, M., “Experimental Testing and Thermal Analysis of Ball Bearings,” Tribology International, Vol. 60, pp. 93–103, 2013.

    Article  Google Scholar 

  116. Sud, O. N., Davies, P. B., and Halling, J., “The Thermal Behaviour of Rolling Bearing Assemblies Subjected to Preload,” Wear, Vol. 27, No. 2, pp. 237–249, 1974.

    Article  Google Scholar 

  117. Takabi, J. and Khonsari, M. M., “On the Thermally-Induced Failure of Rolling Element Bearings,” Tribology International, Vol. 94, pp. 661–674, 2016.

    Article  Google Scholar 

  118. Takabi, J. and Khonsari, M. M., “On the Thermally-Induced Seizure in Bearings: A Review,” Tribology International, Vol. 91, pp. 118–130, 2015.

    Article  Google Scholar 

  119. Patel, T. H. and Darpe, A. K., “Experimental Investigations on Vibration Response of Misaligned Rotors,” Mechanical Systems and Signal Processing, Vol. 23, No. 7, pp. 2236–2252, 2009.

    Article  Google Scholar 

  120. Ganeriwala, S., Patel, S., and Hartung, H., “The Truth Behind Misalignment Vibration Spectra of Rotating Machinery,” Proc. of International Modal Analysis Conference, pp. 2078–2205, 1999.

    Google Scholar 

  121. Zantopulos, H., “The Effect of Misalignment on the Fatigue Life of Tapered Roller Bearings,” Journal of Lubrication Technology, Vol. 94, No. 2, pp. 181–186, 1972.

    Article  Google Scholar 

  122. Harris, T. A., “The Effect of Misalignment on the Fatigue Life of Cylindrical Roller Bearings Having Crowned Rolling Members,” Journal of Lubrication Technology, Vol. 91, No. 2, pp. 294–300, 1969.

    Article  Google Scholar 

  123. Liu, J. Y., “The Effect of Misalignment on the Life of High Speed Cylindrical Roller Bearings,” Journal of Lubrication Technology, Vol. 93, No. 1, pp. 60–68, 1971.

    Article  Google Scholar 

  124. Tong, V.-C., Kwon, S.-W., and Hong, S.-W., “Fatigue Life of Cylindrical Roller Bearings,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, In Press, DOI No. 10.1177/1350650116668767, 2016.

    Google Scholar 

  125. Warda, B. and Chudzik, A., “Effect of Ring Misalignment on the Fatigue Life of the Radial Cylindrical Roller Bearing,” International Journal of Mechanical Sciences, Vol. 111, pp. 1–11, 2016.

    Article  Google Scholar 

  126. Gurumoorthy, K. and Ghosh, A., “Failure Investigation of a Taper Roller Bearing: A Case Study,” Case Studies in Engineering Failure Analysis, Vol. 1, No. 2, pp. 110–114, 2013.

    Article  Google Scholar 

  127. Kabus, S. and Pedersen, C. B., “Optimal Bearing Housing Designing using Topology Optimization,” Journal of Tribology, Vol. 134, No. 2, Paper No. 021102, 2012.

    Google Scholar 

  128. Tong, V.-C. and Hong, S.-W., “The Effect of Angular Misalignment on the Running Torques of Tapered Roller Bearings,” Tribology International, Vol. 95, pp. 76–85, 2016.

    Article  Google Scholar 

  129. Weibull, W., “A Statistical Theory of the Strength of Materials,” Ingeniors Etanskaps Akademien -Handlinger, No. 151, 1939.

    Google Scholar 

  130. Gabelli, A., Doyer, A., and Morales-Espejel, G. E., “The Modified Life Rating of Rolling Bearings: A Criterion for Gearbox Design and Reliability Optimization,” Power Transmission Engineering, pp. 46–54, 2015.

    Google Scholar 

  131. Sadeghi, F., Jalalahmadi, B., Slack, T. S., Raje, N., and Arakere, N. K., “A Review of Rolling Contact Fatigue,” Journal of Tribology, Vol. 131, No. 4, Paper No. 041403, 2009.

    Google Scholar 

  132. Tallian, T., Chiu, Y., Huttenlocher, D., Kamenshine, J., Sibley, L., and Sindlinger, N., “Lubricant Films in Rolling Contact of Rough Surfaces,” ASLE Transactions, Vol. 7, No. 2, pp. 109–126, 1964.

    Article  Google Scholar 

  133. Liu, J. Y., Tallian, T. E., and McCool, J. I., “Dependence of Bearing Fatigue Life on Film Thickness to Surface Roughness Ratio,” ASLE Transactions, Vol. 18, No. 2, pp. 144–152, 1975.

    Article  Google Scholar 

  134. Andreason, S. and Snare, B., “Adjusted Rating Life of Rolling Bearings,” Ball Bearing Journal, Vol. 184, pp. 1–6, 1975.

    Google Scholar 

  135. Tallian, T. E., Chiu, Y. P., and Van Amerongen, E., “Prediction of Traction and Microgeometry Effects on Rolling Contact Fatigue Life,” Journal of Lubrication Technology, Vol. 100, No. 2, pp. 156–165, 1978.

    Article  Google Scholar 

  136. Arakere, N. K., “Gigacycle Rolling Contact Fatigue of Bearing Steels: A Review,” International Journal of Fatigue, Vol. 93, Part 2, pp. 238–249, 2016.

    Article  Google Scholar 

  137. ISO 281-1, “Rolling Bearings -Dynamic Load Ratings and Rating Life -Part 1: Calculation Methods,” 1977.

    Google Scholar 

  138. ISO 281, “Rolling Bearings -Dynamic Load Ratings and Rating Life,” 1990.

    Google Scholar 

  139. Ioannides, E. and Harris, T. A., “A New Fatigue Life Model for Rolling Bearings,” Journal of Tribology, Vol. 107, No. 3, pp. 367–377, 1985.

    Article  Google Scholar 

  140. ISO 281, “Rolling Bearings -Dynamic Load Ratings and Rating Life,” 2007.

    Google Scholar 

  141. Tong, V.-C. and Hong, S.-W., “Study on the Stiffness and Fatigue Life of Tapered Roller Bearings with Roller Diameter Error,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, In Press, DOI No.10.1177/1350650116649889, 2016.

    Google Scholar 

  142. Yu, W. K. and Harris, T. A., “A New Stress-based Fatigue Life Model for Ball Bearings,” Tribology Transactions, Vol. 44, No. 1, pp. 11–18, 2001.

    Article  Google Scholar 

  143. Nagatani, H., “Improved Method of Roller Bearing Fatigue Life Prediction Under Edge Loading Conditions,” Tribology Transactions, Vol. 53, No. 5, pp. 695–702, 2010.

    Article  Google Scholar 

  144. Houpert, L. and Chevalier, F., “Rolling Bearing Stress based Life -Part I: Calculation Model,” Journal of Tribology, Vol. 134, No. 2, Paper No. 021103, 2012.

    Google Scholar 

  145. SKF, “SKF Launches Innovative New Bearing Rating Life Model,” http://www.skf.com/group/news-and-media/news-search/2015-04-13_skf_launches_innovative_new_bearing_rating_life_model.html (Accessed 9 NOV 2016)

    Google Scholar 

  146. Ghaisas, N. V., “Dynamics of Cylindrical and Tapered Roller Bearings using the Discrete Element Method,” M.Sc. Thesis, School of Mechanical Engineering, Purdue University, 2003.

    Google Scholar 

  147. Walters, C. T., “The Dynamics of Ball Bearings,” Journal of Lubrication Technology, Vol. 93, No. 1, pp. 1–10, 1971.

    Article  Google Scholar 

  148. Mauriello, J. A., Lagasse, N., Jones, A. B., and Murray, W., “Rolling Element Bearing Retainer Analysis,” DTIC Document, Report No. AD-77464, 1973.

    Google Scholar 

  149. Rumbarger, J. H., Filetti, E., and Gubernick, D., “Gas Turbine Engine Mainshaft Roller Bearing-System Analysis,” Journal of Lubrication Technology, Vol. 95, No. 4, pp. 401–416, 1973.

    Article  Google Scholar 

  150. Kannel, J. W. and Bupara, S. S., “A Simplified Model of Cage Motion in Angular Contact Bearings Operating in the EHD Lubrication Regime,” Journal of Lubrication Technology, Vol. 100, No. 3, pp. 395–403, 1978.

    Article  Google Scholar 

  151. Gupta, P. K., “Transient Ball Motion and Skid in Ball Bearings,” Journal of Lubrication Technology, Vol. 97, No. 2, pp. 261–269, 1975.

    Article  Google Scholar 

  152. Gupta, P. K., “Dynamics of Rolling Element Bearings -Parts I: Cylindrical Roller Bearing Analysis,” Journal of Lubrication Technology, Vol. 101, No. 3, pp. 293–302, 1979.

    Article  Google Scholar 

  153. Gupta, P. K., “Some Dynamic Effects in High-Speed Solid-Lubricated Ball Bearings,” ASLE Transactions, Vol. 26, No. 3, pp. 393–400, 1983.

    Article  Google Scholar 

  154. Brown, P. F., Carrano, M. J., Dobek, L. J., McFadden, R. J., Miner, J. R., and Robinson, J. D., “Main Shaft High-Speed Cylindrical Roller Bearings for Gas Turbine Engines, Parts I to IV,” Report NAPC-PE-60C, 1980.

    Google Scholar 

  155. Conry, T. F., “Transient Dynamic Analysis of High-Speed Lightly Loaded Cylindrical Roller Bearings. 1: Analysis,” NASA Contractor Report 3334, 1981.

    Google Scholar 

  156. Meeks, C. R. and Ng, K. O., “The Dynamics of Ball Separators in Ball Bearings -Part I: Analysis,” ASLE Transactions, Vol. 28, No. 3, pp. 277–287, 1985.

    Article  Google Scholar 

  157. Meeks, C. R., “The Dynamics of Ball Separators in Ball Bearings -Part II: Results of Optimization Study,” ASLE Transactions, Vol. 28, No. 3, pp. 288–295, 1985.

    Article  Google Scholar 

  158. Gupta, P. K. and Forster, N. H., “Modeling of Wear in a Solid-Lubricated Ball Bearing,” ASLE Transactions, Vol. 30, No. 1, pp. 55–62, 1987.

    Article  Google Scholar 

  159. Gupta, P. K., “On the Geometrical Imperfections in Ball Bearings,” Journal of Tribology, Vol. 110, No. 1, pp. 19–25, 1988.

    Article  Google Scholar 

  160. Gupta, P. K., “On the Frictional Instabilities in a Cylindrical Roller Bearing,” Tribology Transactions, Vol. 33, No. 3, pp. 395–401, 1990.

    Article  Google Scholar 

  161. Gupta, P. K., “On the Dynamics of a Tapered Roller Bearing,” Journal of Tribology, Vol. 111, No. 2, pp. 278–287, 1989.

    Article  Google Scholar 

  162. Gupta, P. K., “Visco-Elastic Effects in Mil-L-7808-Type Lubricant Part III: Model Implementation in Bearing Dynamics Computer Code,” Tribology Transactions, Vol. 35, No. 4, pp. 724–730, 1992.

    Article  Google Scholar 

  163. Aramaki, H., “Rolling Bearing Analysis Program Package Brain,” Motion & Control, No. 3, pp. 15–24, 1997.

    Google Scholar 

  164. Stacke, L. E., Fritzson, D., and Nordling, P., “Beast -A Rolling Bearing Simulation Tool, Proceedings of the Institution of Mechanical Engineers,” Part K: Journal of Multi-body Dynamics, Vol. 213, No. 2, pp. 63–71, 1999.

    Google Scholar 

  165. Stacke, L. E. and Fritzson, D., “Dynamic Behaviour of Rolling Bearings: Simulations and Experiments,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 215, No. 6, pp. 499–508, 2001.

    Article  Google Scholar 

  166. Ghaisas, N., Wassgren, C. R., and Sadeghi, F., “Cage Instabilities in Cylindrical Roller Bearings,” Journal of Tribology, Vol. 126, No. 4, pp. 681–689, 2004.

    Article  Google Scholar 

  167. Sakaguchi, T. and Harada, K., “Dynamic Analysis of Cage Stress in Tapered Roller Bearings using Component-Mode-Synthesis Method,” Journal of Tribology, Vol. 131, No. 1, Paper No. 011102, 2009.

    Google Scholar 

  168. Sakaguchi, T. and Harada, K., “Dynamic Analysis of Cage Behavior in a Tapered Roller Bearing,” Journal of Tribology, Vol. 128, No. 3, pp. 604–611, 2006.

    Article  Google Scholar 

  169. Weinzapfel, N. and Sadeghi, F., “A Discrete Element Approach for Modeling Cage Flexibility in Ball Bearing Dynamics Simulations,” Journal of Tribology, Vol. 131, No. 2, Paper No. 021102, 2009.

    Article  Google Scholar 

  170. Houpert, L., “CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations Part I: Basic Tribology Concepts,” Tribology Transactions, Vol. 53, No. 1, pp. 1–9, 2009.

    Article  Google Scholar 

  171. Nakhaeinejad, M. and Bryant, M. D., “Dynamic Modeling of Rolling Element Bearings with Surface Contact Defects using Bond Graphs,” Journal of Tribology, Vol. 133, No. 1, Paper No. 011102, 2011.

    Google Scholar 

  172. Ye, Z. and Wang, L., “Effect of External Loads on Cage Stability of High-Speed Ball Bearings,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 229, No. 11, pp. 1300–1318, 2015.

    Article  MathSciNet  Google Scholar 

  173. Ashtekar, A. and Sadeghi, F., “A New Approach for Including Cage Flexibility in Dynamic Bearing Models by using Combined Explicit Finite and Discrete Element Methods,” Journal of Tribology, Vol. 134, No. 4, Paper No. 041502, 2012.

    Google Scholar 

  174. Brouwer, M. D., Sadeghi, F., Ashtekar, A., Archer, J., and Lancaster, C., “Combined Explicit Finite and Discrete Element Methods for Rotor Bearing Dynamic Modeling,” Tribology Transactions, Vol. 58, No. 2, pp. 300–315, 2015.

    Article  Google Scholar 

  175. Schlichting, H., “Boundary Layer Theory,” McGraw Hill, 7th Ed., pp. 596–631, 1979.

    Google Scholar 

  176. Dowson, D. and Higginson, G. R., “Elasto-Hydrodynamic Lubrication,” SI Ed., Pergamon Press, pp. 161–181, 1977.

    Google Scholar 

  177. Goksem, P. G. and Hargreaves, R. A., “The Effect of Viscous Shear Heating on Both Film Thickness and Rolling Traction in an EHL Line Contact -Part I: Fully Flooded Conditions,” Journal of Lubrication Technology, Vol. 100, No. 3, pp. 346–352, 1978.

    Article  Google Scholar 

  178. McGrew, J. M., Gu, A., Cheng, H., and Murray, S., “Elastohydrodynamic Lubrication: Preliminary Design Manual,” DTIC Document, Report No. AFAPL-TR-70-27, 1970.

    Google Scholar 

  179. Kannel, J. W. and Walowit, J. A., “Simplified Analysis for Tractions between Rolling-Sliding Elastohydrodynamic Contacts,” Journal of Lubrication Technology, Vol. 93, No. 1, pp. 39–44, 1971.

    Article  Google Scholar 

  180. Kannel, J. W. and Bell, J. C., “Interpretations of the Thickness of Lubricant Films in Rolling Contact. 1. Examination of Measurements Obtained by X-Rays,” Journal of Lubrication Technology, Vol. 93, No. 4, pp. 478–484, 1971.

    Article  Google Scholar 

  181. Walowit, J. A. and Smith, R. L., “Traction Characteristics of a MIL-L-7808 Oil,” Journal of Lubrication Technology, Vol. 98, No. 4, pp. 607–612, 1976.

    Article  Google Scholar 

  182. McCool, J. I., Chiu, I. P., Liu, J. Y. and Rosenlieb, J. W., “Influence of Elastohydrodynamic Lubrication on the Life and Operation of Turbine Engine Ball Bearings,” SKF, Report No. AL75PO14, 1975.

    Google Scholar 

  183. Houpert, L., “Piezoviscous-Rigid Rolling and Sliding Traction Forces, Application: The Rolling Element -Cage Pocket Contact,” Journal of Tribology, Vol. 109, No. 2, pp. 363–370, 1987.

    Article  Google Scholar 

  184. Gupta, P. K., Cheng, H. S., Zhu, D., Forster, N. H., and Schrand, J. B., “Viscoelastic Effects in MIL-L-7808-Type Lubricant, Part I: Analytical Formulation,” Tribology Transactions, Vol. 35, No. 2, pp. 269–274, 1992.

    Article  Google Scholar 

  185. Forster, N. H., Schrand, J. B., and Gupta, P. K., “Viscoelastic Effects in MIL-L-7808-Type Lubricant, Part II: Experimental Data Correlations,” Tribology Transactions, Vol. 35, No. 2, pp. 275–280, 1992.

    Article  Google Scholar 

  186. Gardos, M., “Solid Lubricated Rolling Element Bearings Semiannual Status Report No. 4 and No. 5 -Part I: Executive Summary,” Hughes Aircraft Company Report No. FR 81-76-661, 1981.

    Google Scholar 

  187. Muraki, M. and Kimura, Y., “Traction Characteristics of Lubricating Oils. 2. A Simplified Thermal Theory of Traction with a Non-Linear Viscoelastic Model,” Journal of Japan Society of Lubrication Engineers, Vol. 28, No. 10, pp. 753–760, 1983. (in Japanese)

    Google Scholar 

  188. Kragelskii, I. V., Dobychin M. N., and Kombalov V. S., “Friction and Wear: Calculation Methods,” Pergamon Press, pp. 156–207, 1982.

    Book  Google Scholar 

  189. Pan, P. and Hamrock, B. J., “Simple Formulas for Performance Parameters Used in Elastohydrodynamically Lubricated Line Contacts,” Journal of Tribology, Vol. 111, No. 2, pp. 246–251, 1989.

    Article  Google Scholar 

  190. Martin, H., “Lubrication of Gear Teeth,” Engineering (London), Vol. 102, pp. 119–121, 1916.

    Google Scholar 

  191. Venner, C. H., “Multilevel Solution of the EHL Line and Point Contact Problems,” Ph.D. Thesis, Faculty of Mechanical Engineering, Universiteit Twente, 1991.

    Google Scholar 

  192. Wang, Y. S., Yang, B. Y., and Wang, L., Q. “Investigation into the Traction Coefficient in Elastohydrodynamic Lubrication,” Tribotest, Vol. 11, No. 2, pp. 113–124, 2004.

    Article  Google Scholar 

  193. Bovet, C. and Zamponi, L., “An Approach for Predicting the Internal Behaviour of Ball Bearings under High Moment Load,” Mechanism and Machine Theory, Vol. 101, pp. 1–22, 2016.

    Article  Google Scholar 

  194. Duffy, P. E. and Fruin, J. W., “A Methodology for Fatigue Life Prediction of Bearing Retainers,” SAE Technical Paper, No. 920903, 1992.

    Google Scholar 

  195. IDA, Beast, http://www.ida.liu.se/labs/pelab/beast (Accessed 9 NOV 2016)

  196. Machine Design, “Bearing Simulation Gets Real,” http://machinedesign.com/archive/bearing-simulation-gets-real (Accessed 9 NOV 2016)

    Google Scholar 

  197. Sekiya, M., “Integrated Bearing Dynamic Analysis System (IBDAS),” NTN Technical Review, No. 79, pp. 119–124, 2011.

    Google Scholar 

  198. Schaeffler Technologies GmbH & Co. KG, “CABA3D: An Insight into Rolling Bearing Dynamics,” 2014.

    Google Scholar 

  199. Evans, R. D., Barr, T. A., Houpert, L., and Boyd, S. V., “Prevention of Smearing Damage in Cylindrical Roller Bearings,” Tribology Transactions, Vol. 56, No. 5, pp. 703–716, 2013.

    Article  Google Scholar 

  200. Evans, R. D., Houpert, L., Scandella, F., Wilmer, M. G., Klaehn, T., and Buchanan, A. D., “Dynamic Analysis of Rail Gearbox Bearings,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, In Press, DOI No. 10.1177/0954409716656219, 2016.

    Google Scholar 

  201. Singh, S., Köpke, U. G., Howard, C. Q., and Petersen, D., “Analyses of Contact Forces and Vibration Response for a Defective Rolling Element Bearing using an Explicit Dynamics Finite Element Model,” Journal of Sound and Vibration, Vol. 333, No. 21, pp. 5356–5377, 2014.

    Article  Google Scholar 

  202. Jacobs, W., Van Hooreweder, B., Boonen, R., Sas, P., and Moens, D., “The Influence of External Dynamic Loads on the Lifetime of Rolling Element Bearings: Experimental Analysis of the Lubricant Film and Surface Wear,” Mechanical Systems and Signal Processing, Vol. 74, pp. 144–164, 2016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Wook Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, SW., Tong, VC. Rolling-element bearing modeling: A review. Int. J. Precis. Eng. Manuf. 17, 1729–1749 (2016). https://doi.org/10.1007/s12541-016-0200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-016-0200-z

Keywords

Navigation