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Abstract Intracellular Ca2+ concentrations play a crucial
role in the physiological interaction between Ca2+ channels
and Ca2+-activated K+ channels. The commonly used
model, a Ca2+ pool with a short relaxation time, fails to
simulate interactions occurring at multiple time scales. On
the other hand, detailed computational models including
various Ca2+ buffers and pumps can result in large
computational cost due to radial diffusion in large compart-
ments, which may be undesirable when simulating mor-
phologically detailed Purkinje cell models. We present a
method using a compensating mechanism to replace radial
diffusion and compared the dynamics of different Ca2+

buffering models during generation of a dendritic Ca2+

spike in a single compartment model of a PC dendritic
segment with Ca2+ channels of P- and T-type and Ca2+

-activated K+ channels of BK- and SK-type. The Ca2+

dynamics models used are (1) a single Ca2+ pool; (2) two
Ca2+ pools, respectively, for the fast and slow transients; (3)
detailed Ca2+ dynamics with buffers, pump, and diffusion;
and (4) detailed Ca2+ dynamics with buffers, pump, and
diffusion compensation. Our results show that detailed Ca2+

dynamics models have significantly better control over
Ca2+-activated K+ channels and lead to physiologically

more realistic simulations of Ca2+ spikes and bursting.
Furthermore, the compensating mechanism largely eliminates
the effect of removing diffusion from the model on Ca2+

dynamics over multiple time scales.
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Introduction

Purkinje cells (PCs) are known to express large conduc-
tance (BK) [1–10] and small conductance (SK) [6, 11–14]
Ca2+-activated K+ (KCa) channels on their dendrites. KCa

channels together with voltage-gated Ca2+ channels signif-
icantly control the dendritic excitability [6, 15]. Ca2+

entering through the voltage-gated Ca2+ channels causes
the free cytosolic Ca2+ concentration to rise, which in turn
controls the activation of KCa channels. A significant
difference between those channels is their spatial separa-
tion. It has been shown that BK channels are in closer
vicinity of Ca2+ sources compared to SK channels,
suggesting that BK channels require a brief large amount
(~10–100 μM) of Ca2+, while SK channels are activated by
lower concentrations (~0–2 μM) [16–18]. Intracellular Ca2+

mechanisms like diffusion, endogenous buffers, internal
stores, and pumps significantly control the cytosolic spread
of Ca2+ and shape the Ca2+ signal that activates KCa

channels [19]. Therefore, it is important to model intracel-
lular Ca2+ dynamics carefully in a biophysically detailed
PC model.

Existing PC models use a Ca2+ pool with a single
relaxation time [20–22], which can reasonably approximate
the fast transient [23] and can activate a BK channel well
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[17, 18]. On the other hand, it provides inappropriate Ca2+

signals to activate SK channels to support their role in
excitability modulation. A simple and effective solution is
to use two Ca2+ pools [24], respectively, for the fast and
slow transient. A more comprehensive and biophysically
realistic solution is to use a detailed model [25] with Ca2+

buffers, diffusion of those buffers, and diffusion of Ca2+

and Ca2+ extrusion pumps. Large compartments also
require modeling of radial diffusion of Ca2+ ions and
buffers [26]. The presence of diffusion in these detailed
models can result in a large computational cost [27], which
may need to be avoided in simulating morphologically
detailed PC models.

In this study, we compare the effectiveness of different
Ca2+ buffering models in controlling Ca2+-activated K+

channels. We build a single compartment model of a PC
dendritic segment, including P-type and T-type voltage-
gated Ca2+ channels and BK-type and SK-type Ca2+

-activated K+ channels, and tune this to generate Ca2+

spikes. Intracellular Ca2+ dynamics are modeled using a
single Ca2+ pool, two Ca2+ pools, or detailed Ca2+

dynamics with calbindin (CB), parvalbumin (PV), a pump,
and diffusion. Our results show that a detailed Ca2+

dynamics model with buffers, pumps, and diffusion has
better control over Ca2+-activated K+ channels and can
generate physiologically more realistic Ca2+ spikes. We
also introduce a method to specify a diffusion compensat-
ing mechanism (DCM) that can replace the radial diffusion
in the model. Our result shows that the consequences of
removing diffusion from the model on the simulated Ca2+

dynamics can be largely eliminated by these compensating
mechanisms for both short and long time scales. This
allows the generation of physiologically realistic Ca2+

spikes that can be simulated with significantly less
computational cost.

Materials and Methods

PC Model for Ca2+ Spikes

A dendritic compartment with a diameter of 4 μm and a length
of 20 μm was used as a PC dendrite model for simulating
dendritic Ca2+ spikes. All the simulations were run in the
NEURON simulation environment [28]. The details about
the currents used in our model are given below.

P-Type Ca2+ Channel

The P-type calcium current was based on data from
Swensen and Bean [29] and included three activation (m)
gates. The current density was based on the Goldman–
Hodgkin–Katz equation [30]. The equations describing its

kinetics are summarized below:

ICa2þ ¼ PCa2þ � m3 � gGHK
m1 ¼ 1

1þe�Vþ24:7588:429

tm ¼ 0:2702þ 1:1622e�
Vþ22:098ð Þ2

164:19 ifV � �40mV;
0:6923e

V�4:7
1;089:372 otherwise

( )

The factor gGHK is a current per unit permeability.

T-Type Ca2+ Channel

The low threshold voltage-activated, T-type calcium current
was modeled using Cav 3.1 data from Iftinca et al. [31]. It
included two activation (m) gates and an inactivation (h)
gate. The current density is based on the Goldman–
Hodgkin–Katz equation [30]. The equations describing its
kinetics are summarized below:

ICa2þ ¼ PCa2þ � m2 � h� gGHK

m1 ¼ 1

1þe�Vþ525
; tm ¼

1 if V � �90mV;
1þ 1

e
Vþ40

9 þe�Vþ10218
otherwise

( )

h1 ¼ 1

1þeVþ727
; th ¼ 15þ 1

e
Vþ32

7

The factor gGHK is a current per unit permeability.

BK-Type KCa Channel

The BK-type KCa channel was based on a kinetic scheme
proposed by Cox et al. [32]. The channel model has a single
voltage-dependent gate and four binding sites for Ca2+ ions,
and Ca2+ binding at each site modulates the opening/
closing rate coefficients. The kinetic scheme and rate
constants used in the BK model were obtained from
scheme II and patch 3 data in Table III in reference [32].

SK-Type KCa Channel

We used the SK-type channel from a Golgi cell model [33],
which was based on data from Hirschberg et al. [34].

Leak Current

The leak current was modeled as a linear voltage-
independent conductance following Ohm's law:

Ileak ¼ Gleak V � Eleakð Þ;
where Gleak ¼ 10�6 S=cm2 and Eleak ¼ �61mV.

Intracellular and Extracellular Ca2+

Intracellular Ca2+ was modeled using different buffering
mechanisms described in the following section. Extracellu-
lar Ca2+ was maintained at 2 mM during all the simulations.
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Ca2+ Buffering Models

Intracellular Ca2+ was modeled using the following Ca2+

buffering mechanisms.

Single Pool

The exponential decaying Ca2+ pool was modeled as

d Ca2þ i
� �
dt

¼ � ICa2þðtÞ
2Fd

� b Ca2þ i
� �� Ca2þo

� �� �
;

where Ca2þ i
� �

is intracellular Ca2+, Ca2þo
� �

is Ca2+ at rest
and is 45 nM, ICa2þðtÞ is total current through P-type and T-
type Ca2+ channels, F is Faraday's constant, d is depth of a
submembrane shell to define the volume for effective Ca2+

concentration, and β is the decay time constant. Instead of
using commonly used values for β and d, we tuned these
parameters to approximate the Ca2+ transients given by
detailed Ca2+ dynamics, as described in the “Tuning of
Single Pool Models” section.

Two Pools

Fast and slow Ca2+ transients, Ca2þ i
� �

f and Ca2þ i
� �

s, were
modeled using two pools with different decay time
constants, βf and βs (βf>βs), and depths, df and ds (df<
ds). The total intracellular Ca

2+ Ca2þ i
� �

was modeled as the
weighted sum of fast and slow Ca2+ transients.

Ca2þ i
� � ¼ ff Ca2þ i

� �
f
þ fs Ca2þ i

� �
s

The parameters βf, βs, df, ds, ff, and fs were tuned to
approximate the Ca2+ transients given by detailed Ca2+

dynamics, as described in the “Tuning of Double Pool”
section.

Detailed Ca2+ Dynamics

The detailed Ca2+ dynamics model included calbindin
(CB) and parvalbumin (PV) as buffers. In addition to
Ca2+, both PV and 80% of CB were diffusible. A single
surface-based Ca2+ pump was modeled using Michaelis–
Menten kinetics [35]. The kinetics of CB and PV was
obtained from a pre-existing Ca2+ dynamics model [25]
and is described in Table 1. The kinetics of the pump was
tuned to approximately match the Ca2+ decay measured at
very high intracellular Ca2+ concentration [36], where the
buffers are almost saturated and the decay is solely due to
pump and diffusion. The outer radial shell had a depth (d)
of 0.1 μm, whereas other radial shells had a depth of 0.2
μm each.

Detailed Ca2+ Dynamics with Diffusion Compensation

The detailed Ca2+ dynamics model was modified by removing
the diffusion of Ca2+ and buffers. A diffusion compensating
mechanism (DCM) was included to compensate for the
reduced removal of Ca2+ from the submembrane region due
to the lack of diffusion towards the center of the compartment.
The DCM follows a standard buffering scheme:

Ca2þ
� �þ DCM½ � kon�!

kof f
 � Ca2þ � DCM

� �

The total concentration of DCM and rate constants (kon
and koff) were tuned to compensate for the diffusion of Ca2+

and mobile buffers in the absence of radial diffusion.
Moreover, the depth of the single submembrane shell,
which was used to compute the effective Ca2+ concentra-
tion for KCa channels, was also a tunable parameter.

Tuning of Ca2+ Buffering Models

Generating Target Traces

A single compartment was modeled with a diameter of 4
μm and a length of 20 μm. The P-type channel was
included in the model for Ca2+ influx, and the detailed Ca2+

dynamics were used as a buffering model. A voltage step
protocol, shown in Fig. 1a, was used to depolarize the
compartment to the voltage at which physiological dendritic
Ca2+ spikes are generated (an example of an experimental
recording is shown for comparison in Fig. 1b). Then,
different conductance values for P-type Ca2+ channel were
used to generate peak amplitude of Ca2+ concentrations of
0.5, 1, 2, 4, and 8 μM in the volume defined by the
submembrane shell. These simulated calcium transients
formed the target traces for the automated fitting.

Similarly, the experimental voltage trace of Ca2+ spikes,
shown in Fig. 1b, was used as the voltage clamp control
signal to generate calcium transients with peak amplitudes
of Ca2+ concentrations of ~1.25, 2.5, 5, and 10 μM. These
simulated calcium transients were later used to tune
parameters for pool-based Ca2+ buffering models.

Tuning of Single Pool Models

The same model as described above was used, but now
with a single pool. We used Neurofitter [37], an automated
parameter search method to find optimal values of d and β
to match the single pool simulations with the target traces.
We used the random search mode, and model traces were
compared to the target using a standard root mean square
(RMS) error measure. While using the step voltage protocol
(shown in Fig. 1a), since each of the traces used in fitting
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had two distinct features: (1) a fast rise and decay and (2) a
slow decay (Fig. 3), we separated those features by
specifying two time periods, 500 to 550 ms and 550 to
5,000 ms, over which separate RMS values were computed
and added together. Similarly, while using the experimental
voltage protocol (shown in Fig. 1b), we separated each of
the traces used in fitting by specifying two time periods, 10
to 25 ms and 25 to 50 ms, over which separate RMS values
were computed and added together. The best values for d
and β obtained to fit the data from Fig. 1b were used with
the single pool model to simulate dendritic Ca2+ spikes.

Tuning of Double Pool

Similar procedures were used to search for the values of βf,
βs, df, ds, ff, and fs values.

Tuning of DCM

We replaced diffusion of Ca2+, of free mobile buffers, and
Ca2+-bound mobile buffers (keeping the total buffer
concentrations constant) from the detailed Ca2+ dynamics
model with a single equation for DCM. Similar procedures
were used as in the case of tuning the single pool, except
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Fig. 1 a The depolarization command used to estimate Ca2+ profiles
during generation of Ca2+ spikes. The peak voltage −22 mV was
computed by taking an average of membrane potential during Ca2+

spikes (as shown in b), and the time of peak voltage ~12 ms was
estimated from their average duration. b An example of electrophys-
iological dendritic Ca2+ spikes (provided by Ede Rancz and Michael
Häusser, UCL, UK). Note that the small spikelets caused by
retrograde conduction of somatic action potentials are not modeled
in this study

Parameter Value Reference

[Ca2+] at rest 45 nM [43]

[Mg2+] at rest 590 μM [25]

Diffusion rates

DCa 0.233 μm2/ms [44]

DCB 0.028 μm2/ms [25]

DPV 0.043 μm2/ms [25]

Calbindin

Concentration 0.16 mM –a

kon,fast 43.5 ms−1 mM−1 [45]

koff,fast 3.58×10−2 ms−1 [45]

kon,slow 5.5 ms−1 mM−1 [45]

koff,slow 0.26×10−2 ms−1 [45]

Parvalbumin

Concentration 0.08 mM –a

kon,Ca 107 ms−1 mM−1 [25]

koff,Ca 9.5×10−4 ms−1 [46]

kon,Mg 0.8 ms−1 mM−1 [25]

koff,Mg 2.5×10−2 ms−1 [46]

Pump

Density 1×10−9 mol cm−2 Estimated

kon 3×10−3 ms−1 mM−1 Estimated

koff 1.75×10−5 ms−1 Estimated

kext 7.255×10−5 ms−1 mM−1 Estimated

Fraction of immobile calbindin 0.2 [25]

Table 1 Detailed Ca2+ dynamics
model parameters

a Data provided by Dr. Klaus M.
Stiefel, personal communication
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that we only used target traces generated using the step
voltage protocol (shown in Fig. 1a), to find values of
[DCM], kon, koff, and d. In order to find a robust solution,
Neurofitter was run with five different seeds for random
number generation. The five best solutions found using
each seed were selected. We assume that the parameters
for the diffusion compensating mechanism should be
robust for different Ca2+ concentration peak amplitudes,
but not for different compartment diameters. Therefore,
the fitting procedure was repeated for diameters of 0.8, 2,
4, 6, 8, 10, 12, 16, and 20 μm.

DCM Parameter Interpolation

In actual compartmental models of neurons [38], a compart-
ment can have an arbitrary diameter. Therefore, the
parameters fitted to specific diameters were fitted to
continuous functions. The 25 best solutions for each of the
four parameters were plotted against corresponding diameter
values. Matlab routines were used to fit the data with a single
exponential function, double exponential function, and fifth
order polynomial function based on an RMS measure. Later,
those functions were used to predict the diffusion compen-
sating parameter values for any compartment diameter.

Tuning Channel Densities for Dendritic Ca2+ Spikes

A dendritic Ca2+ spike, with three spikelets, was gener-
ated using the detailed Ca2+ dynamics model by hand
tuning the channel density values. Later, Neurofitter was
used to search proper channel densities for models with
single pool, double pool, or DCM to generate similar
dendritic Ca2+ spikes. The search was based on the RMS
error measurement. We used five features for the fitness
function. Three features comprised the three spikelets;
other features were the pre-spike depolarization and post-
spike hyperpolarization.

Results

Detailed Ca2+ Dynamics Model

A single compartment model with 4 μm diameter and 20
μm length was simulated with a P-type Ca2+ channel and
the detailed Ca2+ dynamics model. The detailed Ca2+

dynamics model included calbindin (CB) and parvalbumin
(PV) as buffers. The four binding sites of CB were
simulated by assuming a pair of fast and a pair of slow
binding sites as, respectively, a single fast and a single
slow binding site (described as CB_f_s). PV was simulat-
ed together with Mg2+. Due to medium affinity of PV for
Mg2+, its binding kinetics to Ca2+ is significantly affected

by Mg2+. Diffusion of Ca2+, PV, and 80% of CB was
included in the model. We simulated the voltage step of
Fig. 1a in our model using different conductance values
for P-type Ca2+ channel to generate peak amplitudes of 0.5
to 8 μM Ca2+ concentration. As the intracellular Ca2+

concentration started rising due to the influx through the
P-type channel, the buffers and the pump became active.
The changes in concentration of Ca2+ and Ca2+-bound
buffers and outflux due to the pump over time are shown
in Fig. 2.

Dynamics of Single Pool and Double Pool Models

The pool parameters were tuned with Neurofitter [37], as
described in “Materials and Methods” section. The best
solution for the single pool, using the step voltage protocol
(Fig. 1a), was β=1.35/ms and d=0.891 μm. The best
parameter values for the double pool were βf=3.77/ms, df=
0.351 μm, βs=0.00306/ms, ds=0.928 μm, ff=0.994, and
fs=0.006.

Figure 3 compares the intracellular Ca2+ profiles
obtained using the tuned single pool and double pool
models with those in the detailed Ca2+ dynamics model.
The comparison demonstrates that the single pool approx-
imates the Ca2+ transient only during the active Ca2+ influx
and the initial fast decay. Moreover, the approximation is
valid only for a small range of Ca2+ influx. Therefore, the
single pool cannot approximate the effects of physiological
buffering. The double pool can approximate Ca2+ transient
during the active Ca2+ influx and following fast and slow
Ca2+ decays, but its validity is also limited to a small range
of Ca2+ influx values. Although the double pool model
could not approximate the full range of detailed Ca2+

concentrations, it approximated the major components of
the detailed model reasonably well, i.e., the fast and slow
transients. Therefore, a double pool model is expected to
provide a better control over activation of KCa channels
than a single pool model.

Since these estimated parameters belong to phenomeno-
logical models, the parameter values could vary based on
the applied protocol. To estimate the ability of pool-based
models to capture more complex Ca2+ kinetics, we applied
also the experimental waveform (Fig. 1b) and estimated
new model parameters. The best solution for the single pool
was very different from the model used in Fig. 3: β=6.86/
ms and d=0.169 μm. The same applied to the best
parameter values for the double pool, though the ratio
between fast and slow pool did not change: βf=7.33/ms,
df=0.167 μm, βs=0.00795/ms, ds=0.683 μm, ff=0.995,
and fs=0.005. The behavior of these models (Supplemen-
tary Fig. 1) was similar to that observed in Fig. 3: their
optimal concentration range is limited, and a single pool
model cannot capture the slow transients.
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Diffusion Compensation Model

Modeling buffers and pumps without diffusion of Ca2+ and
buffers resulted in an accumulation of Ca2+ in the
submembrane volume defined by a shell of depth 0.1 μm
in compartments with a diameter of 1 μm or larger (Fig. 4).
Therefore, we developed a compensating mechanism,
DCM, to reduce the steep rise in peak amplitudes of
intracellular Ca2+. Because the detailed Ca2+ dynamics
model had multiple buffers with different buffer affinities,
the effects of diffusion depended on the amount of Ca2+

entry. We developed DCM to robustly reproduce model Ca2+

transients in compartments with a wide range of diameters
and for physiological peak amplitudes in the submembrane
shell of between 0.5 and 8 μM.

The parameters for DCM were estimated using Neuro-
fitter [37]. Examples for different levels of Ca2+ influx
using the voltage step protocol demonstrate the effect of
removing diffusion, and the good compensation by the
DCM over the entire range is shown in Fig. 4.

Derivation of the Parameter Predictors

We showed in Fig. 4 that DCM can effectively compensate
for excluding diffusion, but the parameter fitting produced
values only for specific compartment diameters. To use
DCM in a morphologically detailed PC model, we need a
way to predict the DCM parameter values for any diameter
present in the PC. Figure 5 shows the results of automated
parameter fitting (see “Materials and Methods” section), for
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Fig. 2 Intracellular Ca2+ profiles simulated using the depolarization
command shown in Fig. 1a, for different amplitudes of Ca2+ influx
(indicated by color). The panels show, respectively, Ca2+ concen-
tration ([Ca2+]), Ca2+ bound to PV (PV.ca), Ca2+ bound to slow
binding site of CB (CB.f.ca), Ca2+ bound to fast binding site of CB

(CB.ca.s), Ca2+ bound to fast and slow binding sites (CB.ca.ca), Ca2+

bound to slow binding site of immobile CB (iCB.f.ca), Ca2+ bound to
fast binding site of immobile CB (iCB.ca.s), Ca2+ bound to fast and
slow binding sites (iCB.ca.ca), and pump current over a period of
2,000 ms
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nine diameters. Using Matlab, the four parameters (con-
centration of DCM, [DCM]; forward rate constant, kon; the
backward rate constant, koff; and the depth of submembrane

shell, d) were fitted to functions (Fig. 5). The prediction
functions for the parameters are

DCM½ � ¼ 64:2� 57:3e�
diam
1:4

kon ¼ 0:162� 0:106e�
diam
2:29

koff ¼ 0:000267þ 0:0167e�
diam
0:722 þ 0:0028e�

diam
4 if diam � 2;

0:003 otherwise

� �
d ¼ diam

4� �0:674þ1:94 diamð Þþ0:289 diamð Þ2�3:33�10�2 diamð Þ3þ1:55�10�3 diamð Þ4�2:55�10�5 diamð Þ5ð Þ

The fitted functions are very close to the mean values of
the parameter distributions and reasonably capture the
relationship between the DCM parameters and the diameter
of the compartment. Therefore, we expect these functions
to predict DCM parameters for any diameter in the PC. This
is demonstrated for two unfitted diameters in Fig. 6. It
shows that the fitted functions indeed produce good
compensation for diffusion in the detailed model. There-
fore, we can use the fitted functions with morphologically
detailed PC models.

Dendritic Ca2+ Spikes

Dendritic Ca2+ spikes with multiple spikelets comparable to
those observed in vitro (Fig. 1b) were simulated using a

single pool, a double pool, detailed Ca2+ dynamics, and
DCM. Since the buffering models used in the simulations
were different approximations of detailed Ca2+ dynamics,
we expected the intracellular Ca2+ transients generated by
these models to show considerable differences (Supple-
mentary Fig. 3). Therefore, we first optimized values for the
maximal conductance (Gmax and Pmax) of ion channels
(current activation profiles are shown in Supplementary
Fig. 4) in the model to generate as comparable Ca2+ spikes
as possible. This is identical to the procedure that would be
used to generate a neuron model with only one type of Ca2+

dynamics model [38]. The resulting values are listed in
Table 2. The resultant voltage traces of the Ca2+ spikes are
shown in Fig. 7 (see also Supplementary Fig. 2).

Comparing the dendritic Ca2+ spikes generated using
different buffering models (Fig. 7a), we clearly see that the
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demonstrate the problems the
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models have in capturing the
complex dynamics of the
detailed model. See text for
parameters of the pool models
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dendritic spikes generated using the pool-based models are
different from the spikes generated using the other
buffering models and strongly depend on the pool models
used (compare Supplementary Fig. 2 with Fig. 7a). The
amplitude as well as the width of second and third spikelets
are different from the spikelets generated using the detailed
Ca2+ model. Another noticeable difference exists in the
after hyperpolarization of these bursts. These differences

are due to the different activation of KCa channels, in
particular of the SK channel (Supplementary Fig. 4). On the
other hand, the dendritic Ca2+ spikes simulated using DCM
approximated the Ca2+ spikes generated using the detailed
Ca2+ dynamics model quite well.

A comparison of dendritic Ca2+ spikes over a time
period of 50 ms may not reveal the effect of diffusion at
longer time scales. Therefore, we ran all simulations for
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detailed model resulted in a
steep rise in Ca2+, which could
be well compensated by DCM.
The inset (f) below the panel (c)
highlights Ca2+ profiles simu-
lated using five different sets of
optimal DCM parameters found
by using Neurofitter
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200 s and compared the ability of different buffering
mechanisms to capture the bursting behavior over that
time. Fig. 7c, d shows the spontaneous dendritic Ca2+

bursting using the detailed Ca2+ dynamics model, DCM,
single pool, and double pool models. Each of the bursts
contains three Ca2+ spikelets (examples shown in Fig. 7a,
b). The frequency of bursts in case of pool-based models is
approximately five to six times higher than the frequency of
bursts in the detailed Ca2+ dynamics model. However, the
frequency of bursts for the DCM model is similar to that of
the detailed model.

Comparing the burst of Ca2+ spikes around 57 s (marked
with red asterisk in Fig. 7c, d) in Fig. 7b, we see that the
shape has changed compared to the first burst (Fig. 7a),
which is due to the buildup of Ca2+ over longer time. Pool-
based models failed to capture this burst shape adaptation,
while DCM reproduced it fairly well.

Next, we investigated the ability of DCM to approximate
characteristics of diffusion over the longer time period

when the bursting period was modified by current injection.
The mean inter-burst interval plotted against the injected
current is shown in Fig. 7e. The behavior of detailed Ca2+

dynamics model and DCM is similar at most current
injection levels, except for bumps around 0.002 pA. These
bumps represent the transition of the firing pattern from
bursts with three spikelets to bursts with two spikelets
(shown in Fig. 7f), which occurs at lower current levels in
the detailed model. As the pool models do not show burst
shape adaptation, they also entirely fail to capture this
transition to two spikelet bursts. The spontaneous bursting
period range is limited. Therefore, to compare the different
buffering models at faster bursting rates, we injected current
pulses at 1 Hz (Supplementary Fig. 5). Under these
conditions, the Ca2+ buildup is more pronounced leading
to a SK current mediated after hyperpolarization and a
progressive decrease in the number of spikes in each burst,
but the relative accuracy of the different buffering models is
similar to that shown in Fig. 7.
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Table 2 Maximal conductance values used to generate dendritic Ca2+ spikes

Buffering model Pmax (CaP) ×10
−4 cm/s Pmax (CaT) ×10

−6 cm/s Gmax (BK) ×10
−2 S/cm2 Gmax (SK) ×10

−4 S/cm2

Single pool 1.87 7.32 5.34 6.07

Double pool 1.95 7.43 5.65 4.68

Detailed Ca2+ dynamics model 2.00 8.00 7.00 3.10

Diffusion compensated model 2.2 8.2 7.01 3.02
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Based on the data shown in Fig. 7, we conclude that
DCM is quite effective over a wide range of conditions.
While the approximation is not perfect, it is clearly much
superior compared to the pool-based models. Finally, we
briefly explored the robustness of DCM to changes in the
Ca2+ buffers. Supplementary Fig. 6 shows a comparison of
detailed and DCM models when the concentration of the
CB and PV buffers is either halved or doubled (DCM
parameters unchanged but ion channel densities retuned).
The DCM approximation is very good for the half buffer
concentration model, but less adequate for the double buffer
concentration one. Therefore, we recommend to retune the
DCM parameters whenever the detailed Ca2+ dynamics
model is changed.

Discussion

We compared the effectiveness of different Ca2+ buffering
mechanisms in controlling KCa channels expressed in PCs.
The PC is known to express high amount of mobile
endogenous buffers like calbindin and parvalbumin [39].
Ca2+ entering through voltage-gated channels is quickly
removed by these buffers [19]. The internal Ca2+ stores and
pumps together with calbindin and parvalbumin control the
intracellular Ca2+ available to KCa channels. Therefore,
careful modeling of intracellular Ca2+ dynamics is essential
to simulate the physiological control of KCa channels.

The detailed Ca2+ dynamics model introduced by
Schmidt et al. [25] includes calbindin, parvalbumin, pumps,
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Fig. 7 Dendritic Ca2+ spikes generated using different Ca2+ buffering
models (aligned at the peak of the first spikelet in a, b, and f). The
parameters of pool-based models are those used in Supplementary Fig. 1.
The conductance values used to generate these spikes are listed in
Table 2. a First burst of Ca2+ spikes. b Burst of Ca2+ spikes around

57 s. c, d Spontaneous Ca2+ spike bursting over 100 s: black asterisk
indicates the first burst of Ca2+ spikes (shown in a), red asterisk
indicates the burst of Ca2+ spikes around 57 s (shown in b). e Inter-
burst interval (IBI) as a function of current injection. f Burst of Ca2+

spikes around 57 s with injection of 0.004 pA current
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and diffusion of Ca2+, parvalbumin, and calbindin. The
model was tuned for Ca2+ dynamics in a single spine
coupled to a dendrite. Since the spine is a small
compartment, only longitudinal diffusion was modeled
from the spine through the spine neck. In this study, we
modeled dendrites, which are relatively large compart-
ments; therefore, we modified the Schmidt et al. [25] model
to incorporate radial diffusion towards the center of the
compartment using the formalization implemented in
NEURON [40]. Recent Ca2+ dynamics models [25, 41]
used different pump rates to fit their data. We tuned the
pump rate parameters to match the Ca2+ profiles recorded
from a PC at high concentrations of Ca2+, at which most of
the buffers were saturated, and the decay could be attributed
to diffusion and pump only [36].

The single Ca2+ pool has been the choice for modeling
intracellular Ca2+ in almost all compartmental models. The
volume of sub-compartment to compute the effective Ca2+

concentration for activation of KCa channels is often
defined by a submembrane shell with a depth of 0.2 μm
[20]. However, a wide range of decay rates (β values) is
used from 10/ms [20] to 0.02/ms [42]. These parameter
values used in single pool models can reasonably approx-
imate the changes in microdomains [23] and can be used to
control a BK-type KCa channel [17, 18]. SK-type KCa

channels, which are relatively far from Ca2+ channels [18],
require smaller amounts of Ca2+ (0–2 μM) and activate at
relatively long time scales. Therefore, it is impossible to
control both BK and SK channels correctly using a single
pool. We confirmed this prediction by comparing the Ca2+

profiles (Supplemental Fig. 3) and dendritic Ca2+ spikes
(Fig. 7 and Supplementary Figs. 2 and 5) generated by
single pool and detailed models. We also considered a Ca2+

pool model with two time constants as a phenomenological
solution to the problem. While such models fitted simple
Ca2+ spikes better (Fig. 3), their concentration range is
limited, and they fail to simulate the period of repetitive
bursting and burst shape adaptation (Fig. 7).

The limitation of using detailed Ca2+ dynamics is the
computational cost of underlying diffusion [27]. We
computed run times for simulations of 10 s with detailed
Ca2+ dynamics and different compartment diameters (Fig. 8).
It took 45 s to run the simulation for a 2-μm diameter
compartment. The run time increase was supra-linear with
increase in diameter; for 20 μm, it was 1,076 s. This suggests
that the computation cost will increase tremendously for
simulating a morphologically detailed PC model, which we
want to avoid. In this study, we proposed a method to
approximate the effect of diffusion. Since only Ca2+ in
the submembrane region is required to control KCa

channels, it is not essential to compute the Ca2+ concen-
tration in and around the center of compartments. We
replaced diffusion with a compensating mechanism, DCM,

that made up for the Ca2+ diffusing towards the center. We
confirmed that the DCM approximated the effect of
diffusion robustly in the range of 0.5–8 μM Ca2+ for
dendritic compartments with diameters of 1–20 μm and
over time ranges from tens of milliseconds to hundreds of
seconds. Though BK channels are reported to sense
approximately 100 μM of Ca2+, those high concentrations
are only available in nanodomains [18]. For volumes
defined by ~0.1 μm shells, 8–10 μM of Ca2+ concentration
should represent the limit of the physiological range [17]. To
achieve this level of accuracy, it is important to fit the DCM
parameters to the detailed Ca2+ dynamics model used (Figs.
4 and 5). For dendritic compartments with diameters less
than 1 μm, the effect of diffusion is not significant and can
be compensated by tuning only the depth (d) of the
submembrane shell (results not shown in this work).

The method proposed in this paper is not limited to
modeling PCs. The DCM parameters can be tuned to
replace diffusion in large compartmental models of other
neuronal types. To formulate robust DCM parameters, it is
necessary to have a faithful detailed Ca2+ dynamics model
of the specific neuronal type. Then, for the desired
physiological range of Ca2+ influx and range of diameters
in the morphology, DCM parameter equations can be
derived to replace diffusion.

The use of the DCM resulted in a decrease of the run
time to 8 s with a loss of dependence on diameter (Fig. 8).
We conclude that using a detailed Ca2+ buffering model
combined with DCM is a clear improvement compared to
the Ca2+ pool for modeling Ca2+ dynamics in a large
neuron model.
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Model scripts All the scripts used to run simulations in this
manuscript are available at ModelDB (http://senselab.med.yale.edu/
ModelDB).
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