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ABSTRACT

Introduction: Chronic infection with hepatitis
C virus (HCV) is a leading cause of liver disease
and infectious disease deaths. While recent and
emerging treatment options for HCV patients
have enabled higher rates of sustained virologic
response (SVR), the demographic, clinical, geo-
graphic, and payer characteristics of the esti-
mated 3.4 million chronic HCV patients in the
USA are poorly understood. The goal of this
study was to create a dataset describing the
current HCV patient landscape in the USA.
Methods: Data from two large national labora-
tory companies representing the majority of US

patients screened for HCV antibody and/or
tested for HCV RNA from 2013 through 2016
were organized into the present study dataset.
Age, gender, payer channel, 3-digit ZIP code and
ordering physician specialty, and 3-digit ZIP
code information were available for all patients.
Among RNA-positive patients, additional clini-
cal characteristics included HCV genotype,
fibrosis stage, renal function, and HIV status.
Initiating treatment and attaining cure were
imputed using data-driven algorithms based on
successive RNA viral load measurements.
Results: The number of RNA-positive HCV
patients increased from 200,066 patients in
2013 to 469,550 in 2016. The availability of
clinical data measurements and rates of treat-
ment initiation increased over the study period,
indicating improved care engagement for HCV
patients. Treatment and cure rates varied by
age, disease severity, geographic location, and
payer channel. Sensitivity and specificity of the
cure prediction algorithms were consistently
above 0.90, validating the robustness of the data
imputation approach.
Conclusion: This is the largest, most compre-
hensive dataset available to describe the current
US HCV patient landscape. Our results high-
light that the epidemiology of HCV is evolving
with an increasing number of patients who are
younger and have milder disease than described
in previous years. Results of this study should
help guide efforts toward the elimination of
HCV in this country. Future work will focus on
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factors associated with varying treatment and
cure patterns and describing recent changes in
the HCV patient landscape.
Funding: AbbVie.
Plain Language Summary: Plain language
summary available for this article.
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PLAIN LANGUAGE SUMMARY

Hepatitis C virus (HCV) infection may cause
serious health problems and death. Unfortu-
nately, the health care community does not
have complete identification of patients with
HCV. This study describes the creation of a
dataset that combines information for HCV
patients and shows relevant information about
HCV patients’ age, geographic location, disease
severity, and treatment and cure status from
2013 through 2016. This dataset helps the
health care community understand the HCV
patient landscape and make informed decisions
about how to best treat this population.

INTRODUCTION

At least 3.4 million people in the USA exhibit
past or current infection with hepatitis C virus
(HCV) [1]. Chronic HCV infection is a leading
cause of liver fibrosis that may progress to liver
cirrhosis, increasing the risk of hepatocellular
carcinoma or hepatic decompensation [2, 3].
Deaths from chronic HCV in the USA currently
outnumber deaths from 60 other nationally
notifiable infectious diseases combined,
including human immunodeficiency virus
(HIV), tuberculosis, and hepatitis B [4]. Model-
ing projections estimate over 300,000 deaths,
over 150,000 cases of hepatocellular carcinoma,
and over 200,000 cases of decompensated cir-
rhosis among US HCV patients by 2050 with
current disease management practices [5].
National strategies targeting HCV disease
transmission and treatment access have been

recommended to address this urgent public
health threat [6, 7]. The World Health Organi-
zation established a screening goal of 90% by
2030, but most states in the USA are not on
course to meet this goal [8, 9].

There is no vaccine to prevent chronic HCV
infection [10], but antiviral therapies offer the
potential of achieving sustained virologic
response (SVR) [11]. The first direct-acting
antivirals (DAAs) were introduced in 2011
[11, 12]. The earliest DAAs enabled SVR in up to
75% of patients, and SVR rates have improved
to more than 95% in more recently introduced
DAAs [11, 12]. DAAs introduced in 2017 address
several unmet needs, including shorter treat-
ment duration, efficacy in patients who have
failed previous DAA therapies, indication in
patients with chronic kidney disease (CKD) or
compensated cirrhosis, and pan-genomic activ-
ity [13–16].

The advent of DAAs transformed the HCV
landscape by shifting patients away from less
effective interferon-based therapies [17]. Clini-
cal practice guidelines updated in 2017 recom-
mend that all HCV patients receive DAAs except
for patients with short life expectancies that will
not be improved through HCV treatment [18].
However, evidence suggests that treatment is
prioritized for patients who have more severe
HCV disease, are older, and have comorbidities,
changing the profile of the untreated HCV
patient population [17].

There are several limitations in understand-
ing the epidemiological and economic burdens
of chronic HCV. Acute and chronic HCV cases
are not uniformly reported to the Centers for
Disease Control (CDC) by all states, and it is
therefore difficult to accurately portray the US
HCV population [19]. Many chronic HCV
patients were infected in prior decades [20], and
not all acute cases will transition to chronic
infection [21], so acute case trends may not be
proportionate with chronic HCV disease bur-
den. National HCV prevalence is often esti-
mated from the National Health and Nutrition
Examination Survey (NHANES), which is based
on subjects surveyed in only 15 counties [22].
Medical claims studies often do not involve
nationwide data stratified by state. Claims
studies may provide HCV cost burden and some
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clinical information, but claims studies are
often limited to a population from a single
payer [17, 23]. Lastly, the HCV treatment land-
scape has changed dramatically since the highly
effective therapies were released in 2011
[11, 12].

Two web-based sources of information on
the prevalence of HCV are HepVu and Polaris
Observatory [24, 25]. HepVu [25] is an online
dashboard providing year 2010 estimates of
HCV antibody prevalence and HCV mortality
within the USA at the state level based on data
from NHANES, the National Vital Statistics
System, and US Census data [26]. Polaris
Observatory uses a variety of sources, including
expert opinion, to display the projected future
global burden of HCV infections, treatment,
and mortality [27]. While these sources provide
useful information on HCV epidemiology, a
current comprehensive source of information
that combines patient information and clinical
characteristics stratified by year, payer, and state
would provide important insights into trends in
access to care, treatment, and cure rates across
payer and patient groups. This paper describes a
robust methodology to develop the largest
available dataset of HCV patients to date, which
includes the majority of US HCV patients and
describes longitudinal data from 2013 to 2016.

METHODS

Data Source and Available Characteristics

This study is based solely on laboratory,
administrative claims, and payer data and does
not contain any new studies with human or
animal subjects performed by any of the
authors. This study dataset represents the lar-
gest available HCV dataset in the USA. The
study dataset was derived by combining clinical
laboratory tests from two large national labo-
ratory companies. Each laboratory dataset
included results for patients screened for HCV
antibody and/or tested for HCV RNA from 2013
through 2016; not all patients had both anti-
body and RNA tests. Overall, the merged study
dataset contained antibody screening results for
17,149,480 patients and HCV RNA test results

for 1,592,984 patients, for whom age, gender,
payer channel (Medicaid, Medicare, commer-
cial, out of pocket), ordering physician, and
3-digit ZIP code information were available
(Fig. 1). Of those tested for HCV RNA, 914,285
patients were identified as testing HCV-positive,
for whom more detailed characteristics are
available: HCV genotype (including sub-geno-
type 1A versus 1B); measures of fibrosis (i.e.,
FibroSure/METAVIR scores): liver enzymes ALT/
AST, platelets; renal status: serum creatinine,
estimated glomerular filtration rate (eGFR,
results for African-Americans and non-African-
Americans), urine albumin; Child–Pugh score:
serum albumin, total bilirubin, prothrombin
time, international normalized ratio (INR),
ascites and encephalopathy diagnosis codes;
HIV diagnosis or HIV RNA-positive test; and
resistance-associated substitutions (RAS). The
HCV RNA positivity rate of 60% in this dataset
is consistent with other reports of HCV RNA
positivity ranging from 43% to 72% among
HCV antibody-positive patients undergoing
RNA testing [28–30].

Each of the clinical characteristics included
in the dataset represents an important element
in the management of HCV patients. There are
six major HCV genotypes (1–6); mixed geno-
types are also possible [18]. While sub-genotype
testing was included in the laboratory data,
only sub-genotypes 1A and 1B were extracted
for this analysis.

Fibrosis is indicated by five stages of severity
(F0–F4) and describes the accumulation of
nonfunctional liver scar tissue that may even-
tually progress to cirrhosis, designated as stage
F4 [31]. For this dataset, fibrosis stage was
derived using a hierarchical approach depen-
dent on a single F-stage availability, listed in
order of priority: (1) FibroSure/METAVIR stage,
(2) modified FIB-4 score [32], or (3) APRI score
[33] (Table 1). The modified FIB-4 scoring uti-
lized the population median scores to separate
the fibrosis stages into the following categories:
F0\0.97, F1 = 0.97–1.44, F2 = 1.45–3.25,
F3 = 3.26–5.20, and F4[ 5.20. A sensitivity
analysis of modified FIB-4 scoring to identify
cirrhotic patients compared to a definition
based on APRI scoring (F4 defined as APRI
score[2) resulted in a negligible difference of
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0.6% (10.2% versus 9.6% of patients identified
as F4 stage, respectively).

The Child–Pugh (or Child–Turcotte–Pugh)
score is used to grade cirrhosis severity as A (5–6
points), B (7–9 points), or C (10–15 points); A is

Fig. 1 Description of laboratory data contents. ALT
alanine aminotransferase, AST aspartate aminotransferase,
eGFR estimated glomerular filtration rate, HIV human
immunodeficiency virus, INR international normalized

ratio, PT prothrombin time, RAS resistance-associated
substitutions. Not all patients had both antibody and RNA
tests

Table 1 Equations used to calculate clinical characteristics [32, 33, 50]

Clinical
characteristic

Equation References

FIB-4 FIB-4 = (age, years 9 AST, U/L)/(platelet count, 109/L 9 HALT, U/L) Sterling et al. [32]

APRI APRI = ([AST, IU/L/AST ULN, IU/L]/platelet count, 109/L) 9 100 Lin et al. [33]

eGFR eGFR = 141 9 min(serum creatinine, mg/dL)/j,1)a 9 max(serum creatinine,

mg/dL/j, 1)- 1.209 9 0.993Age 9 1.018 (if female) 9 1.159 (if African-

American)

Levey et al. [50]

1090 Adv Ther (2018) 35:1087–1102



considered compensated cirrhosis, and B and C
are considered decompensated cirrhosis [18].
Child–Pugh scores were calculated using total
bilirubin, serum albumin, INR, ascites diagnosis
and severity rating, and encephalopathy diag-
nosis and severity rating. Because it was not
possible to assess the severity of ascites
(mild/moderate versus severe) or encephalopa-
thy (grade 1–2 versus grade 3–4) in the labora-
tory datasets, the worse severity grade was
selected. This assumption maximized the
potential proportion of patients with Child–
Pugh B or C, but a sensitivity analysis assessing
the impact of this assumption showed that the
increase results in only 1% more patients
attributed to Child–Pugh B–C.

Serum creatinine is used to calculate the
eGFR, a measure of kidney function [34]. eGFR
values are used to categorize stages of renal
disease; patients with eGFR\ 15 ml/min/
1.73 m2 are likely requiring renal dialysis, and
patients with eGFR 15–60 ml/min/1.73 m2 can
be considered to have some stage of CKD [18].
Both laboratories utilized the CKD-EPI equation
to derive the eGFR, reporting both African-
American and non-African-American eGFR
results. Since the laboratory datasets do not
include race, the present analysis used non-
African-American eGFR scores because previous
publications suggest that approximately 75% of
the US HCV population is non-African-Ameri-
can [35]. Sensitivity analysis of using African-
American versus non-African-American eGFR
values resulted in 3.47%, 0.20%, and 0.09%
lower absolute percentage points for eGFR cat-
egories of 30–59, 15–29, and \ 15 ml/min/
1.73 m2, respectively.

Discussion with laboratory vendors indi-
cated that the study dataset largely did not
include dialysis patients. On the basis of inter-
nal calculations, HCV RNA-positive patients
with an eGFR\ 15 ml/min/1.73 m2 represent
approximately 6% of the total HCV RNA-posi-
tive population.

Urine albumin is an additional marker of
kidney damage [34]. Only 3.5–4.9% of patients
with a positive HCV RNA test had a urine
albumin record from 2013 through 2016 in the
study dataset, and therefore urine albumin was

not explored further for trend analysis in this
study.

HIV co-infection as a dichotomous variable
was determined on the basis of diagnosis code
or positive HIV RNA test.

RAS refer to mutations in the HCV viral
genome that may reduce response to antiviral
therapies [18]. Results on NS5A, NS5B, and NS3
polymorphisms (i.e., wild-type and substitu-
tions) were available in the study dataset.
Approximately 6% of patients in 2016 had a
RAS test reading.

Imputation Algorithms for Treatment
Receipt and Attaining Sustained Virologic
Response

Continuity of medical or pharmacy benefit
enrollment was not available in the data, nor
was there direct information on treatment
timing, type, or duration. To address this data
limitation, data-driven imputation algorithms
were used to identify patients who initiated
treatment and patients who achieved virologic
cure (Fig. 2). The algorithms were built and
validated against another cohort of 49,421
treated HCV patients, identified in Symphony
Health Solutions (SHS) medical and pharmacy
claims dataset from 2013 through 2016. The
SHS database is nationally representative and
directly captures claims from commercial and
government (e.g., Medicare, Medicaid) claims-
processing intermediaries independently of a
patient’s participation in a health plan or payer
type. The SHS cohort consisted of a subset of the
same patients as the study dataset and had
linked HCV RNA lab measurements; however,
as a result of HIPAA compliance restrictions, the
patient identifier commonality between the
study and SHS datasets was unknown. The SHS
cohort data therefore reflected the same labo-
ratory data structure of the study RNA dataset
and offered the benefit of detailing the temporal
profile of the decline in RNA viral load from
beginning to after end of treatment.

The first steps of the treatment algorithm
involved (1) exploring the relationship between
RNA viral load decline and time since initiation
in the SHS database and (2) defining a
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minimum meaningful RNA decline
attributable to HCV treatment that could then
be applied to the study dataset to flag patients
who can be assumed to have initiated therapy.
It was estimated that a viral load decline of at
least 1.2 9 log10 units (equal to the threshold
of identification for most HCV RNA tests) indi-
cated that treatment was initiated in the
immediate period prior to the decline. This
decision is supported by review of the HCV RNA
kinetics computational modeling literature,
suggesting that HCV RNA decline is observable
in the immediate days after starting treatment
(shown as 0.6 9 log10 decline per day) [36]. A
detailed description of the treatment imputa-
tion algorithm is presented in the Supplemen-
tary Materials in Appendix A.

For the cure algorithm, achieving SVR was
defined in the SHS dataset for patients who
continued to have negative HCV RNA for
4–30 weeks after the end of treatment. Using
data for SHS patients with known SVR status
only, four ensembles (one for each year from
2013 through 2016) of machine learning mod-
els predicting SVR as an outcome were devel-
oped and optimized via iterative resampling in
training and hold-out testing datasets. For each
ensemble, various individual types of machine
learning models (i.e., random forest, decision
tree, neural network, elastic net, ridge regres-
sion, lasso regression, and logistic regression)
were trained on the same patient sample, and
then the predictions of each individual model
were combined using the ensembling technique

Fig. 2 Conceptual description of treatment and cure imputation algorithms
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model stacking, implemented via gradient
boosting. The ensembling approach helped
increase predictive performance in terms of
balanced sensitivity, specificity, and area under
the receiver operating characteristic curve. The
use of machine learning methods has improved
predictive modelling in other studies in HCV, as
well [37–39].

Variables describing the relationship
between RNA decline and timing or RNA mea-
surement since the first positive RNA were
found to be the most predictive of SVR. Such
variables included the RNA value at the last
observable week, median and mean RNA values
over the follow-up, covariance and correlation
metrics of timing of RNA measurement and
RNA viral load, and the linear slope between
RNA viral load and time since the first positive
RNA. Additional descriptors of high predictive
power included being on Medicaid or Medicare
insurance, age, fibrosis stage F4, genotype 1B,
and others. The sensitivity and specificity of the
developed algorithm were consistently above
0.90 for each of the 4 years. A detailed descrip-
tion of the SVR imputation algorithm and
associated performance metrics is presented in
Appendix B in the Supplementary Material.

Patient Classification Scheme in Study
Dataset

The process of categorization into the treat-
ment-naı̈ve or treatment-experienced categories
was based on whether patients exhibited a
detectable RNA decline for the first time or had
another RNA decline in previous years. On the
basis of the initial flags for whether patients
exhibited a sizeable RNA decline (i.e., were
treated) or achieved SVR, a patient classification
scheme categorized patients into one of five
mutually exclusive categories for each year of
observation from 2013 through 2016: treat-
ment-naı̈ve patients not initiating therapy,
treatment-naı̈ve patients initiating therapy,
treatment-experienced patients who were not
retreated, treatment-experienced patients who
were retreated, and cured patients treated in the
prior year. Patients who were predicted to have
achieved SVR on the basis of the cure algorithm

were classified as cured and attributed to the
year following the year of treatment (e.g., if
patient has sizeable RNA decline in 2014, the
patient is classified as treated in 2014 and cured
in 2015). By default, this approach indicated
that no patients in 2013 could be classified as
cured given the lack of data for 2012.

As a result of the longitudinal nature of the
study data from 2013 through 2016, patients
may not have consistent measurements in each
of the 4 years and may have gap years in which
no HCV RNA measurement was available.
Potential gap years were addressed in the fol-
lowing manner: for those who did not have any
RNA measurement in a particular year, patients
were assumed to still be HCV-infected (i.e., still
in the health care system) as long as they had
another clinical test measurement during the
year (e.g., genotype) and had tested positive for
HCV RNA in previous years.

Another objective of the study dataset was to
estimate the epidemiological characteristics of
the HCV patient population on the basis of all
commercial, Medicare, and Medicaid payers’
geographic footprint in the USA in every 3-digit
ZIP code. To achieve this goal, a separate
detailed dataset from Decision Resources Group
(DRG) with lives covered by various payers in
2016 was used to derive each payer’s market
share. The datasets generated and/or analyzed
during the current study are not publicly avail-
able as they were obtained from a proprietary
database through a license agreement. The
market share for each payer per 3-digit ZIP was
then used as a random sampling statistic
through which HCV-positive patients from the
study dataset were attributed to each particular
payer. Results from this research effort may be
presented in a future publication.

Software

Data cleaning and manipulation were con-
ducted with SAS 9.4 (Cary, NC, USA). The
machine learning algorithm was implemented
in R software (R Foundation for Statistical
Computing, Vienna, Austria). Mapping of HCV
prevalence rates was conducted in ESRI ArcGIS
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Desktop 10.5 (Environmental Systems Research
Institute, Redlands, CA, USA).

RESULTS

Overview of Patient Dataset

A summary of characteristics from all patients
in the study dataset is shown (Table 2). The
total number of patients in the study dataset
increased from 200,066 in 2013 to 469,550 in
2016. The proportion of all patients with
genotype, fibrosis stage, eGFR, and Child–Pugh
score information availability rose from 2013 to
2016, indicating improved collection of clinical
information.

Using the detection of RNA decline over time
as a proxy for flagging patients as having initi-
ated therapy, the treatment algorithm identi-
fied 6.62% of patients being treated in 2013,
13.55% in 2014, 25.83% in 2015, and 22.33% in
2016 (among HCV-positive patients in that year
who were eligible for therapy). Treatment rates
were higher among those on Medicare, followed

by patients with commercial insurance, and
substantially lower among those on Medicaid.

A summary of the predictive performance of
the cure algorithm and predicted SVR propor-
tions in patients flagged as treated in this data-
set is shown (Table 3). Predictions in datasets
closely followed observed cure rates in the
nationally representative SHS. As expected, with
the introduction of more effective DAA treat-
ments each year, SVR rates increased over the
study period from at least 70% in 2013 to
approximately 95% in 2016. Cure rates gener-
ally were similar across patients with different
insurance, although treated Medicaid patients
consistently had slightly lower SVR.

Trend Analysis for Care Engagement
with Respect to Age

Previous analyses have demonstrated that older
patients may be prioritized for HCV treatment
[17, 40]. To confirm any evidence of care
engagement and prioritization in this study, the
cumulative proportions of patients who initi-
ated treatment, were retreated, or were classified

Table 2 Data availability of all patients in the study dataset

Variable description, N (%) 2013 2014 2015 2016

Patients 200,066 (100) 339,836 (100) 426,510 (100) 469,550 (100)

Untreated—TX naı̈ve 186,823 (93.38) 285,696 (84.07) 297,466 (69.74) 308,126 (65.62)

Initiated therapy—TX naı̈ve 13,109 (6.55) 44,669 (13.14) 93,775 (21.99) 89,020 (18.96)

Not retreated—TX experienced 0 (0.00) 2188 (0.64) 6114 (1.43) 5296 (1.13)

Retreated—TX experienced 134 (0.07) 463 (0.14) 1179 (0.28) 1075 (0.23)

Cured 0 (0.00) 6820 (2.01) 27,976 (6.56) 66,033 (14.06)

Age 181,777 (90.86) 313,267 (92.18) 413,403 (96.93) 445,682 (94.92)

Gender 181,607 (90.77) 312,999 (92.10) 413,133 (96.86) 445,267 (94.83)

Genotype 91,752 (45.86) 178,129 (52.42) 247,331 (57.99) 258,228 (54.99)

Fibrosis stage 82,549 (41.26) 166,119 (48.88) 252,199 (59.13) 288,775 (61.50)

eGFRa 114,875 (57.42) 201,619 (59.33) 270,581 (63.44) 293,441 (62.49)

Child–Pugh class (% of F4 patients) 6450 (56.83) 14,649 (56.57) 24,132 (55.54) 27,008 (54.92)

Percentages represent proportion of total patients with non-missing data for a respective year unless otherwise stated
a Dialysis patients not included
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as cured in a given year were combined and
compared across age strata. The average annual
increase in the odds of treatment or cure was
calculated for patients attributed to each year
from 2013 through 2016 using logistic regres-
sion. Results demonstrate that the odds of being

treated/cured increased over time for all
patients, regardless of age (Fig. 3). However, the
odds were highest for patients ages 70 years and
older (OR = 2.294; 95% CI = 2.250, 2.339) and
lowest for ages 18 through 29 years (OR = 1.175;
95% CI = 1.153, 1.198).

Fig. 3 Proportion and odds ratio of evidence of care engagement by age group, 2013–2016. CI confidence interval, OR odds
ratio

Table 3 Predictive performance of the cure algorithm and summary of SVR predictions

Parameter Year 2013 Year 2014 Year 2015 Year 2016

Accuracy 0.982 0.987 0.994 0.997

Sensitivity 0.995 0.997 0.999 0.999

Specificity 0.953 0.916 0.914 0.956

SVR in each dataset

SHS—as observed 70% 87% 94% 94%

SHS—predicted 71% 88% 94% 94%

Laboratory dataset 1—predicted 78% 85% 94% 95%

Laboratory dataset 2—predicted 71% 83% 94% 94%
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Analysis of Treated Patients by State

To investigate treatment trends further, the
prevalence of nearly 90,000 treated HCV
patients in 2016 was determined on a state-by-
state basis. States with the highest prevalence of
treated HCV patients were mainly found on the
West Coast, Appalachia, the Northeast, and the
Southeast, while much of the Upper Midwest
and Great Plains had the lowest prevalence of
treated patients (Fig. 4).

Analysis of Untreated Patient Population

The identification of treated patients also con-
versely enabled a review of the untreated HCV
patient landscape. Patient classification and
derived clinical and demographic characteristics
for all patients who had a positive HCV RNA test
and were untreated or not retreated in the study
dataset are shown in Table 4. Notably, the total
number of untreated or not retreated patients
nearly doubled from 2013 (N = 186,823) to 2016
(N = 313,422). The proportion of patients with

genotype 3 increased from 2013 (10.14%) to
2016 (12.64%). Patients with a fibrosis stage of
F0 composed a larger proportion of the total
untreated/not retreated patient group in 2016
(30.92%) as compared to 2013 (19.04%). The
median untreated patient age decreased from
55 years in 2013 to 53 years in 2016, as patients
under age 40 composed a larger proportion of
the total patient population in 2016 (26.24%) as
compared to 2013 (16.58%).

DISCUSSION

To the best of our knowledge, this is the largest
study to date to describe the changes in the
HCV epidemiology and patient characteristics
in the USA. Strengths of this study over other
available data sources include the most current
available data, use of HCV RNA-confirmed
cases, geographic and population expansion
beyond the NHANES dataset, and the ability to
stratify these epidemiological and clinical data
by patient characteristics, payer, disease

Fig. 4 Treated HCV RNA-positive patients per 100,000 residents, 2016
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Table 4 Untreated patients classification and characteristics

Variable
description

Statistic or category 2013
(N = 186,823)

2014
(N = 287,884)

2015
(N = 303,580)

2016
(N = 313,422)

Patient classification,

N (%)

Untreated—TX naı̈ve 186,823

(100.00)

285,696 (99.24) 297,466 (97.99) 308,126 (98.31)

Not retreated—TX

experienced

0 (0.00) 2188 (0.76) 6114 (2.01) 5296 (1.69)

Patient age, years Median (Q1 to Q3) 55.00 (46.00 to

60.00)

55.00 (47.00 to

61.00)

55.00 (45.00 to

61.00)

53.00 (39.00 to

60.00)

Patient age, N (%) Less than 18 years 579 (0.34) 705 (0.27) 770 (0.26) 822 (0.28)

18–29 years 12,203 (7.20) 18,833 (7.15) 24,147 (8.26) 32,726 (11.11)

30–39 years 15,312 (9.04) 24,662 (9.36) 32,482 (11.11) 43,710 (14.84)

40–49 years 26,318 (15.53) 36,831 (13.98) 39,325 (13.45) 41,210 (14.00)

50–59 years 67,697 (39.95) 101,009 (38.34) 104,270 (35.67) 92,410 (31.38)

60–69 years 38,895 (22.95) 67,728 (25.71) 76,216 (26.07) 69,977 (23.77)

70? years 8453 (4.99) 13,699 (5.20) 15,138 (5.18) 13,597 (4.62)

Gender, N (%) Female 65,859 (35.25) 103,654 (36.01) 115,224 (37.96) 113,522 (36.22)

Male 103,433 (55.36) 159,572 (55.43) 176,916 (58.28) 180,741 (57.67)

Unknown 17,531 (9.38) 24,658 (8.57) 11,440 (3.77) 19,159 (6.11)

HCV genotype,

N (%)

Genotype 1 545 (0.63) 966 (0.64) 876 (0.51) 628 (0.40)

Genotype 1A 52,302 (60.78) 92,313 (61.20) 104,508 (60.36) 93,729 (60.35)

Genotype 1B 13,991 (16.26) 24,762 (16.42) 26,399 (15.25) 21,407 (13.78)

Genotype 2 8888 (10.33) 14,514 (9.62) 18,335 (10.59) 17,204 (11.08)

Genotype 3 8727 (10.14) 15,367 (10.19) 19,735 (11.40) 19,628 (12.64)

Genotype 4 1097 (1.27) 1806 (1.20) 2025 (1.17) 1614 (1.04)

Genotype 5/6 487 (0.57) 929 (0.62) 992 (0.57) 767 (0.49)

Genotype mix 11 (0.01) 189 (0.13) 271 (0.16) 338 (0.22)

Fibrosis stage, N (%) F0 14,477 (19.04) 28,170 (20.81) 42,362 (25.06) 54,024 (30.92)

F1 14,315 (18.83) 24,683 (18.24) 29,173 (17.26) 29,818 (17.07)

F2 27,485 (36.15) 45,854 (33.88) 51,813 (30.65) 49,465 (28.31)

F3 9243 (12.16) 16,444 (12.15) 19,164 (11.34) 17,169 (9.83)

F4 10,504 (13.82) 20,191 (14.92) 26,554 (15.71) 24,236 (13.87)

Child–Pugh class,

N (%)

A 4588 (10.72) 8452 (11.92) 10,966 (12.79) 9185 (11.05)

B–C 1327 (3.10) 2126 (3.00) 2503 (2.92) 2340 (2.82)
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severity, comorbidities, and year [25–27]. The
use of HCV RNA-confirmed test results, as
opposed to HCV antibody-positive test results,
is of particular importance because of the high
false positive rate associated with HCV antibody
tests [41]. Immediate future work will focus on
identifying trends as stratified within various
payer populations.

We noted an increase in the total number of
untreated or not retreated HCV RNA-positive
patients from 2013 through 2016. Substantial
efforts supported by the CDC are focused on
screening patients born before 1966 [42, 43].
However, acute HCV cases in patients 20
through 39 years of age have risen dramatically
since 2009 [19]. Up to 70% of these new HCV
cases in younger patients are attributed to
injection drug use [7, 44, 45], particularly asso-
ciated with the rise in heroin use over the last
decade [46]. Our study identifies a change in
HCV demographics in 2016 compared to other
years, with proportionally more untreated and
treated patients younger than 40 years of age as
compared to previous years. As the study data-
set represents the majority of US HCV cases, we
speculate that the shift in demographics among
untreated/not retreated patients may be par-
tially explained by (1) the rise in HCV caused by
injection drug use, (2) the accumulation of
younger patients in the health care system as
older patients are prioritized for treatment, and

(3) a growing focus on evaluating risk factors
and screening for HCV.

While prior evidence suggests that a sub-
stantial proportion of chronic HCV patients do
not successfully transition through the multi-
step HCV care continuum [29, 47], we observed
significant improvements in the proportion of
patients being tested for genotype and liver
fibrosis staging over the study years. This
observation is consistent with increased aware-
ness of HCV, improved screening efforts sup-
ported by the CDC, and nationwide efforts to
improve the outcomes of the linkage to care
process in recent years [29, 42, 43, 48]. Future
work will also examine HCV antibody screening
rates and outcomes across the testing-to-care
continuum for patients. Also, differences in
treatment rates with respect to insurance may
be related to issues of affordability, coverage,
and underlying disease severity; these factors
will separately be explored and presented in
forthcoming individual papers based on this
study.

While it is challenging to compare national
treatment rates reported here to other nation-
ally representative sources, a comparison can be
made with respect to HCV patients with com-
mercial insurance. Published treatment rates
from a retrospective analysis of administrative
claims of 56,000 HCV adults with commercial
insurance from 2013 to 2014 suggest that aver-
age treatment rates during the 2013 boceprevir/

Table 4 continued

Variable
description

Statistic or category 2013
(N = 186,823)

2014
(N = 287,884)

2015
(N = 303,580)

2016
(N = 313,422)

eGFR non-AA

levels, N (%)

eGFR\ 15a 906 (0.85) 1510 (0.92) 1995 (1.10) 1957 (1.08)

eGFR15–29 970 (0.91) 1509 (0.92) 1803 (1.00) 1713 (0.95)

eGFR 30–44 2154 (2.03) 3659 (2.23) 4054 (2.24) 3698 (2.05)

eGFR 45–59 5590 (5.26) 9545 (5.81) 10,586 (5.85) 8999 (4.98)

eGFR 60–89 37,828 (35.60) 60,861 (37.04) 65,846 (36.40) 58,863 (32.57)

eGFR C 90 58,819 (55.35) 87,207 (53.08) 96,599 (53.40) 105,483 (58.37)

HIV, N (%) Yes 6943 (3.72) 8594 (2.99) 8206 (2.70) 6494 (2.07)

Percentages represent proportion of total patients with non-missing data for a respective year unless otherwise stated
a Dialysis patients not included
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telaprevir era were 8%, and average treatment
rates were 18% during the 2014 sofosbu-
vir ± simeprevir era [17]. Those estimates are
slightly higher than the 7.16% in 2013 and
14.10% in 2014 for patients on commercial
insurance flagged as treated in our study, which
could be because the treatment algorithm
employed for this study required the presence of
at least two HCV RNA measurements to detect a
decline in viral loads. It is possible that some
patients could have undergone treatment but
had only one available HCV RNA laboratory
measurement observed in the data, and our
approach would have failed to flag these
patients as treated. As the laboratory data used
for this study covered the majority of all HCV
laboratory tests in the USA, and treated patients
already represent a select group of patients who
have gone through the HCV care cascade and
are likely to return for more than one HCV RNA
measurement, this misclassification bias is
assumed to be small and to make up for the
difference between this study and previously
published estimates.

The developed cure algorithm, which cap-
tures the full potential of recent developments
in advanced predictive analytics and their
application to big data such as our study [49],
adequately predicted SVR in these patients. The
advantage of using machine learning over
standard regression techniques is that it enables
modeling of non-linear and non-monotone
relationships between variables that are deter-
mined in a data-driven way [38]. This analytic
approach addressed our limited structural
knowledge of the laboratory data generation
process in the two datasets and factors that
might contribute to any missing measurements.

Limitations

One limitation of this study was the inability to
fully capture patients’ past treatment history
prior to 2013. A patient whose previous treat-
ment failed might make decisions regarding
second treatment initiation and therapy
options differently than a treatment-naı̈ve
patient. Similarly, specific treatment regimens
were not captured by the study dataset.

Additionally, there was a possibility of predic-
tion error in identifying cured patients, as viral
load may be missing because of insufficient
follow-up time. As a result of data truncation,
no cured patients were attributed to 2013. There
may be HCV-positive patients who are not
captured in the study dataset as a result of
diagnosis prior to 2013 with no follow-up tests.
There is also a chance that a patient may appear
in both datasets provided by the national labo-
ratory companies represented. However, the
majority of the data is limited to those with a
positive HCV RNA viral load test. As stated
above, dialysis patients were largely not cap-
tured in the underlying laboratory dataset, but
compose a minority proportion of the total
HCV RNA-positive patient population.

CONCLUSION

This strategic initiative addressed key gaps in
the evidence regarding the evolving HCV epi-
demiology and treatment landscape. The evi-
dence generated in this study supports the
development of holistic model approaches that
integrate current strategies for linkage to care
and treatment programs for HCV patients. The
results of this study can be shared with physi-
cians, payers, and government programs to
describe HCV burden from patient and payer
standpoints and to inform stakeholders of
unmet needs in HCV treatment.

Our results highlight that the epidemiology
of HCV is evolving. There are an increasing
number of young patients and patients with
milder disease than described in previous years.
Results of this study should help guide efforts
toward the elimination of HCV in this country.

ACKNOWLEDGEMENTS

Funding. Sponsorship for this study, article
processing charges and open access fee were
funded by AbbVie. All authors had full access to
all of the data in the study and take complete
responsibility for the integrity of the data and
accuracy of the data analysis.

Adv Ther (2018) 35:1087–1102 1099



Medical Writing Assistance. Medical writ-
ing assistance in the preparation of this article
was provided by Sarah Ronnebaum of Pharmerit
International. This assistance was funded by
AbbVie.

Authorship. All named authors meet the
International Committee of Medical Journal
Editors (ICMJE) criteria for authorship for this
article, take responsibility for the integrity of
the work, and have given their approval for this
version to be published.

Authorship Contributions. Analytic support
for this project was provided by Srimoyee Bose,
Isabelle Robert, and Julia Wilkerson, who, at the
time of the study, were affiliated with Pharmerit
International.

Disclosures. Viktor Chirikov is an employee
of Pharmerit International, which received
funding by AbbVie to conduct the study. Shivaji
R. Manthena is an employee of AbbVie and may
own AbbVie stock. Johnathan P. Strezewski is an
employee of AbbVie and may own AbbVie
stock. Steven E. Marx is an employee of AbbVie
and may own AbbVie stock. Sam Saab is a con-
sultant and on the speaker bureau for AbbVie,
Gilead, Dova, Salix, Bayer, Merck, and Intercept,
and is on the speaker bureau for Bristol-Myers
Squibb. AbbVie participated in the interpreta-
tion of data, review, and approval of the
publication.

Compliance with Ethics Guidelines. This
study is based on laboratory, administrative
claims, and payer data and does not contain any
new studies with human or animal subjects
performed by any of the authors.

Open Access. This article is distributed
under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International
License (http://creativecommons.org/licenses/
by-nc/4.0/), which permits any non-
commercial use, distribution, and reproduction
in any medium, provided you give appropriate
credit to the original author(s) and the source,
provide a link to the Creative Commons license,
and indicate if changes were made.

REFERENCES

1. Messina JP, et al. Global distribution and prevalence
of hepatitis C virus genotypes. Hepatology.
2015;61(1):77–87.

2. Razavi H, et al. Chronic hepatitis C virus (HCV)
disease burden and cost in the United States.
Hepatology. 2013;57(6):2164–70.

3. Westbrook RH, Dusheiko G. Natural history of
hepatitis C. J Hepatol. 2014;61(1 Suppl):S58–68.

4. Ly KN, et al. Rising mortality associated with hep-
atitis C virus in the United States, 2003–2013. Clin
Infect Dis. 2016;62(10):1287–8.

5. Chhatwal J, et al. Hepatitis C disease burden in the
United States in the era of oral direct-acting
antivirals. Hepatology. 2016;64(5):1442–50.

6. Buckley GJ, Strom BL. A national strategy for the
elimination of viral hepatitis emphasizes preven-
tion, screening, and universal treatment of hepatitis
C. Ann Intern Med. 2017;166(12):895–6.

7. US Centers for Disease Control and Prevention.
National viral hepatitis action plan. 2017. https://
www.hhs.gov/sites/default/files/National%20Vira
l%20Hepatitis%20Action%20Plan%202017-2020.
pdf. Accessed 24 Oct 2017.

8. World Health Organization. Combating hepatitis B
and C to reach elimination by 2030. 2016; http://
www.who.int/hepatitis/publications/hep-eliminati
on-by-2030-brief/en/. Accessed 8 May 2018.

9. Mehta D, Mccombs J, Sanchez Y, Marx S, Saab S.
Effectiveness of hepatitis C virus screening laws in
United States: evidence from paid claims data from
2010 to 2016. In: The International Liver Congress.
2018. Paris, France.

10. Islam N, et al. Hepatitis C cross-genotype immunity
and implications for vaccine development. Sci Rep.
2017;7(1):12326.

11. Burstow NJ, et al. Hepatitis C treatment: where are
we now? Int J Gen Med. 2017;10:39–52.

12. Asselah T, et al. Direct-acting antivirals for the
treatment of hepatitis C virus infection: optimizing
current IFN-free treatment and future perspectives.
Liver Int. 2016;36(Suppl 1):47–57.

13. Alkhouri N, Lawitz E, Poordad F. Novel treatments
for chronic hepatitis C: closing the remaining gaps.
Curr Opin Pharmacol. 2017;37:107–11.

14. Gane E et al. High efficacy of ABT-493 and ABT-530
treatment in patients with HCV genotype 1 or 3

1100 Adv Ther (2018) 35:1087–1102

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://www.hhs.gov/sites/default/files/National%20Viral%20Hepatitis%20Action%20Plan%202017-2020.pdf
https://www.hhs.gov/sites/default/files/National%20Viral%20Hepatitis%20Action%20Plan%202017-2020.pdf
https://www.hhs.gov/sites/default/files/National%20Viral%20Hepatitis%20Action%20Plan%202017-2020.pdf
https://www.hhs.gov/sites/default/files/National%20Viral%20Hepatitis%20Action%20Plan%202017-2020.pdf
http://www.who.int/hepatitis/publications/hep-elimination-by-2030-brief/en/
http://www.who.int/hepatitis/publications/hep-elimination-by-2030-brief/en/
http://www.who.int/hepatitis/publications/hep-elimination-by-2030-brief/en/


infection and compensated cirrhosis. Gastroen-
terology. 2016;151(4):651–659.e1.

15. Hubbard H, Lawitz E. Glecaprevir ? pibrentasvir
(ABT493 ? ABT-530) for the treatment of Hepatitis
C. Expert Rev Gastroenterol Hepatol.
2018;12(1):9–17.

16. KwoPY, et al.Glecaprevir andpibrentasvir yieldhigh
response rates in patients with HCV genotype 1–6
without cirrhosis. J Hepatol. 2017;67(2):263–71.

17. Yao X, et al. Adoption of new agents and changes in
treatment patterns for hepatitis C: 2010-2014. Am J
Manag Care. 2016;22(6):e224–32.

18. American Association for the Study of Liver Disease
and Infectious Disease Society of America. HCV
guidance: recommendations for testing, managing,
and treating hepatitis C. 2017. https://www.hcv
guidelines.org/sites/default/files/full-guidance-pdf/
HCVGuidance_September_21_2017_f.pdf. Accessed
24 Jan 2018.

19. Centers for Disease Control and Prevention. Viral
hepatitis surveillance, United States, 2015. 2015;
https://www.cdc.gov/hepatitis/statistics/2015surve
illance/pdfs/2015HepSurveillanceRpt.pdf. Accessed
24 Oct 2017.

20. Joy JB, et al. The spread of hepatitis C virus geno-
type 1a in North America: a retrospective phyloge-
netic study. Lancet Infect Dis. 2016;16(6):698–702.

21. Armstrong GL, et al. The prevalence of hepatitis C
virus infection in the United States, 1999 through
2002. Ann Intern Med. 2006;144(10):705–14.

22. Edlin BR, et al. Toward a more accurate estimate of
the prevalence of hepatitis C in the United States.
Hepatology. 2015;62(5):1353–63.

23. Goolsby Hunter A, et al. Clinical characteristics,
healthcare costs, and resource utilization in hep-
atitis C vary by genotype. Curr Med Res Opin.
2017;33(5):829–36.

24. CDA Foundation. Polaris Observatory. http://polari
sobservatory.org/polaris_view/hepC.htm. Accessed
7 Dec 2017.

25. Emory University, Rollins School of Public Health,
in partnership with Gilead Sciences, Inc. HepVu.
https://hepvu.org/. Accessed 7 Dec 2017.

26. Rosenberg ES, et al. Estimation of state-level
prevalence of hepatitis C virus infection, US States
and District of Columbia, 2010. Clin Infect Dis.
2017;64(11):1573–81.

27. Razavi H, et al. The present and future disease
burden of hepatitis C virus (HCV) infection with

today’s treatment paradigm. J Viral Hepat.
2014;21(Suppl 1):34–59.

28. Cornett JK, et al. Results of a hepatitis C virus
screening program of the 1945–1965 birth cohort in
a large emergency department in New Jersey. Open
Forum Infect Dis. 2018;5(4):5.

29. Ramirez G, et al. Early identification and linkage to
care for people with chronic HBV and HCV infec-
tion: the HepTLC Initiative. Public Health Rep.
2016;131(Suppl 2):5–11.

30. Castrejon M, et al. Implementation of a large sys-
tem-wide hepatitis C virus screening and linkage to
care program for baby boomers. Open Forum Infect
Dis. 2017;4(3):09.

31. Merck Manual. Fibrosis of the liver. https://www.
merckmanuals.com/home/liver-and-gallbladder-dis
orders/fibrosis-and-cirrhosis-of-the-liver/fibrosis-of-
the-liver. Accessed 10 Jan 2018.

32. Sterling RK, et al. Development of a simple nonin-
vasive index to predict significant fibrosis in
patients with HIV/HCV coinfection. Hepatology.
2006;43(6):1317–25.

33. Lin ZH, et al. Performance of the aspartate amino-
transferase-to-platelet ratio index for the staging of
hepatitis C-related fibrosis: an updated meta-anal-
ysis. Hepatology. 2011;53(3):726–36.

34. Malkina A. Merck Manual. Chronic kidney disease.
https://www.merckmanuals.com/professional/geni
tourinary-disorders/chronic-kidney-disease/chronic-
kidney-disease. Accessed 1 Feb 2018.

35. Gordon SC et al. Race, age, and geography impact
hepatitis C genotype distribution in the United
States. J Clin Gastroenterol. 2017. https://doi.org/
10.1097/MCG.0000000000000872.

36. Perelson AS, Guedj J. Modelling hepatitis C ther-
apy-predicting effects of treatment. Nat Rev Gas-
troenterol Hepatol. 2015;12(8):437–45.

37. Konerman MA, et al. Improvement of predictive
models of risk of disease progression in chronic
hepatitis C by incorporating longitudinal data.
Hepatology. 2015;61(6):1832–41.

38. Singal AG, et al. Machine learning algorithms out-
perform conventional regression models in pre-
dicting development of hepatocellular carcinoma.
Am J Gastroenterol. 2013;108(11):1723–30.

39. Chirikov VV et al. Tree-based claims algorithm for
measuring pretreatment quality of care in Medicare
disabled hepatitis C patients. Med Care.
2017;55(12):e104–e112.

Adv Ther (2018) 35:1087–1102 1101

https://www.hcvguidelines.org/sites/default/files/full-guidance-pdf/HCVGuidance_September_21_2017_f.pdf
https://www.hcvguidelines.org/sites/default/files/full-guidance-pdf/HCVGuidance_September_21_2017_f.pdf
https://www.hcvguidelines.org/sites/default/files/full-guidance-pdf/HCVGuidance_September_21_2017_f.pdf
https://www.cdc.gov/hepatitis/statistics/2015surveillance/pdfs/2015HepSurveillanceRpt.pdf
https://www.cdc.gov/hepatitis/statistics/2015surveillance/pdfs/2015HepSurveillanceRpt.pdf
http://polarisobservatory.org/polaris_view/hepC.htm
http://polarisobservatory.org/polaris_view/hepC.htm
https://hepvu.org/
https://www.merckmanuals.com/home/liver-and-gallbladder-disorders/fibrosis-and-cirrhosis-of-the-liver/fibrosis-of-the-liver
https://www.merckmanuals.com/home/liver-and-gallbladder-disorders/fibrosis-and-cirrhosis-of-the-liver/fibrosis-of-the-liver
https://www.merckmanuals.com/home/liver-and-gallbladder-disorders/fibrosis-and-cirrhosis-of-the-liver/fibrosis-of-the-liver
https://www.merckmanuals.com/home/liver-and-gallbladder-disorders/fibrosis-and-cirrhosis-of-the-liver/fibrosis-of-the-liver
https://www.merckmanuals.com/professional/genitourinary-disorders/chronic-kidney-disease/chronic-kidney-disease
https://www.merckmanuals.com/professional/genitourinary-disorders/chronic-kidney-disease/chronic-kidney-disease
https://www.merckmanuals.com/professional/genitourinary-disorders/chronic-kidney-disease/chronic-kidney-disease
http://dx.doi.org/10.1097/MCG.0000000000000872
http://dx.doi.org/10.1097/MCG.0000000000000872


40. Lo Re V 3rd, et al. Disparities in absolute denial of
modern hepatitis C therapy by type of insurance.
Clin Gastroenterol Hepatol. 2016;14(7):1035–43.

41. Moorman AC, Drobenuic J, Kamili S. Prevalence of
false-positive hepatitis C antibody results, National
Health and Nutrition Examination Study
(NHANES) 2007–2012. J Clin Virol. 2017;89:1–4.

42. Flanigan CA, et al. Evaluation of the impact of
mandating health care providers to offer hepatitis C
virus screening to all persons born during
1945–1965—New York, 2014. MMWR Morb Mortal
Wkly Rep. 2017;66(38):1023–6.

43. Jorgensen C, Carnes CA, Downs A. Know more
hepatitis: CDC’s national education campaign to
increase hepatitis C testing among people born
between 1945 and 1965. Public Health Rep.
2016;131(Suppl 2):29–34.

44. Suryaprasad AG, et al. Emerging epidemic of hep-
atitis C virus infections among young nonurban
persons who inject drugs in the United States,
2006–2012. Clin Infect Dis. 2014;59(10):1411–9.

45. Zibbell JE, et al. Increases in hepatitis C virus
infection related to injection drug use among per-
sons aged B 30 years—Kentucky, Tennessee,

Virginia, and West Virginia, 2006–2012. MMWR
Morb Mortal Wkly Rep. 2015;64(17):453–8.

46. Center for Behavioral Health Statistics and Quality.
2015 national survey on drug use and health:
detailed tables. Rockville: Substance Abuse and
Mental Health Services Administration; 2016.

47. Blackburn NA, Patel RC, Zibbell JE. Improving
screening methods for hepatitis C among people
who inject drugs: findings from the HepTLC Ini-
tiative, 2012–2014. Public Health Rep.
2016;131(Suppl 2):91–7.

48. Patel RC, Vellozzi C, Smith BD. Results of hepatitis
C birth-cohort testing and linkage to care in selec-
ted U.S. sites, 2012–2014. Public Health Rep.
2016;131(Suppl 2):12–9.

49. National Academies of Sciences, Engineering, and
Medicine. Big data and analytics for infectious dis-
ease research, operations, and policy: proceedings
of a workshop. 2016, Washington DC: The National
Academies Press.

50. Levey AS, et al. A new equation to estimate
glomerular filtration rate. Ann Intern Med.
2009;150(9):604–12.

1102 Adv Ther (2018) 35:1087–1102


	Development of a Comprehensive Dataset of Hepatitis C Patients and Examination of Disease Epidemiology in the United States, 2013--2016
	Abstract
	Introduction
	Methods
	Results
	Conclusion
	Funding
	Plain Language Summary

	Plain Language Summary
	Introduction
	Methods
	Data Source and Available Characteristics
	Imputation Algorithms for Treatment Receipt and Attaining Sustained Virologic Response
	Patient Classification Scheme in Study Dataset
	Software

	Results
	Overview of Patient Dataset
	Trend Analysis for Care Engagement with Respect to Age
	Analysis of Treated Patients by State
	Analysis of Untreated Patient Population

	Discussion
	Limitations

	Conclusion
	Acknowledgements
	References




