Skip to main content
Log in

Recommendations for reducing radiation exposure in myocardial perfusion imaging

  • ASNC Information Statement
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

References

  1. Berman DS, Hachamovitch R, Kiat H, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: A basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1995;26:639-47.

    Article  CAS  PubMed  Google Scholar 

  2. Giri S, Shaw LJ, Murthy DR, et al. Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation 2002;105:32-40.

    Article  PubMed  Google Scholar 

  3. Iskandrian AS, Chae SC, Heo J, et al. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993;22:665-70.

    Article  CAS  PubMed  Google Scholar 

  4. Beller GA. Importance of consideration of radiation doses from cardiac imaging procedures and risks of cancer. J Nucl Cardiol 2010;17:1-3.

    Article  PubMed  Google Scholar 

  5. Cohen MC. Radiation reduction: How long can you go? J Nucl Cardiol 2010;17. doi:10.1007/s12350-010-9212-8.

  6. United States Nuclear Regulatory Commission. Definitions. 10 CFR § 20.1003. http://www.nrc.gov/reading-rm/doc-collections/cfr/part020/part020-1003.html. Revised December 1, 2009. Effective May 21, 1991. Accessed April 1, 2010.

  7. Hendel RC, Berman DS, Di Carli MF, et al. 2009 appopriate use criteria for cardiac radionuclide imaging. J Am Coll Cardiol 2009;53:2201-29.

    Article  PubMed  Google Scholar 

  8. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: National Academies Press; 2006.

  9. National Council on Radiation Protection and Measurement. Comparative carcinogenicity of ionizing radiation and chemicals. Report No. 096. Washington, DC: National Council on Radiation Protection and Measurement, 1989.

  10. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007;116:1290-305.

    Article  PubMed  Google Scholar 

  11. Ward RP, Al-Mallah MH, Grossman GB. American Society of Nuclear Cardiology review of the ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). J Nucl Cardiol 2007;14:e26-38.

    Article  PubMed  Google Scholar 

  12. Henzlova MJ, Cerqueira MD, Hansen CL, Taillefer R, Yao S. Imaging guidelines for nuclear cardiology procedures: Stress protocols and tracers. J Nucl Cardiol 2009;16. doi:10.1007/s12350-009-9062-4.

  13. Hansen CL, Goldstein RA, Akinboboye OO, et al. Imaging guidelines for nuclear cardiology procedures: Myocardial perfusion and function: Single photon emission computed tomography. J Nucl Cardiol 2007;14:e39-60.

    Article  PubMed  Google Scholar 

  14. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ, et al. Imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009;16. doi:10.1007/s12350-009-9094-9.

  15. Gibson PB, Demus D, Noto R, Hudson W, Johnson LL. Low event rate for stress-only perfusion imaging in patients evaluated for chest pain. J Am Coll Cardiol 2002;39:999-1004.

    Article  PubMed  Google Scholar 

  16. Santana CA, Garcia EV, Vansant JP, et al. Gated stress-only 99mTc myocardial perfusion SPECT imaging accurately assesses coronary artery disease. Nucl Med Commun 2003;24:241-9.

    Article  CAS  PubMed  Google Scholar 

  17. Heller GV, Bateman TM, Johnson LL, et al. Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 2004;11:273-81.

    Article  PubMed  Google Scholar 

  18. Bateman T, Heller GV, McGhie AI, et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. J Nucl Cardiol 2009;16:726-35.

    Article  PubMed  Google Scholar 

  19. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: Similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 2010;55:221-30.

    Article  PubMed  Google Scholar 

  20. Bateman TM, Friedman JD, Heller GV, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24-33.

    Article  PubMed  Google Scholar 

  21. Berman DS, Kang X, Tamarappoo B, et al. Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. J Am Coll Cardiol Imaging 2009;2:273-82.

    Google Scholar 

  22. Chang H, George RT, Schuleri KH, et al. Prospective electrocardiogram-gated delayed enhanced multidetector computed tomography accurately quantifies infarct size and reduces radiation exposure. J Am Coll Cardiol Imaging 2009;2:412-20.

    Google Scholar 

  23. Hansen C. Digital image processing for clinicians, part III: SPECT reconstruction. J Nucl Cardiol 2002;9:542-9.

    Article  PubMed  Google Scholar 

  24. Kak A, Slaney M. Algorithms for reconstruction with nondiffracting sources. In: Kak A, Slaney M, editors. Principals of computerized tomographic imaging. New York: IEEE; 1999.

    Google Scholar 

  25. DePuey EG, Gadiraju R, Clark J, et al. Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered backprojection. J Nucl Cardiol 2008;14:547-63.

    Article  Google Scholar 

  26. DePuey EG, Bommireddipalli S, Clark J, Thompson L, Srour Y. Wide beam reconstruction “quarter-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” ordered subset expectation maximum. J Nucl Cardiol 2009;16:736-52.

    Article  PubMed  Google Scholar 

  27. Venero CV, Heller GV, Bateman TM, et al. A multicenter evaluation of a new postprocessing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol 2009;16:714-25.

    Article  PubMed  Google Scholar 

  28. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Philadelphia, PA: Elsevier Science; 2003.

    Google Scholar 

  29. He X, Links JM, Gilland KL, Tsui BMW, Frey EC. Comparison of 180° and 360° acquisition for myocardial perfusion SPECT with compensation for attenuation, detector response, and scatter: Monte Carlo and mathematical observer results. J Nucl Cardiol 2006;13:345-53.

    Article  PubMed  Google Scholar 

  30. Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:255-76.

    Article  PubMed  Google Scholar 

  31. Garcia EV, Tsukerman L, Keidar Z. A new solid state, ultra fast cardiac multi-detector SPECT system [abstract]. J Nucl Cardiol 2008;15:S3.

    Article  Google Scholar 

  32. Kennedy JA, Yosilevsky G, Przewloka K, Israel O, Frenkel A. 3D spatial resolution map and sensitivity characterization of a dedicated cardiac CZT SPECT camera [abstract]. J Nucl Med 2009;50:107P.

    Article  Google Scholar 

  33. Gambhir SS, Berman DS, Ziffer JA, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.

    Article  PubMed  Google Scholar 

  34. Marie PY, Djaballah W, Franken PR, et al. OSEM reconstruction, associated with temporal Fourier and depth-dependant resolution recovery filtering, enhances results from sestamibi and 201Tl 16-interval gated SPECT. J Nucl Med 2005;46:1789-95.

    PubMed  Google Scholar 

  35. Sharir T, Slomka PJ, Hayes S, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: Quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 2010;55:1965-74.

    Article  PubMed  Google Scholar 

  36. Ben-Haim S, Van Gramberg D, Bomanji J, et al. Thallium 201 (Tl) myocardial perfusion imaging (MPI) with a novel fast cardiac camera versus conventional camera (SPECT) [abstract]. J Nucl Med 2009;50:124P.

    Google Scholar 

  37. Keidar Z, Kagna O, Frenkel A, Israel O. A novel ultrafast cardiac scanner for myocardial perfusion imaging (MPI): Comparison with a standard dual-head camera [abstract]. J Nucl Med 2009;50:125P.

    Google Scholar 

  38. Esteves FP, Raggi P, Folks RD, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.

    Article  PubMed  Google Scholar 

  39. Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. J Am Coll Cardiol Imaging 2008;1:156-63.

    Google Scholar 

  40. Maddahi J, Mendez R, Mahmarian JJ, et al. Prospective multicenter evaluation of rapid, gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol 2009;16:351-7.

    Article  PubMed  Google Scholar 

  41. Daou D, Pointurier I, Coaguila C, et al. Performance of OSEM and depth-dependent resolution recovery algorithms for the evaluation of global left ventricular function in 201Tl gated myocardial perfusion SPECT. J Nucl Med 2003;44:155-62.

    PubMed  Google Scholar 

  42. Bowsher JE, Floyd CE. Treatment of Compton scattering in maximum likelihood, expectation-maximization reconstructions of SPECT images. J Nucl Med 1991;32:1285-91.

    CAS  PubMed  Google Scholar 

  43. Xaio J, de Wit TC, Staelen SG, Beekman FJ. Evaluation of 3D Monte Carlo-based scatter correction for 99mTc cardiac perfusion SPECT. J Nucl Med 2006;47:1662-9.

    Google Scholar 

  44. Cao ZJ, Maunouroy C, Chen CC, et al. Comparison of continuous step-and-shoot versus step-and-shoot acquisition SPECT. J Nucl Med 1996;37:2037-40.

    CAS  PubMed  Google Scholar 

  45. Bieszk JA, Hawman EG. Evaluation of SPECT angular sampling effects: Continuous versus step-and-shoot acquisition. J Nucl Med 1987;28:1308-14.

    CAS  PubMed  Google Scholar 

  46. Case J, Bateman T, Cullom S. Obtaining optimum and consistent SPEW myocardial counts using an anterior planar view to determine SPECT acquisition times [abstract]. J Am Coll Cardiol 1998;31:82A.

    Google Scholar 

Download references

Acknowledgments

Dr. Nichols serves as a consultant for IEAE and receives royalties from Syntermed, Inc. The authors have no conflicts of interest to disclose except as noted above.

Author information

Authors and Affiliations

Authors

Additional information

Unless reaffirmed, retired, or amended by express action of the Board of Directors of the American Society of Nuclear Cardiology, this Information Statement shall expire as of July 2015.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerqueira, M.D., Allman, K.C., Ficaro, E.P. et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J. Nucl. Cardiol. 17, 709–718 (2010). https://doi.org/10.1007/s12350-010-9244-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-010-9244-0

Navigation