Skip to main content

Advertisement

Log in

Assessment of spatial relationship between groundwater pollution vulnerability and quality indices in Kano, Nigeria

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Safeguarding groundwater from pollution is largely a global political decision. These decisions are basically supported by DRASTIC (D=Depth to water, R=Recharge, A=Aquifer media, S=Soil media, T=Topography, I=Impact of vadose zone, C=Hydraulic conductivity) analysis. Furthermore, water quality index (WQI) is an effective tool for groundwater quality evaluation and management. This study identifies the relationship between these two indices [i.e., pollution vulnerability index (PVI) and WQI]. The DRASTIC index of the study area was found to be from 60.4 to 178 characterized by very low, low, medium high, and very high vulnerability constituting of 12.88, 24.38, 34.11, 21.99, and 6.63% of the study area, respectively. In addition, the WQI of the area according to the analyzed parameters is between 10.19 and 55.63. It was established that a good correlation (61%) was found to exist between the two indices; which may be an indication that most pollutants present in the groundwater are likely due to anthropogenic activities on the land surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullahi US (2009) Evaluation of models for assessing groundwater vulnerability to pollution in Nigeria. Bayero J Pure Appl Sci 2(2):138–142

    Google Scholar 

  • Adelana S (2004) Water pollution by nitrate in a weathered/fractured basement rock aquifer: the case of Offa area, Nigeria. Research basin and hydrological planning. Balkema, London, pp 93–98

    Google Scholar 

  • Afshar, A., Marino, M. A., Ebtehaj, M., & Moosavi, J. (2007). Rule-based fuzzy system for assessing groundwater vulnerability. J Environ Eng, 133(5):532–540

  • Aller, L., Bennett, T., Lehr, J., & Petty, R. (1985). DRASTIC: A Standardized System for Evaluating Groundwater Pollution Using Hydrogeologic Settings.-US EPA/Robert S. Kerr Environmental Research Laboratory. EPA/600/2-85/018, 163 p

  • Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr 23(4):303–324. doi:10.1016/j.apgeog.2003.08.007

    Article  Google Scholar 

  • Antonakos AK, Lambrakis NJ (2007) Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. J Hydrol 333(2–4):288–304

    Article  Google Scholar 

  • Baalousha H (2006) Vulnerability assessment for the Gaza strip, Palestine using DRASTIC. Environ Geol 50(3):405–414. doi:10.1007/s00254-006-0219-z

    Article  Google Scholar 

  • Baba A, Tayfur G (2011) Groundwater contamination and its effect on health in Turkey. Environ Monit Assess 183(1–4):77–94

    Article  Google Scholar 

  • Babiker IS, Mohamed MA, Hiyama T (2007) Assessing groundwater quality using GIS. Water Resour Manag 21(4):699–715

    Article  Google Scholar 

  • Bazimenyera JDD, Zhonghua T (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Hangzhou-Jiaxing-Huzhou plain, China. Res J Appl Sci 3(8):550–559

    Google Scholar 

  • Bedessem ME, Casey B, Frederick K, Nibbelink N (2005) Aquifer prioritization for ambient ground water monitoring. Ground Water Monit Remediat 25(1):150–158. doi:10.1111/j.1745-6592.2005.0010.x

    Article  Google Scholar 

  • Bekesi G, McConchie J (2002) The use of aquifer-media characteristics to model vulnerability to contamination, Manawatu region, New Zealand. Hydrogeol J 10(2):322–331

    Article  Google Scholar 

  • Bojórquez-Tapia LA, Cruz-Bello GM, Luna-González L, Juárez L, Ortiz-Pérez MA (2009) V-DRASTIC: using visualization to engage policymakers in groundwater vulnerability assessment. J Hydrol 373(1–2):242–255. doi:10.1016/j.jhydrol.2009.05.005

    Article  Google Scholar 

  • Brown, R.M., McClelland, N.I., Deininger, R.A. and Tozer, R.G. (1970). A water quality index—do we dare? Water and Sewage Works 117(10):339–343.

  • Chaterjee C, Razuddin M (2002) Determination of water quality index (WQI) of a degraded river in Asanil industrial area, Ranigunj, Burdwan, West Bengal. Nat Environ Pollut Technol 1(2):181–189

    Google Scholar 

  • Cude, C. G. (2001). Oregon water quality index a tool for evaluating water quality management effectiveness. JAWRA Journal of the American Water Resources Association, 37(1), 125-137.

  • Denny S, Allen D, Journeay J (2007) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15(3):483–493

    Article  Google Scholar 

  • Dixon B (2005) Groundwater vulnerability mapping: a GIS and fuzzy rule based integrated tool. Appl Geogr 25(4):327–347. doi:10.1016/j.apgeog.2005.07.002

    Article  Google Scholar 

  • El-Naqa A, Hammouri N, Kuisi M (2006) GIS-based evaluation of groundwater vulnerability in the Russeifa area, Jordan. Revista mexicana de ciencias geológicas 23(3):277–287

    Google Scholar 

  • ESRI (2012) Understanding transformations and trends. ArcGIS Resources, http://resources.arcgis.com/en/help/main/10.1/index.html#//003100000038000000 Accesed on Feb 2015

  • Evans BM, Myers WL (1990) A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC. J Soil Water Conserv 45(2):242–245

    Google Scholar 

  • Fritch TG, McKnight CL, Yelderman JC Jr, Arnold JG (2000) An aquifer vulnerability assessment of the Paluxy aquifer, Central Texas, USA, using GIS and a modified DRASTIC approach. Environ Manag 25(3):337–345

    Article  Google Scholar 

  • Galadima A, Garba Z, Leke L, Almustapha M, Adam I (2011) Domestic water pollution among local communities in Nigeria-causes and consequences. Eur J Sci Res 52(4):592–603

    Google Scholar 

  • Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39(6):549–559. doi:10.1007/s002540050466

    Article  Google Scholar 

  • Graham SR, Carlton C, Gaede D, Jamison B (2011) The benefits of using geographic information systems as a community assessment tool. Public Health Rep 126(2):298

    Article  Google Scholar 

  • Hailin Y, Ligang X, Chang Y, Jiaxing X (2011) Evaluation of groundwater vulnerability with improved DRASTIC method. Procedia Environ Sci 10:2690–2695

    Article  Google Scholar 

  • Hamza MH, Added A, Rodríguez R, Abdeljaoued S, Ben Mammou A (2007) A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf aquifer, Northern Tunisia). J Environ Manag 84(1):12–19. doi:10.1016/j.jenvman.2006.04.004

    Article  Google Scholar 

  • Hamza S, Ahsan A, Imteaz M, Rahman A, Mohammad T, Ghazali A (2015) Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: a review. Environ Earth Sci 73(7):3063–3076

    Article  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman A, Keon-Blute N, Yu W, Ali MA et al (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298(5598):1602–1606

    Article  Google Scholar 

  • Hasiniaina F, Zhou J, Guoyi L (2010) Regional assessment of groundwater vulnerability in Tamtsag basin, Mongolia using drastic model. J Am Sci 6(11):65–78

    Google Scholar 

  • Horton RK (1965) An index number system for rating water quality. J Water Pollut Control Fed 37(3):300–306

    Google Scholar 

  • Huan H, Wang J, Teng Y (2012) Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of Northeast China. Sci Total Environ 440:14–23

    Article  Google Scholar 

  • Javadi S, Kavehkar N, Mohammadi K, Khodadadi A, Kahawita R (2011) Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability. Water Int 36(6):719–732. doi:10.1080/02508060.2011.610921

    Article  Google Scholar 

  • Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst, vol. 300. Esri, Redlands

    Google Scholar 

  • Jones F, Watkins J (1985) The water cycle as a source of pathogens. J Appl Bacteriol 59(s14):27S–36S

    Article  Google Scholar 

  • Kabera T, Zhaohui L (2008) A GIS based DRASTIC model for assessing groundwater in shallow aquifer in Yuncheng Basin, Shanxi, China. Res J Appl Sci 3(3):195–205

    Google Scholar 

  • Kim YJ, Hamm S-Y (1999) Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea. Hydrogeol J 7(2):227–235. doi:10.1007/s100400050195

    Article  Google Scholar 

  • Kura NU, Ramli MF, Ibrahim S, Sulaiman WNA, Aris AZ, Tanko AI et al (2015) Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods. Environ Sci Pollut Res 22(2):1512–1533

    Article  Google Scholar 

  • Leone A, Ripa MN, Uricchio V, Deák J, Vargay Z (2009) Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary’s main aquifer using DRASTIC and GLEAMS models. J Environ Manag 90(10):2969–2978. doi:10.1016/j.jenvman.2007.08.009

    Article  Google Scholar 

  • Lin Y-P, Chang T-K, Teng T-P (2001) Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing simulation and kriging methods. Environ Geol 41:189–199

    Article  Google Scholar 

  • Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis. Int J Geogr Inf Syst 4(4):413–428

    Article  Google Scholar 

  • McKinney DC, Cai X (2002) Linking GIS and water resources management models: an object-oriented method. Environ Model Softw 17(5):413–425

    Article  Google Scholar 

  • McLay CDA, Dragten R, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115(2):191–204. doi:10.1016/S0269-7491(01)00111-7

    Article  Google Scholar 

  • Mitra BK (1998) Spatial and temporal variation of groundwater quality in sand dune area of Aomori prefecture in Japan, Paper number 062023. In 2006 ASAE annual meeting

  • Mohammadi K, Niknam R, Majd V (2009) Aquifer vulnerability assessment using GIS and fuzzy system: a case study in Tehran–Karaj aquifer, Iran. Environ Geol 58(2):437–446. doi:10.1007/s00254-008-1514-7

    Article  Google Scholar 

  • Napolitano P, Fabbri A (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences 235, pp 559–566

  • Neshat A, Pradhan B (2014) An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Nat Hazards 76(1):543–563

    Article  Google Scholar 

  • Neshat A, Pradhan B, Dadras M (2014) Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour Conserv Recycl 86:74–86

    Article  Google Scholar 

  • Network TPS (2011) Water quality index protocol [online]. Available from: http://www.pathfinderscience.net/stream/cproto4.cfm Accessed 9 Oct 2014

  • Nobre RCM, Rotunno Filho OC, Mansur WJ, Nobre MMM, Cosenza CAN (2007) Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J Contam Hydrol 94(3–4):277–292. doi:10.1016/j.jconhyd.2007.07.008

    Article  Google Scholar 

  • Pathak D, Hiratsuka A, Awata I, Chen L (2009) Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model. Environ Geol 57(7):1569–1578. doi:10.1007/s00254-008-1432-8

    Article  Google Scholar 

  • Pei-Yue L, Hui Q, Jian-Hua W (2010) Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. J Chem 7(S1):S209–S216

    Google Scholar 

  • Piscopo G (2001) Groundwater vulnerability map explanatory notes—Castlereagh catchment. Australia NSW Department of Land and Water Conservation, Parramatta

    Google Scholar 

  • Prasad R, Singh VS, Krishnamacharyulu SKG, Banerjee P (2011) Application of drastic model and GIS: for assessing vulnerability in hard rock granitic aquifer. Environ Monit Assess 176(1–4):143–155. doi:10.1007/s10661-010-1572-7

    Article  Google Scholar 

  • Rahman A (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl Geogr 28(1):32–53

    Article  Google Scholar 

  • Ramakrishnaiah C, Sadashivaiah C, Ranganna G (2009) Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka state, India. J Chem 6(2):523–530

    Google Scholar 

  • Remesan R, Panda RK (2008) Groundwater vulnerability assessment, risk mapping, and nitrate evaluation in a small agricultural watershed: Using the DRASTIC model and GIS. Environ Qual Manag 17(4):53–75

  • Rupert M (2001) Calibration of the DRASTIC ground water vulnerability mapping method. Groundwater 39(4):625–630

    Article  Google Scholar 

  • Saidi S, Bouri S, Ben Dhia H (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59(7):1579–1588. doi:10.1007/s12665-009-0143-0

    Article  Google Scholar 

  • Saidi S, Bouri S, Ben Dhia H, Anselme B (2011) Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: Application to Souassi aquifer, Tunisian Sahel. Agric Water Manag 98(10):1671–1682

  • Sharma ND, Patel J (2010) Evaluation of groundwater quality index of the urban segments of Surat City, India. Int J Geol 4:1–4

    Google Scholar 

  • Shirazi SM, Imran HM, Akib S (2012) GIS-based DRASTIC method for groundwater vulnerability assessment: a review. J Risk Res 15(8):991–1011. doi:10.1080/13669877.2012.686053

    Article  Google Scholar 

  • Singh DSH, Lawrence J (2007) Groundwater quality assessment of shallow aquifer using geographical information system in part of Chennai City, Tamil Nadu. J Geol Soc India 69(5):1067

    Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992

    Article  Google Scholar 

  • Štambuk-Giljanović N (1999) Water quality evaluation by index in Dalmatia. Water Res 33(16):3423–3440

    Article  Google Scholar 

  • Tambekar D, Waghode S, Ingole S, Gulhane S (2008) Water quality index (WQI), analysis of the salinity-affected villages from Purna River basin of Vidarbha region. Nat Environ Pollut Technol 7(4):707–711

    Google Scholar 

  • Thirumalaivasan D, Karmegam M (2001) Aquifer vulnerability assessment using analytic hierarchy process and GIS for upper Palar watershed. In: Paper presented at the 22nd Asian Conference on Remote Sensing, vol. 5, p 9

  • Tilahun K, Merkel B (2010) Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environ Earth Sci 59(7):1485–1496. doi:10.1007/s12665-009-0134-1

    Article  Google Scholar 

  • Tudunwada I, Essiet E, Mohammed S (2007) The effects of tannery sludge on heavy metals concentration in cereals on small-holder farms in Kano, Nigeria. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 35(2):55–60

    Google Scholar 

  • Varnosfaderany, M. N., Mirghaffary, N., Ebrahimi, E., & Soffianian, A. (2009). Water quality assessment in an arid region using a water quality index. Water Science and Technology, 60(9), 2319-2327.

  • Wang J, He J, Chen H (2012) Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing plain, China. Sci Total Environ 432:216–226

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, Forth ed. Switzerland, p 564

  • WHO (2014) Public health mapping & GIS: why use GIS? Regional Office for the Eastern Mediterranean: World Health Organization. Available from: http://gis.emro.who.int/PublicHealthMappingGIS/WhyUseGIS.aspx Accessed 9 Oct 2014

  • Yamamoto JK (2000) An alternative measure of the reliability of ordinary kriging estimates. Math Geol 32:489–509.

  • Yin L, Zhang E, Wang X, Wenninger J, Dong J, Guo L et al (2013) A GIS-based DRASTIC model for assessing groundwater vulnerability in the Ordos plateau, China. Environ Earth Sci 69(1):171–185

    Article  Google Scholar 

Download references

Acknowledgements

The support provided by the management of Kano Agricultural Rural Development Authority (KNARDA), Kano state Water Board (KSWB) Technical Services Division, Challawa Workshop for the data is at this moment acknowledged. Moreover, University Putra Malaysia under the Research University Grant UPM, GP-IPS/2015/9460700; 9460700 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Hamza or Amimul Ahsan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, S.M., Ahsan, A., Imteaz, M.A. et al. Assessment of spatial relationship between groundwater pollution vulnerability and quality indices in Kano, Nigeria. Arab J Geosci 10, 168 (2017). https://doi.org/10.1007/s12517-017-2897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-2897-0

Keywords

Navigation