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ABSTRACT

The human microbiome comprises a complex
ecosystem of microbial communities that exist
within the human body, the largest and most
diverse of which are found within the human
intestine. It has been increasingly implicated in
human health and diseases, demonstrably
playing a critical role in influencing host
immune response, protection against pathogen
overgrowth, biosynthesis, and metabolism. As
our understanding of the links between the gut
microbiota with host immunity and infectious
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diseases deepens, there is a greater need to
incorporate methods of modulating it as a
means of therapy or infection prevention in
daily clinical practice. Traditional antimicrobial
stewardship principles have been evaluated to
assess their impact on the gut microbiota
diversity and the consequent repercussions,
taking into consideration antibiotic pharma-
cokinetic and pharmacodynamic properties.
Novel strategies of selective digestive decon-
tamination and fecal microbiota transplanta-
tion to regulate the gut microbiota have also
been tested in different conditions with variable
results. This review seeks to provide an overview
of the available literature on the modulation of
the gut microbiota and its implications for
infection control and antimicrobial steward-
ship. With  increased understanding, gut
microbiota profiling through metataxonomic
analysis may provide further insight into mod-
ulating microbial communities in the context
of infection prevention and control.
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Key Summary Points

Strategies to limit the negative effects of
antibiotics on the gut microbiota include
restricting the duration and spectrum of
antibiotic use.

Different routes of antibiotic
administration have varying effects on the
gut microbiota due to pharmacokinetic
parameters, and these effects should be
considered.

There is insufficient evidence to
recommend the routine use of selective
oral decontamination and selective
digestive decontamination to reduce the
risks of nosocomial pneumonia in
critically ill patients.

The use of fecal microbiota transplants
and probiotics have some role in restoring
the gut microbiota diversity in the setting
of dysbiosis, but require further study.

Gut microbiota profiling through
metataxonomic analysis may provide
turther insight into modulating microbial
communities in the context of infection
prevention and control.

INTRODUCTION

Our knowledge of the human microbiome has
increased over the past decade. It comprises a
complex ecosystem of microbial communities
that exist within the human body. The largest
and most diverse of these exists within the
human intestine. Collectively known as the gut
microbiota, they have increasingly been found to
play a significant role in the maintenance of
human health and the development of diseases
[1]. The human microbiome was first character-
ized by The Human Microbiome Project spon-
sored by the National Institutes of Health [2].
Using high-throughput sequencing, the human
lower intestinal microbiota has been estimated to

contain at least 10'*™'? microorganisms per gram

of content, comprising mainly anaerobes, more
than 90% of which belong to the phyla Firmicutes
and Bacteroidetes [3, 4]. Its composition is highly
variable, changing with age, diet, and geographic
distribution [5].

In recent years, increased understanding and
analysis of the gut microbiota have shed light
on the impact of alterations in it on human
health. It plays a critical role in influencing host
immune response, protection against pathogen
overgrowth, biosynthesis, and metabolism [1].
There are implications for health and diseases
even from birth [6]. Additionally, the gut
microbiota serves as an important reservoir of
antibiotic resistant genes, also known as the
“resistome”, which can become an amplifier of
antimicrobial resistance [7].

As our understanding of the link between the
gut microbiota with host immunity and infec-
tious diseases increases, there is a greater need
to incorporate methods of modulating it as a
means of therapy or infection prevention in
daily clinical practice. However, much of the
available data are in the realm of in vitro data or
animal studies. This review seeks to provide an
overview of the available literature on the
modulation of the gut microbiota, and its
implications for infection control and antimi-
crobial stewardship. This article is based on
previously conducted studies and does not
contain any studies with human participants or
animals performed by any of the authors.

GUT MICROBIOTA
AND ANTIMICROBIAL
STEWARDSHIP

In this section, we review antimicrobial stew-
ardship strategies and evaluate their impact on
the gut microbiota and the development of
antibiotic resistance.

Narrowing Antibiotic Spectra
and Limiting Duration Of Use

Antibiotic use reduces the diversity of the gut
microbiota through the elimination of
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susceptible strains that make up normal flora.
This can subsequently lead to the overgrowth of
resistant or potentially pathogenic bacteria,
increasing the risk of infection, especially with
multidrug-resistant organisms (MDRO) [8, 9].
The degree to which the microbiota is affected
varies with the type and duration of the
antibiotic used [10]. Anti-anaerobic antibiotics
have a great impact on the gut microbiota as
anaerobes form a significant proportion of it
[8, 11]. It has been shown that just 4-8 days of
piperacillin-tazobactam for intra-abdominal
infections resulted in a substantial decrease in
anaerobic commensals [11]. A study by Hecker
et al. reported that anaerobic cover accounted
for about 35% of the 576 unnecessary antimi-
crobial days of therapy [12]. Inappropriate use
of anti-anaerobic antibiotics can increase the
likelihood of colonization by resistant organ-
isms [13]. In a randomized clinical study com-
paring the use of piperacillin-tazobactam versus
ertapenem, the resistance of Enterobacterales to
piperacillin-tazobactam developed at a signifi-
cantly higher rate compared with ertapenem
[14]. Several studies have demonstrated that
newer fluoroquinolones such as levofloxacin
and moxifloxacin had greater ecological effects
on Gram-positive organisms than ciprofloxacin
[15-17].

Logically, advocating the prescription of
narrower spectrum antibiotics whenever
appropriate should reduce disruption of the
microbiota and resultant opportunistic infec-
tions, such as Clostridiodes difficile infection
(CDI) and fungal infections. Benefits were
demonstrated in the comparison of van-
comycin and fidaxomicin in the management
of C. difficile diarrhea. Fidaxomicin exposure
had a smaller impact on microbiota composi-
tion in mice and conferred higher colonization
resistance to C. difficile spores compared with
vancomycin [18]. Consequently, this was asso-
ciated with a lower recurrence rate in patients
treated with fidaxomicin compared with van-
comycin [19]. A study by Lew et al. suggested
that classical antimicrobial stewardship strate-
gies, specifically switching to narrower spec-
trum antibiotics, antibiotic cessation once
treatment is completed, or when there is no
bacterial infection, can reduce rates of

antibiotic resistance and CDI [20]. This con-
curred with Tay et al. who reported the usage of
carbapenem as a risk factor for severe CDI [21].
Excessively prolonged antibiotic use is a
global concern [12, 22, 23], and can lead to
significant alteration in the gut microbiota,
restoration of which can take months to years
[24, 25]. Conversely, shorter antibiotic duration
results in less collateral damage to the gut
microbiota, and allows for earlier restoration.
Late-preterm infants who received longer cour-
ses of antibiotics had more prolonged alter-
ations in their gut microbiota compared with
those who received a shorter duration [26].
There is increasing evidence that a shorter
duration of antibiotics of less than 8 days for
commonly encountered infections, such as skin
and soft tissue infection [27] and male urinary
tract infections [28], are not associated with
increased treatment failures. Antibiotic stew-
ardship principles of making an accurate diag-
nosis of infection, appropriate antibiotics, and a
shorter duration of antibiotic treatment or
prophylaxis, would reduce unnecessary antibi-
otic exposure to the gut microbiota without
compromising patient outcomes [29].

Exploiting Antibiotic Pharmacokinetics

The route, dose, and excretion of antibiotics
affect the gut microbiota differently. Zhang
et al. compared oral versus intravenous tetra-
cycline and ampicillin using murine models,
and recovered higher copies of resistant genes
in mice fed with oral antibiotics compared with
those which received intravenous antibiotics
[30]. Lower tetracycline doses were associated
with slower resistance development with fewer
copies of resistant genes being isolated [30].
When clindamycin was administered via the
oral route, a higher concentration of clin-
damycin were found in feces compared to when
administered via an intravenous route. This
resulted in a greater reduction of anaerobic
colonic flora, leading to an overgrowth of clin-
damycin-resistant bacteria, such as enterococci
and C. difficile [8].

However, compared with oral agents that are
highly absorbed and excreted minimally
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through the bile or feces, intravenous antibi-
otics that undergo enterohepatic re-circulation
or are excreted through bile, feces, or secreted
into the intestinal tract may have a greater
impact on the gut microbiota [31]. Various
studies have found that imipenem and mer-
openem are excreted minimally in fecal samples
after administration, and minor changes to the
gut microbiota when administered for a limited
duration (6-11days) have been observed
[32, 33]. Oral penicillin was also reported to
have a low fecal concentration, with almost no
change in microflora [8]. In contrast, ceftriax-
one, a broad-spectrum cephalosporin with high
biliary excretion, effectively suppressed Enter-
obacterales [34]. Among macrolides, ery-
thromycin has lower absorption from intestines
compared with clarithromycin. About 95% of
erythromycin versus 60-70% of clarithromycin
is metabolized in the liver and excreted in bile
as its active form [35]. This explains the higher
impact of erythromycin on intestinal microflora
[36].

In light of the above, antibiotic prescribers
should firstly, only start antibiotics in the pres-
ence of a clear indication. Secondly, prescribers
should choose the narrowest spectrum antibi-
otic available for treatment to reduce the impact
on the gut microbiota (e.g., the omission of
anaerobic cover if not indicated). Thirdly,
antibiotics should be prescribed for the shortest
duration to allow the recovery of the gut
microbiota as soon as possible, and finally, oral
antibiotics should be used if possible to reduce
line-related infections and reduce hospitaliza-
tion days. Oral agents that are highly absorbed
and excreted minimally through the bile or
intestinal tract are preferred. Prescribers will
also need to consider the resistance potential of
antibiotics. Although carbapenems are excreted
minimally through the gut with a smaller
impact on the gut microbiota, antibiotic pre-
scribers should be aware of the association
between carbapenem use and the increase in
carbapenem resistance, which should limit its
use [37, 38]. Additionally, other factors, such as
side effects, allergies, and penetration to the site
of infection, will also need to be considered
during prescribing, in addition to the impact of
antibiotics on the gut microbiota.

Targeted Local Antibiotic Delivery

The use of non-systemic antibiotics for localized
infections may help to minimize the impact on
the gut microbiota and the development of
antibiotic resistance. Getting the drug to only
where it is needed in high concentrations is a
concept that has been used in some infections.
Inhaled antibiotics have been used for respira-
tory infections in patients with cystic fibrosis
[39]. Studies have been conducted for other
respiratory infections, such as pneumonia,
infective exacerbation of chronic obstructive
pulmonary disease, and non-cystic fibrosis
bronchiectasis, but there has been a paucity of
good quality studies and the outcomes have
been modest [39]. Palmer et al. reported a
reduced need for systemic antibiotics in the
treatment of ventilator-associated tracheobron-
chitis with the use of inhaled antibiotics [40].
However, another study by Rattanaumpawan
et al. did not observe additional benefit when
using inhaled colistin as adjunctive therapy in
ventilator-associated pneumonia [41]. In the
clinical practice guidelines published by the
Infectious Diseases Society of America (IDSA)
and the American Thoracic Society in 2016, the
expert panel concluded that there is a need for
better quality studies to look for optimal dosing
as well as aerosol delivery [42]. Local adminis-
tration of antibiotics in the form of antibiotic-
impregnated cement and antibiotic powder
have been explored over the years for the
treatment or prevention of bone and joint
infections [43]. Further research is needed in the
area of localized administration of antibiotics in
the treatment of infections to reduce the impact
on the gut microbiota while achieving optimal
patient outcomes.

GUT MICROBIOTA
MODULATION FOR INFECTION
PREVENTION

Colonization resistance is the ability of the
healthy microbiota to prevent expansion of
potential pathogenic bacteria [44]. Maintaining
or re-establishing colonization resistance by
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modulating the gut microbiota to prevent
infection have been evaluated. The next section
discusses how this can be achieved.

Fecal Microbiota Transplant (FMT)

The intestine is a reservoir for MDRO that can
be opportunistic pathogens selected for by
antibiotic pressure, especially in critically ill and
hospitalized patients [45]. Studies have shown
that patients colonized with MDRO are at risk of
developing infections that arise endogenously,
or may transmit them to other individuals
[46, 47]. These pathogens may translocate
across a damaged intestinal barrier, or result in
contamination to cause infections at other sites,
such as central line infections or catheter-re-
lated urinary tract infections. The gut micro-
biome thus serves as a prime target for infection
prevention strategies, giving rise to increased
interest for use of fecal microbiota transplant
(FMT) and selective digestive decontamination
as infection control strategies to reduce carriage
of MDRO.

FMT has been found to be one of the most
effective ways to regulate the gut microbiota. It
was first described in 1958 [48] and has since
gained increased acceptance as a medical inter-
vention in recent decades. Eiseman et al.
observed that the administration of fecal ene-
mas resulted in dramatic responses in critically
ill patients with pseudomembranous colitis
[48]. It usually involves the transfer of processed
stool from a healthy donor into the colon of a
recipient, and is delivered enterally either
endoscopically or via oral capsule preparations.
This presumably allows the donor’s microbiome
to repopulate the gut with a healthy micro-
biome to restore gut dysbiosis.

At present, recurrent CDI is the only indica-
tion for which FMT has been proven to be effi-
cacious, and it is recommended when
appropriate antibiotic therapies have failed [49].
Cure rates in this group of patients were up to
90% with repeated FMT in randomized con-
trolled trials [50-52]. Engraftment of specific
bacteria and viruses with physiologic effects
within the gut was thought to play a significant
role in reversing dysbiosis [53]. Cheng et al.

demonstrated in a piglet model that FMT had
several effects on metabolic pathways that
occurred within the gut to improve gut mucosal
barrier integrity [54].

A number of case reports and case series have
described successful decolonization of MDRO as
a primary outcome among patients treated with
FMT [S55]. These reports included both
immunocompetent and immunocompromised
patients colonized with carbapenemase-pro-
ducing Enterobacterales [56, 57], vancomycin-
resistant enterococci (VRE) [58] and extended
spectrum {3-lactamase-producing Enterobac-
terales [59]. Unfortunately, these studies were
often uncontrolled with high levels of hetero-
geneity and short follow-up periods, resulting
in no conclusive evidence to support the safety
and efficacy of FMT in this regard.

In addition to the clinical implications on
patient outcome, the successful decolonization
of MDRO via FMT may have several infection
control implications. It reduces the burden on
healthcare facilities to provide isolation rooms
for such patients who require contact precau-
tions and allows re-entry into long-term care
facilities that would otherwise not have the
adequate infection control resources to care for
these patients [60] (see Table 1).

Selective Oropharyngeal
Decontamination (SOD) and Selective
Digestive Decontamination (SDD)

Selective  oropharyngeal decontamination
(SOD) has gained interest as an infection pre-
vention strategy in critically ill patients in the
intensive care unit (ICU). In the 1960s, Johan-
son et al. observed that the prevalence of Gram-
negative bacteria in the pharyngeal flora
increased markedly within a few days of hospi-
talization [70]. It was postulated that, since the
pathogenesis of bacterial pneumonia began
with the aspiration of the oropharyngeal con-
tents into the lung, altering the pharyngeal
flora in ill patients may be important to prevent
pneumonia secondary to Gram-negative bacilli.

In the 1980s, Stoutenbeek et al. introduced
the concept of selective digestive decontami-
nation (SDD) in the ICU population [71]. Given
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Table 1 Summary of key concepts in modulation of the gut microbiota in infection prevention and control and

antimicrobial stewardship

Domain Key concepts

Key
references

Antimicrobial Stewardship Broad-spectrum antibiotics can cause significant alteration to the gut microbiota [8, 11]

diversity, in particular those with anti-anaerobic activity

Alterations to the gut microbiota by antibiotics take months to years to restore [24, 25]

Shorter duration of antibiotic is equally effective than prolonged use and can

[26-28]

reduce alterations to the gut microbiota

Oral antibiotics and intravenously administered antibiotics that undergo

[30-33]

enterohepatic re-circulation and excretion into bile have a greater impact on

the gut microbiota compared to intravenous antibiotics alone

Infection Prevention and

Control

Fecal microbiota transplant has been found to be one of the most effective ways [49]

to regulate the gut microbiota dysbiosis in the setting of CDI

Fecal microbiota transplant has been studied in gut decolonization of MDRO, [55, 56, 58]

but has not conclusively been found to be effective

Selective oral decontamination and selective digestive decontamination with oral [61-63]

antibiotics has been evaluated as a means of reducing infections caused by

endogenous MDRO, but has not been found to be efficacious

Restoration of the gut microbiota diversity through probiotics and prebiotics

[64-69]

have some role in restoring gut diversity in specific diseases, such as necrotizing

enterocolitis, acute infectious diarrhea and antibiotic-associated diarrhea

that most infections in the ICU are primary
endogenous infections, reducing bacterial load
within the gastrointestinal tract, in particular
potentially pathogenic microorganisms, would
theoretically reduce infection risks. In SDD,
enteral antibiotics are selected for their inability
to be absorbed into the systemic circulation,
and are active against the most common noso-
comial pathogens within the gut (e.g., Escher-
ichia  coli, Klebsiella  pneumoniae, and
Pseudomonas aeruginosa).

Unfortunately, a randomized trial conducted
in 13 European ICUs among patients receiving
mechanical ventilation found that SOD and
SDD were not associated with reductions in
ICU-acquired bloodstream infections caused by
multidrug-resistant Gram-negative organisms
compared with standard care [61]. In addition, a
study conducted in ICUs in the Netherlands

demonstrated the “rebound phenomenon” that
SOD and SDD had on the gut microbiota, with
increased rates of ceftazidime resistance in the
intestinal tract after discontinuation of SDD.

A combination of both interventions has
been considered. A randomized trial reported
no significant reduction in extended-spectrum
B-lactamase or carbapenemase-producing Enter-
obacterales intestinal carriage between patients
who received a 5-day course of oral antibiotics
followed by frozen FMT obtained from unre-
lated healthy donors and controls [62]. In view
of the lack of conclusive evidence of the efficacy
of FMT and SDD, the European clinical guide-
lines do not recommend routine decolonization
of third-generation cephalosporin-resistant and
carbapenem-resistant Enterobacterales carriers
[63].
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Pre-Operative Oral Antibiotic Preparation
(OADP)

Extrapolating the principles of SDD, the role of
the gut microbiota in the development of surgical
site infections (SSI) has been considered in col-
orectal surgery where surgeons operate in a clean-
contaminated field. Oral antibiotic preparation
(OAP) with variable combinations of aminogly-
coside, macrolide, and metronidazole have been
used to evaluate if they reduced rates of SSI, sur-
gical complications of anastomotic leak, and
length of hospital stay [72]. A network meta-
analysis of randomized controlled trials revealed
that OAP alone was not associated with a statis-
tically significant reduction in SSI [73]. Kosken-
vuo et al. similarly reported no reduction in SSI or
overall morbidity in colon surgery when
mechanical and oral antibiotic bowel prepara-
tions were used compared with no bowel prepa-
ration [74]. There is no strong evidence to suggest
that OAP as pre-operative prophylaxis is effective
in reducing SSI.

Probiotics and Prebiotics

Probiotics are “living microorganisms which
when administered in adequate amounts confer
a health benefit on the host” [75]. Prebiotics are
non-viable substrates that are selectively uti-
lized as nutrients by beneficial microorganisms,
both indigenous and exogenously administered
strains, thereby conferring a health benefit [76].

Current literature shows effective reduction
of colonization by Gram-positive organisms
through the use of probiotics. Manley et al. and
Szachta et al. both reported that VRE in the gut
can be significantly reduced even to the point of
eradication through oral consumption of Lac-
tobacillus rhamnosus GG [77, 78]. Gut coloniza-
tion of S. aureus including methicillin-resistant
S. aureus was reduced after 4 weeks of oral Lac-
tobacillus rhamnosus HNOO1 in a recent clinical
trial [79]. However, this beneficial effect of
probiotics was not in Gram-negative MDRO in
hospitalized patients and residents in long-term
healthcare facilities [80, 81].

Randomized controlled trials have shown
positive effects on gut health by probiotics in a

myriad of conditions, such as infectious and
antibiotic-associated diarrhea (AAD), irrita-
ble bowel syndrome, and enterocolitis [64].
Lactic-acid bacteria, such as Lactobacillus and
yeast-based Saccharomyces boulardii (cerevisiae)
probiotics, are the commonest choices for
treatment of gastrointestinal conditions
[79-81].

Our knowledge of the effects of prebiotics are
evolving. Human studies which wused-high
throughput sequencing demonstrated stimula-
tion of Bifidobacteria in response to prebiotic use
[82, 83]. In these studies, there were variations
in other microorganisms, with increased Fae-
calibacterium prausnitzii [83] and Anaerostipes
spp, whereas Bilophila spp. decreased [82].
Although proof of causality is difficult to
determine, the beneficial effects of prebiotics
have been evidenced through numerous ran-
domized controlled trials, albeit variable as a
result of both environmental and host factors
[76].

Probiotics in Necrotizing Enterocolitis (NEC)

Necrotizing enterocolitis (NEC) is a debilitating
gastrointestinal disorder in neonates character-
ized by transmural inflammation and bowel
necrosis. Bacterial invasion of the bowel walls
can occur, and empirical treatment with broad-
spectrum antibiotics forms part of the backbone
of management [84]. Morbidity and mortality
are high [85]. NEC most frequently occurs in
neonates who are preterm or have very low
birth weight [65, 66]. They are inherently at a
higher likelihood of receiving antibiotics due to
their susceptibility to infections, and prolonged
antibiotic use is a known risk factor for NEC
[86]. The growth of gut-friendly commensal Bi-
fidobacteria is greatly compromised [86, 87].
Consistent benefits of probiotics in the preven-
tion of NEC have been extensively described in
systematic reviews and meta-analyses [65-67].
Sawh et al. reported that, when compared with
placebo, probiotics reduced the incidence of
severe NEC in 38 trials (10,520 patients) [RR
0.53, 95% CI (0.42-0.66)] [66]. The incidence of
all-cause mortality was significantly reduced
with probiotics in 29 trials (9507 patients) [RR
0.79, 95% CI (0.68-0.93)] [86]. As such, probi-
otics may have a role in reducing the occurrence
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of NEC, and thus antibiotic usage and potential
negative outcomes caused by NEC.

Probiotics in acute infectious diarrhea

and antibiotic-associated diarrhea

Acute infectious diarrhea is one of the leading
reasons for antibiotic prescription. Reduction in
diarrheal incidence, severity, and duration
through probiotic use may reinforce antimi-
crobial stewardship principles of reducing
antibiotic prescriptions. Probiotics have been
heavily studied in patients with acute infectious
diarrhea and evidence of its benefits is well
described [88, 89]. A Cochrane review of 63
studies, mainly in infants and young children,
reported an average reduction of 1 day in the
duration of diarrhea, reduction in the likeli-
hood of diarrheal episodes lasting more than
3 days, and stool frequency on day 2 of illness
[89].

AAD affects approximately 30% of patients
and is frequently associated with broad-spec-
trum antibiotic use [90, 91]. AAD can outlast
the period of antibiotic use and makes the
patient more vulnerable to infections and other
diseases [25, 92]. Positive associations between
probiotics and a decrease in AAD have been
reported [68, 93, 94]. However, studies were
consistently limited as they were underpowered
and used varying probiotic strains, formula-
tions, and doses. The studied population had
differences such as age, health conditions, and
genetic factors. These factors resulted in the
heterogeneity of the studies. Therefore, the
extent of purported benefits remains unknown
[93].

Probiotics for C. difficile-associated diarrhea

Up to 30% of AAD are secondary to CDI. It is the
commonest cause of infectious diarrhea in
healthcare settings [95, 96]. The care of such
patients requires intensive infection control
measures of isolation, contact precautions, and
terminal cleaning to limit nosocomial trans-
mission. The clinical practice guidelines for CDI
in adults and children by the Society for
Healthcare Epidemiology of America and the
IDSA make no recommendation with regard to
the administration of probiotics for the

treatment and prevention of primary or recur-
rent CDI [49]. Meta-analyses have shown that
probiotics may be effective at preventing CDI
with up to 70% risk reduction [68, 69]. How-
ever, in post hoc analysis, it was demonstrated
that this large risk reduction was significant
only in patients who had a higher baseline CDI
risk of > 5% (3.1% in the robiotic group vs.
11.6% in the control group).

Risk of CDI recurrence is approximately 25%,
and attempts have been made to lower the
recurrence rate. A randomized placebo-controlled
trial showed that patients with CDI treated with
S. boulardii plus standard antibiotics had a signif-
icantly lower relative risk of CDI recurrence than
placebo plus standard antibiotics [97]. While
there was a trend that S. boulardii could reduce
CDI recurrence in patients with initial CDI and
recurrent CDI, significance was demonstrated
only in the latter [97]. In a double-blind, placebo-
controlled trial, among patients who received
high-dose enteral vancomycin (2 g/day), Surawiez
et al. demonstrated a significant reduction (16.7%
vs. 50.0%) in CDI recurrence when S. boulardii
was administered [98]. However, the high-dose
vancomycin arm only had 32 subjects, and most
were severely ill with CDI complications such as
pseudomembranous colitis. In the low dose
(1 g/day) vancomycin and metronidazole arms
(n = 85 and 53, respectively), co-administration of
S. boulardii was not associated with reductions in
CDI recurrence. The efficacy of probiotics in pre-
venting CDI recurrence is promising, but studies
are still limited by small sample sizes and the lack
of consistently reproducible data [49, 69].

Safety Considerations

Few clinical trials have addressed the safety
profile of probiotics because of the lack of safety
documentation. Often, they are underpowered
for this purpose [99]. However, rare events such
as bacteremia and fungemia have been repor-
ted, especially in vulnerable populations such as
immunocompromised patients [100]. Lastly,
there have been reports where commercial
probiotic strains carried antibiotic resistance
genes [101]. This is a threat, especially when
lateral transfer of these undesirable genes to
pathogens and commensal the gut microbiota is
possible.
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CONCLUSIONS

The maintenance of a healthy and diverse gut
microbiota plays an important role in the pre-
vention and acquisition of MDRO, and strate-
gies that modulate its composition have great
potential in impacting human health. This
serves to reinforce antibiotic stewardship prin-
ciples that limit the negative effects of antibi-
otics on the gut microbiota. Specific strategies
include developing models for assessing the
impact of various antimicrobial combinations
on the gut microbiota, and promoting the
development and use of such therapies with
demonstrable reduced impact. Novel interven-
tions, such as microbiota auto-banking and
transplantation to perform studies for reducing
colonization by MDRO, as well as developing
more advanced probiotics that are reflective of
the complexity of the native gut microbiota,
can serve to restore gut microbiota diversity in
the face of dysbiosis. As we discover more about
the host protective mechanism afforded by an
intact microbiota, further research should be
invested in promoting the development of
molecular therapeutics to mimic normal
host-microbiota interactions.

The VITORA (NCT03944369) and EFFECT-
CPE (NCT03802461) trials are ongoing clinical
trials that have been publicly registered to assess
the effectiveness of the manipulation of the gut
microbiota for the eradication of MDRO car-
riage. A trial conducted by the Memorial Sloan
Kettering Cancer Center to see how different
antibiotics affect the commensal bacteria exist-
ing in the intestinal tract is currently underway.
With increased understanding, gut microbiota
profiling through metataxonomic analysis may
provide further insight into modulating micro-
bial communities in the context of infection
prevention and control.
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