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Abstract The relationship between a tumor cell and its
microenvironment is bi-directional. The proteins expressed
by the tumor cells alter the signatures on the seemingly
normal stromal cells within the microenvironment, while
the tumor cell signatures reflect the changes that occur as
these cells interact with the host microenvironment.
Galectin-3 is a carbohydrate-binding protein that is over-
expressed in a variety of tumors and immune cells in
response to various stimuli. Ever since its discovery, it has
been associated with cell and extracellular matrix inter-
actions. However, in the last decade, an extensive accumu-
lation of data has changed the perspective of this
multifunctional protein. The unique structure of this
protein, consisting of a carbohydrate-binding domain and
a matrix metalloproteinase cleavable domain, enables it to
interact with a plethora of ligands in a carbohydrate-
dependent or independent manner. It is now becoming
evident that galectin-3 is involved with a variety of
extracellular functions like cell adhesion, migration, inva-
sion, angiogenesis, immune functions, apoptosis and
endocytosis. Galectin-3 is a substrate for matrix metal-
loproteinases and its cleavage plays an important role in
tumor progression and can be used as a surrogate diagnostic
marker for in vivo MMP activity.
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Introduction

During cancer growth, tumor cells interact with the
surrounding environment. Mounting evidence now suggests
that the cancer cell and its microenvironment profoundly
influence each other and that a dynamic interaction occurs
between the two. The tumor microenvironment consists of
a variety of cell types, parts of the blood and lymphatic
systems and is rich in growth factors and enzymes, which
provide a readily available source of growth-promoting
signals to tumor cells. The influence between the environ-
ment and tumor cells is bi-directional. The microenviron-
ment permits the tumor cells to grow and spread, while
giving access to therapeutic agents and/or developing
resistance to cancer treatments. Non-cancerous adjoining
cells or the stromal cells in the microenvironment often take
on atypical characteristics and exert a profound influence
on a cancer cell's ability to develop into a tumor. It is not
yet established whether these neighboring cells lose their
tumor suppressing properties or whether they acquire
growth promoting properties or both. Expression and
release of many proteins from inflammatory and cancer
cells in the tumor microenvironment activates the signaling
cascades that regulate processes like tumor cell migration,
invasion, angiogenesis, apoptosis and metastasis. Certain
families of cell adhesion proteins like integrins, cadherins
and lectins have received extensive attention in the last few
decades. Lectins are non-enzymatic proteins present in
plants and animals, which specifically bind to carbohydrate
structures and play an important role in cell recognition.

In this review we have focused on a member of the lectin
family, galectin-3, which binds and interacts with a number
of glyco-conjugates in the intra- and extra-cellular environ-
ment and regulates many biological functions and signaling
pathways in normal and cancer cells.
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Structure of Galectin-3 and Its Cellular
and Extracellular Distribution in Normal and Cancer
Cells

Galectin-3 is a ∼31 kDa unique chimeric gene product
belonging to the family of non-integrin β-galactoside
binding lectins with related amino acid sequences. Galec-
tin-3 is ubiquitously expressed in human adults, but the level
of expression varies by origin of the tissue. It is widely
expressed in epithelial and immune cells, such as gastric
mucosa, colon mucosa, mammary epithelium, prostate
epithelium, monocytes, and macrophages [reviewed in 1].
During the first trimester of human embryogenesis, the
expression of galectin-3 is restricted to epithelia, such as the
skin, epithelial lining of the digestive and respiratory tract,
urothelium and excretory tubes of the kidney, the myocar-
dial cells, the peripheral and preossifying hypertrophic
chondrocytes, as well as in notochord and the liver [2, 3].

Galectin-3 consists of three structural domains, each
associated with at least one specific function: (a) a NH2
terminal domain containing a serine phosphorylation site,
which is important in regulating its cellular signaling; (b) a
collagen-α-like sequence cleavable by matrix metallopro-
teinases; and (c) a COOH terminal containing a single
carbohydrate-recognition domain (CRD) and the NWGR
anti-death motif. Galectin-3 is mainly a cytosolic protein,
but can easily traverse the intracellular and plasma
membranes to translocate into the nucleus, mitochondria
or get externalized. This suggests that galectin-3 is a
shuttling protein and may have multiple functions accord-
ingly [4–6]. Galectin-3 is expressed in a variety of tumors.
The intensity of expression and localization depends on
tumor progression, invasiveness and metastatic potential.
Galectin-3 translocates to the perinuclear membrane in breast
cancer cells following a variety of apoptotic stimuli such as
cisplatin, staurosporine, or serum withdrawal [7–9]. In human
breast carcinoma, nuclear staining of galectin-3 was corre-
lated to the lobular type of invasive carcinoma, while tumor
stromal expression to high-grade malignancy [10, 11].
Sanjuan et al. [12] reported an increased cytoplasmic
expression of galectin-3 in more advanced stages of
colorectal cancer. Over-expression of galectin-3 in the
cytoplasm in human prostate cancer can promote its anti-
apoptotic activity as well as increase cell proliferation, tumor
growth, invasion, and angiogenesis while galectin-3 expres-
sion in the nucleus decreases cell proliferation [13]. The
enhanced expression of galectin-3 in the cytoplasm was
associated with a decreased disease-free survival of tongue
cancer patients [14].

Galectin-3 lacks the classical secretion signal sequence
and does not pass through the standard ER/Golgi pathway
[15]. Still it can be transported into the extracellular milieu
via a non-classical pathway [16]. There is ample evidence

to confirm its presence on the cell surface, in the
conditioned medium of some cell lines, in the extracellular
matrix and in the biological fluids and sera. It has been
shown that the NH2 terminal domain of galectin-3 is
critical for its secretion and is the driving force that
localizes it in the secretory vesicles [17]. Lukyanov et al.
[18] demonstrated the ability of galectin-3 to cross the lipid
bilayer of large unilamellar vesicles, suggesting that the
lectin has yet an unknown novel sequence that enables it to
traverse lipid membranes. Cells differ widely in their
capacity to secrete galectin-3. While J774.2 macrophage
cells secrete 30–45% of their galectin pool [19], BHK and
MDCK cells export 10–15% [20, 21] and WEHI-3 mouse
macrophages secrete a very small percentage of galectin-3
in the conditioned medium [19]. The exact mechanism of
galectin-3 secretion is not yet known. Hugh's group
proposed a vesicular release of galectin-3 from the cells
[20–23], while another pathway implicating galectin-3 to be
a component of the exosomes secreted by dendritic cells
was proposed by Thery et al. [24]. Recently, it was
demonstrated that galectin-3 is secreted and taken up by
the cells using a mechano-transduction mechanism [25].
Detached and spherical cells secrete galectin-3 in a
constitutive manner while attached and spreading cells take
up galectin-3 from the conditioned medium [25]. This
group also suggested that fetuin could act as a trigger for
the release of galectin-3 from the cells [26]. Once the
vesicles containing galectin-3 are exported outside of the
cell, galectin-3 is released into the extracellular matrix,
where it can interact with a myriad of partners regulating a
number of biological functions. The focus of this review is
on the biological functions regulated by extracellular
galectin-3 and their implication in cancer progression.

Role of Galectin-3 in Cell–Matrix and Cell–Cell
Interactions

The biological activities of galectin-3 in the extra-cellular
compartment mainly involve its interactions with various
β-galactoside containing glycans via its carbohydrate
recognition domain (CRD). The interaction of galectin-3
or its CRD with carbohydrate ligands is accompanied by a
conformational change [27] and rearrangement of the
backbone loops near the binding site [28]. Mazurek et al.
[29] demonstrated that the phosphorylation at Ser6 of
galectin-3 strongly affects its sugar binding affinity, thus it
was proposed to be an “on/off” switch of its downstream
biological effects. There are numerous structurally and
functionally diverse biological ligands of galectin-3, some
of which have been well characterized. Exogenously added
galectin-3 promoted the adhesion of polymorphonuclear
neutrophils (PMN) to laminin-coated plastic in a carbohy-
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drate-dependent manner, moreover, the presence of the
amino-terminal region was important for this adhesion [30].
Galectin-3 was shown to bind to glycosylated components
of extracellular matrix like laminin [30, 31] and fibronectin
[32], as well as hensin [33], elastin [34], collagen IV [34]
and tenascin-C and -R [35]. Galectin-3 was essential for
rapid adhesion of galectin-3 expressing BT-549 cells to
laminin and collagen, but not to fibronectin [36]. Likewise,
galectin-3 transfected Evsa-T human breast cancer cells
showed a higher adhesion to laminin, fibronectin and
vitronectin-coated plastic compared to the parental cells
[37]. Similarly, normal fibroblasts engineered to over-
express galectin-3 have also been shown to reorganize the
actin microfilaments in order to spread [38]. The inter-
actions of galectin-3 with lysosomal membrane glycopro-
teins Lamp-1 and -2 [39], carcinoembryonic antigen [40]
and colon cancer mucin [41] were suggested to be involved
in adhesion of cancer cells to extra-cellular matrix. In
addition, another class of cell adhesion proteins, integrins
(α1β1 [34], and αMβ1 [39]) were shown to be galectin-3
receptors. Galectin-3 transfected cells showed higher levels
of α6β1 integrin [42]. Regulation of α4β7 integrin
expression by galectin-3 was also reported [37]. Galectin-
3 was involved in the endocytosis of β1 integrins (CD29)
from the cell surface to intracellular vesicles via the
caveolae pathway [43]. Negative modulation of cell
adhesion to ECM proteins by galectin-3 has also been well
documented. For instance, high levels of galectin-3 on the
cell surface down-regulated cellular adhesion to ECM
proteins in a dose dependent manner. This effect was
abrogated in the presence of lactose [36]. The binding of
galectin-3 expressing SCM 153 human breast cancer cells,
A2058 and A375 melanoma cells to laminin was indepen-
dent of lactose or anti-gal-3 mAb inhibition [31, 44].

Although galectin-3 possesses only one CRD, it exhibits
bi-/multivalent binding properties [45, 46]. Both the carbo-
hydrate recognition and N-terminal domains were shown to
be involved in formation of galectin-3 multimers [47, 48].
Dimer or multimer formation of galectin-3 is implicated in
aggregation of tumor cells in the circulation during metas-
tasis by mediating homotypic cell adhesion via bridging with
branched, soluble complementary glycoconjugates [49]. This
spontaneous carcinoma cell homotypic aggregation was
shown to be mediated, in part, by the interactions between
cell surface Thomsen–Friedenreich glycoantigen (TFAg) and
galectin-3 [50, 51]. Grassadonia et al. [52] on the other hand,
demonstrated that the association of galectin-3 with 90K/
Mac-2BP in the extracellular matrix was responsible for the
homotypic aggregation. Galectin-3 mediates CD98 dimer-
ization by binding to the heavy chain of CD98, present on
human and mouse monocytes/macrophages and on activated
T cells, which in turn can promote integrin activation [39,
53]. Galectin-3 is also involved with heterotypic cell–cell

interactions. It promotes the adhesion of breast cancer cells
MDA-MB-435 to HUVEC [54] and endothelium, which was
inhibited by TFAg specific peptide [51]. Similarly, galectin-3
expressed on endothelial cells could interact with ligands on
the cell surface of carcinoma cells. For example, binding of
EC to galectin-3 null PC3 human prostate carcinoma cells
could be inhibited by anti-gal-3 mAbs [55]. Similarly, anti-
galectin-3 mAb inhibited the MDA-MB-435 cells rolling and
adhesion to HUVEC under flow conditions [56]. Galectin-3
expression was markedly enhanced in the plasma membrane
of EC after PMN adhesion, suggesting its importance in
PMN/EC interactions [57]. Krishnan et al. [58] demonstrated
that galectin-3 constitutively expressed on the lung vascular
EC surfaces plays a key role in the adhesion of circulating
B16F10 murine melanoma cells to lungs. A significant role
of galectin-3 in cell–cell adhesion was also demonstrated by
specific inhibitors. Modified citrus pectin, a carbohydrate
ligand for galectin-3 inhibited galectin-3 mediated homo-
typic as well as heterotypic aggregation [59, 60]. In addition,
two small peptides that specifically bind to galectin-3 CRD,
interfered with rolling and stable adhesion of human breast
carcinoma cells to bone marrow EC and dramatically
reduced homotypic cell aggregation [61].

Role of Galectin-3 in Cell Migration, Chemotaxis
and Cell Activation

There is enough experimental evidence to suggest that
galectin-3 can trigger signal transduction cascades by cross-
linking with the glycan parts of the surface glyco-
conjugates, which in turn activate numerous biochemical
pathways in the cells, leading to the activation of various
cell types. For example, galectin-3 was shown to induce
endothelial cell morphogenesis and angiogenesis in vitro
and in vivo [54]. In addition, NG2, a transmembrane
chondroitin sulfate proteoglycan, was shown to mediate the
induction of endothelial cell motility and multicellular
network formation in vitro and the stimulation of corneal
angiogenesis in vivo by forming the NG2–galectin-3–α3β1
integrin complex, suggesting a mechanism by which
galectin-3 may induce angiogenesis [62]. The extra-cellular
galectin-3 also acts as a chemoattractant for monocytes and
macrophages, as well as alveolar macrophages [63]. By in
vivo and in vitro studies it was shown that higher
concentrations of galectin-3 (1 μM) are necessary for
chemotactic effects, while lower concentrations (10–
100 nM) induce increased non-directional cell movements
(chemokinesis). Chemotactic, but not chemokinetic activity
of galectin-3 was mediated by a pertussis toxin sensitive
pathway (G-protein-coupled cell surface receptors) [63].
Galectin-3 was involved with the migration of tumor
astrocytes and their invasion into the surrounding brain
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parenchyma [64]. In the thymus, galectin-3 was produced
by the stroma, and reported as a modulator of thymocyte
migration by interfering with cell adhesion and promoting
subsequent detachment [65]. Similarly, galectin-3 trans-
fected breast (BT-549) and lung carcinoma (DLKP) cells
were more motile and invasive compared to the parental
cells [42, 66]. Over-expression of galectin-3 accompanied
by increased cell surface expression of α4β7 integrins,
caused enhanced adhesion to ECM glycoproteins as well as
increased invasiveness and spread [37]. At low concen-
trations galectin-3 stimulated cell spreading and motility in
β 1,6-acetylglucosaminyltransferase V (Mgat5) +/+ tumor
cells plated on a fibronectin substrate [67]. Some of the
exceptions are decreased motility of HCT-15, LoVo and
CoLo 201 human colon cancer cells on a Matrigel coated
surface by over-expression of galectin-3 [68], and an
increased motility in human glioblastoma U373 cells upon
down regulation of galectin-3 [69].

Galectin-3 was found to be over-expressed in TPA
induced differentiation of the human promyelocytic leuke-
mia cell line HL-60 to macrophages [70]. It potentiates
lipopolysaccharide (LPS)-induced production of interleu-
kin-1 (IL-1) [71] and triggers the production of superoxide
anion by human peripheral blood monocytes [72] and
neutrophils [73]. Presence of galectin-3 could induce a
respiratory burst in human peripheral blood neutrophils
after LPS exposure [74] paralleled by an increased binding
of galectin-3 to the surface of the cells, possibly through
functional receptors of galectin-3 in neutrophils CD66a and
CD66b [75]. It was recently shown that galectin-3 increases
phagocytic activity and CD66 surface expression on human
neutrophils [76]. The exposure of human Jurkat T cells to
galectin-3 stimulates the production of IL-2 [77], and it also
acts as a mediator of IgE production in B lymphocytes in
atopic eczema/dermatitis syndrome [78]. Galectin-3 was
shown to activate cardiac fibroblasts [79] and was increased
in synovial fibroblasts from rheumatoid arthritis patients
after adhesion to cartilage oligomeric matrix protein [80].

Galectin-3 was also shown to cross link Mgat5-modified
N-glycans on EGF and TGF-β, and delaying their removal
by constitutive endocytosis. It was speculated that the
presence of extra-cellular galectin-3 can be a determining
factor for prolonged cell activation [81]. On the other hand,
the extra-cellular galectin-3 can act as a suppressor of cell
activation as suggested by findings that galectin-3 cross-
linking of Mgat5-modified N glycans on T cell receptors
(TCR) prevents uncontrolled activation of T cells [82].

Regulation of Apoptosis by Extracellular Galectin-3

In the last decade, the role of galectin-3 as an anti-apoptotic
molecule has been well established. It imparts resistance in

response to various apoptotic insults in a wide variety of
cells. Over-expression of galectin-3 in the human breast
carcinoma cell line BT-549, resulted in reduced apoptotic
death induced by cis-diamminedichloroplatinum (cisplatin),
nitric oxide, radiation and anoikis compared to the parental
or the control transfected cells [9, 83]. Galectin-3 trans-
fected Jurkat cells (T lymphoma cell) were found to be
more resistant to apoptosis induced by anti-Fas antibodies
or staurosporine (protein kinase inhibitor) compared to the
non-transfected control cells [84, 85]. Galectin-3 is not a
member of the Bcl-2 gene family, however, it shares several
significant structural properties with Bcl-2. Both proteins
are rich in proline, glycine, and alanine amino acid residues
in the N-terminal domain and contain the Asp-Trp-Gly-Arg
(NWGR) motif in the C-terminal domain [85, 86]. This
motif, designated as the anti-death motif, is found in the
BH-1 domain of Bcl-2 and is shown to be critical for the
anti-apoptotic function of this protein [87]. Even though
endogenously expressed galectin-3 induced resistance to
apoptosis, there is no experimental evidence to indicate that
addition of galectin-3 exogenously induces apoptosis
resistance in tumor cell lines of epithelial origin. However,
it was reported recently that extra-cellular galectin-3 can
induce apoptosis in human T cells including human
peripheral blood mononuclear cells (PBMCs) and activated
mouse T-cells [88]. This would imply that tumor cells
secrete galectin-3 as a defense against infiltrating T-cells to
enable them to survive and proliferate. Interestingly, the
apoptotic sensitivity to galectin-3 varied among the differ-
ent cell types of T-cell lymphoma cell lines. Based on the
receptor type, two major signaling pathways have been
reported for extrinsic apoptotic signals; one using the death
receptors Fas (apo-1/CD95) and the other using TRAIL
(TNF related apoptosis inducing ligand or Apo2-L) [89,
90]. Fas are glycosylated type-1 transmembrane receptors
that activate either mitochondria dependent or independent
signaling pathways in the T cells in response to ligand,
depending on the amount of active caspase-8 produced at
the death-inducing signaling complex (DISC) [91–94].
Analysis of two kinds of T cell lymphoma cell lines
exhibiting either mitochondia independent (type I) and
mitochondria dependent (type II) pathways showed that
major difference between them is the presence of endoge-
nous galectin-3. Galectin-3 was reported to be a binding
partner of CD95 and galectin-3-null type I T-cell lines like
Jurkat, CEM, and MOLT-4 cells that were significantly
more sensitive to apoptosis by exogenous galectin-3 than
the type II cells SKW6.4 and H9, which have very high
expression of endogenous galectin-3 [95]. It was suggested
that there may be a cross talk between the anti-apoptotic
activity of endogenous and pro-apoptotic activity of
exogenous galectin-3 and the apoptotic effect may be
caused from a balance between the two. In addition, when
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galectin-3 was over-expressed in type II CEM cells, there
was binding of galectin-3 to CD95 receptor and the cells
displayed type 1 signaling pathways [95].

There is no report on the effect of exogenously added
galectin-3 on TRAIL induced apoptotic pathways in Tcells, but
galectin-3 over-expressing BT-549 breast cancer cells showed
dephosphorylation of Akt in response to TRAIL-induced
cytotoxicity [96] through regulation of phosphatase and tensin
homologue deleted on chromosome 10 (PTEN) [97].

The galectin-3-sensitive T-cells Jurkat and CEM, both
express CD29 and CD7 on the cell surface, whereas galectin-
3-insensitive cells like SKW6.4 and H9 express CD29 but
not CD7. Extracellular galectin-3 can bind to the CD29/CD7
complex, which triggers the activation of intracellular
apoptotic signaling toward the mitochondria inducing
cytochrome c release and caspase 3 activation [88].

Extracellular galectin-3 can also bind to the T-cell
receptor complex (TCR) through the polylactosamine
structure extended by N-acetylglucosaminyltransferase V
(GnT-V) and form clustering followed by down-regulation of
T-cell activity [82]. In addition, CD98, which is implicated in
the regulation of cell adhesion, growth and apoptosis, is a
galectin-3 binding partner found on the surface of T-cells
[53]. These results indicate that extra-cellular galectin-3
might not be an anti-apoptotic molecule by itself, but there is
the possibility that its interaction with a glycoconjugate
binding partner on the cell surface could protect cell viability
and anti-apoptotic activity in some cells.

Regulation of Angiogenesis and Tumor Progression
by Galectin-3

It was reported that secreted galectin-3 can induce
endothelial cell morphogenesis in vitro and angiogenesis
in vivo [54]. Binding of galectin-3 to the endothelial cell
surface is dependent on its carbohydrate recognition
domain as binding is specifically inhibited by a competitive
disaccharide lactose and polysaccharide modified citrus
pectin (MCP) [60]. In addition, the induction of endothelial
cell motility and multicellular network formation in vitro and
the stimulation of corneal angiogenesis in vivo provoked by
NG2, a transmembrane chondroitin sulfate proteoglycan,
was shown to be mediated by formation of NG2–galectin-
3–α3β1 integrin complex, suggesting a mechanism by
which galectin-3 may induce angiogenesis [62]. Using a
three-dimensional co-culture system of in vitro angiogene-
sis Shekhar et al. [10] demonstrated that galectin-3 is
important for the stabilization of the epithelial and
endothelial interactive network, as immuno-neutralization
with anti-galectin-3 antibodies abolished these interactions.
Over-expression of galectin-3 in transfected clones of
LNCaP, a galectin-3-negative human prostate cancer cell

line, induced in vivo tumor growth and angiogenesis [13].
Inhibitory studies were used to demonstrate significance of
galectin-3 during angiogenesis. Three novel low molecular
weight synthetic lactulose amines (SLA): N-lactulose-octa-
methylenediamine (LDO), N,N′-dilactulose-octamethylenedi-
amine (D-LDO), and N,N′-dilactulose-dodecamethylene
diamine (D-LDD) exhibiting differential ability to inhibit
binding of galectin-3 to the highly glycosylated protein 90K,
demonstrated selective regulatory effect in different events
linked to endothelial cell morphogenesis and angiogenesis
[98]. In addition, oral supplementation of modified citrus
pectin, a high pH and temperature modified hydrolysis
product of citrus pectin to nude mice showed reduced
metastatic and angiogenic potential in breast cancer cells
MDA-MB-435 [60].

Cleavage of Galectin-3 by MMPs In Vitro and In Vivo

Galectin-3 has a unique chimeric structure containing a
domain of Pro-Gly-Tyr tandem repeats of ∼110 amino acids
which connects the N-terminal to the C terminal. This α
collagen-like domain is susceptible to cleavage by matrix
metalloproteinases. Exhaustive bacterial collagenase degra-
dation of both the murine and human recombinant
homologues of galectin-3 generated a carboxy-terminal
polypeptide capable of maintaining the sugar-binding
properties of the cleaved molecule [27, 99–101]. Cleavage
of human recombinant galectin-3 by human MMPs was
first reported by Ochieng et al. [102], the cleavage site was
identified at the Ala62-Tyr63 bond resulting in a ∼22 and a
∼9 kDa product. These authors also showed that after
incubation with APMA activated MMP-2, cell surface
expression of galectin-3 was reduced indicating that cell
surface galectin-3 may also be cleaved by MMPs [102]. It
was later demonstrated that the ∼22 kDa cleaved product
lacks the capacity to hemagglutinate fixed red blood cells
and has reduced capacity to self-associate compared to the
intact galectin-3 [100]. In addition, cleavage of galectin-3
by metalloproteinases drastically improves its binding
interactions to laminin [100] and to endothelial cells
(HUVEC) [10]. It was postulated that cleavage of galec-
tin-3 by metalloproteinases results in an alteration of the
CRD culminating in higher affinity to glycans and reducing
the self association of the molecule thereby abrogating the
biological properties dependent on such associations or
homodimerization [100]. Shekhar et al. [10] detected
additional bands of ∼27 and ∼22 kDa in the conditioned
medium from the three-dimensional co-cultures of endo-
thelial and epithelial cells. These co-cultures also showed
extensive collagenolytic activity. Their results indicated that
MMPs may cleave galectin-3 in the extracellular milieu. It
has been well established that MMPs are synthesized as
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inactive proenzymes, which are activated by proteolytic
cleavage of the propeptide domain after secretion [103].
The surface [102] or secreted [10] galectin-3 could be
cleaved by extracellular MMPs. In another study by John et al.
[104] treatment with a NH2 terminally truncated form of
galectin-3 showed reduced tumor growth and metastasis of
MDA-MB-435 cells compared with the control group. These
authors concluded that truncated protein effectively competes
with intracellular and extracellular galectin-3 and inhibits its
hemophilic cross-linking and other types of protein–protein
interactions. To analyze the biological significance of
galectin-3 cleavage by MMPs, mutations were constructed
at and around the MMP cleavage site Ala62-Tyr63. The
results showed that A to C mutation at position 191 leading
to substitution of His64 with Pro confers resistance to
cleavage by MMP-2 and -9 at that position. Both the
galectin-3 variants (H64 and P64) were stably expressed in the
galectin-3 null breast cancer cell line BT-549. The cells
harboring a P64 variant showed an altered morphology,
reduced chemotaxis and chemo-invasion, abrogated resis-
tance to apoptosis, reduced tumor forming potential and
angiogenesis (the functions regulated by extracellular galec-
tin-3) as compared to the H64 galectin-3 harboring cells. On
the other hand, the functions regulated by intracellular
galectin-3, like cell proliferation and anchorage independent
growth efficiency remained unchanged [105]. These results
suggested that the extra-cellular cleavage of secreted

galectin-3 H64 by MMPs may play a significant role during
tumor development/progression. To analyze if this cleavage
could also be observed in vivo, tissue array consisting of the
progressive stages of breast cancer was stained with galectin-
3 monoclonal and polyclonal antibodies to selectively
differentiate between the intact and cleaved galectin-3. The
results showed that in the normal breast ducts no cleavage
could be observed. In lobular hyperplasia the intact protein
could be detected on the lobular side of the ducts, whereas the
cleaved protein could be detected adjacent to the stroma. In
ductal carcinoma in situ (DCIS), the full-length protein could
be detected in a few epithelial cells, while the cleaved protein
could be seen in the stroma. In the infilterating carcinomas, the
invasive cell clusters and the surrounding stroma were
positive for cleaved protein indicating that cleavage of
galectin-3 is vital for the progression of breast cancer
(unpublished data). A mouse model of human DCIS of the
breast was utilized in order to analyze whether these results
could be translated as a diagnostic tool to identify the activity
of MMPs in vivo. Part of the xenograft was fresh frozen to
perform in situ zymography, while the other part was paraffin-
embedded and stained with galectin-3 monoclonal and
polyclonal antibodies. The results show an overlap between
the MMP activities by in situ zymography and the cleavage of
galectin-3 indicating that this differential staining could
indeed be used as a surrogate diagnostic marker for MMP
activity in the developing breast tumor [105].

Fig. 1 Extracellular functions
mediated by galectin-3. The se-
creted galectin-3 potentiates an-
giogenesis by facilitating
migration, chemotaxis and mor-
phogenesis of endothelial cells.
It also induces T cell apoptosis.
The cell surface protein is involved
with homotypic and heterotypic
cell aggregation and invasion
leading to metastasis. Extracellular
galectin-3 cross-links cell surface
glycol-conjugates, form dimers
and multimers, and delivers sig-
nals inside the cell. The ∼22 kDa
fragment of MMP cleaved
galectin-3 binds to the glycan
receptors more efficiently than the
intact protein, the functions of
smaller fragments are as yet
unknown
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Concluding Remarks

Galectin-3 contributes to tumor progression through many
different mechanisms. The biological roles of galectin-3 were
initially attributed to its carbohydrate-binding activity. It was
thought to play a role largely in cell adhesion leading to
homotypic aggregation of tumor cell embolus in the blood
circulation. During the past decade a whole new spectrum of
its functions, unrelated to lectin activity, has been revealed and
a plethora of physiological functions in the extracellular
compartment have been assigned to it and more are yet to be
discovered. Extracellular galectin-3 was found to be involved
with cell–cell and cell–matrix adhesions, chemotaxis, chemo-
invasion, apoptosis of the immune cells, angiogenesis and
metastasis (Fig. 1). An under explored function of the
extracellular galectin-3 is its cleavage by MMPs, which
seems to play an important role in tumor progression. Cells
harboring cleavage resistant galectin-3 showed reduced
tumor growth, angiogenesis and resistance to apoptosis
compared to the cleavage sensitive galectin-3. Cleavage of
galectin-3 was observed increasingly with the progressive
stages of breast cancer emphasizing its significance during
tumor progression. It is yet to be established whether cleaved
galectin-3 fragments follow the same signaling pathways as
the full-length galectin-3. It was demonstrated that the larger
22 kDa fragment retained its carbohydrate-binding proper-
ties, albeit it binds to the glycan receptors with a higher
efficiency. The fate of the smaller fragments is as yet
unknown. Whether they bind to the same receptors as the
full-length protein or different ones; whether they are
internalized by the cells or remain in the extracellular matrix
and modulate the signaling pathways; what are the signaling
pathways regulated by these fragments are some of the
questions that still need to be answered.

Although the exact role of the galectin-3 cleavage in
tumor progression is yet to be determined, its clinical
significance as a surrogate diagnostic marker for the
activity of MMPs in the tissues has been proposed. It is
expected that identification and analysis of galectin-3
cleavage in cancer can be used as a tool for validation of
the effectiveness of MMP inhibitor therapy.

Acknowledgements This work was supported by NIH R37CA46120-
19 (A. Raz). The authors would like to thank Victor Hogan and Tirza Raz
for editing the manuscript.

References

1. Dumic J, Dabelic S, Flogel M (2006) Galectin-3: an open-ended
story. Biochim Biophys Acta 1760:616–635

2. Van den Brule FA, Fernandez PL, Buicu C et al (1997)
Differential expression of galectin-1 and galectin-3 during first
trimester human embryogenesis. Dev Dyn 209:399–405

3. Fowlis D, Colnot C, Ripoche MA et al (1995) Galectin-3 is
expressed in the notochord, developing bones, and skin of the
postimplantation mouse embryo. Dev Dyn 203:241–251

4. Davidson PJ, Li SY, Lohse AG et al (2006) Transport of
galectin-3 between the nucleus and cytoplasm. I. Conditions and
signals for nuclear import. Glycobiology 16:602–611

5. Li SY, Davidson PJ, Lin NY et al (2006) Transport of galectin-3
between the nucleus and cytoplasm. II. Identification of the
signal for nuclear export. Glycobiology 16:612–622

6. Davidson PJ, Davis MJ, Patterson RJ et al (2002) Shuttling of
galectin-3 between the nucleus and cytoplasm. Glycobiology
12:329–337

7. van den Brule FA, Waltregny D, Liu FT et al (2000) Alteration of
the cytoplasmic/nuclear expression pattern of galectin-3 correlates
with prostate carcinoma progression. Int J Cancer 89:361–367

8. Yoshii T, Fukumori T, Honjo Y et al (2002) Galectin-3
phosphorylation is required for its anti-apoptotic function and
cell cycle arrest. J Biol Chem 277:6852–6857

9. Yu F, Finley RL Jr., Raz A et al (2002) Galectin-3 translocates to
the perinuclear membranes and inhibits cytochrome c release
from the mitochondria. A role for synexin in galectin-3
translocation. J Biol Chem 277:15819–15827

10. Shekhar MP, Nangia-Makker P, Tait L et al (2004) Alterations in
galectin-3 expression and distribution correlate with breast
cancer progression: functional analysis of galectin-3 in breast
epithelial–endothelial interactions. Am J Pathol 165:1931–1941

11. Moisa A, Fritz P, Eck A et al (2007) Growth/adhesion-regulatory
tissue lectin galectin-3: stromal presence but not cytoplasmic/
nuclear expression in tumor cells as a negative prognostic factor
in breast cancer. Anticancer Res 27:2131–2139

12. Sanjuan X, Fernandez PL, Castells A et al (1997) Differential
expression of galectin 3 and galectin 1 in colorectal cancer
progression [see comments]. Gastroenterology 113:1906–1915

13. Califice S, Castronovo V, Van Den Brule F (2004) Galectin-3
and cancer (Review). Int J Oncol 25:983–992

14. Honjo Y, Inohara H, Akahani S et al (2000) Expression of
cytoplasmic galectin-3 as a prognostic marker in tongue
carcinoma. Clin Cancer Res 6:4635–4640

15. Hughes RC (1999) Secretion of the galectin family of mamma-
lian carbohydrate-binding proteins. Biochim Biophys Acta
1473:172–185

16. Nickel W (2005) Unconventional secretory routes: direct protein
export across the plasma membrane of mammalian cells. Traffic
6:607–614

17. Gong HC, Honjo Y, Nangia-Makker P et al (1999) The NH2
terminus of galectin-3 governs cellular compartmentalization and
functions in cancer cells. Cancer Res 59:6239–6245

18. Lukyanov P, Furtak V, Ochieng J (2005) Galectin-3 interacts
with membrane lipids and penetrates the lipid bilayer. Biochem
Biophys Res Commun 338:1031–1036

19. Sato S, Hughes RC (1994) Control of Mac-2 surface expression
on murine macrophage cell lines. Eur J Immunol 24:216–221

20. Lindstedt R, Apodaca G, Barondes SH et al (1993) Apical
secretion of a cytosolic protein by Madin–Darby canine kidney
cells. Evidence for polarized release of an endogenous lectin by a
nonclassical secretory pathway. J Biol Chem 268:11750–11757

21. Sato S, Burdett I, Hughes RC (1993) Secretion of the baby
hamster kidney 30-kDa galactose-binding lectin from polarized
and nonpolarized cells: a pathway independent of the endoplas-
mic reticulum-Golgi complex. Exp Cell Res 207:8–18

22. Mehul B, Hughes RC (1997) Plasma membrane targeting, vesicular
budding and release of galectin 3 from the cytoplasm of mammalian
cells during secretion. J Cell Sci 110 (Pt 10):1169–1178

23. Sato S, Hughes RC (1994) Regulation of secretion and surface
expression of Mac-2, a galactoside-binding protein of macro-
phages. J Biol Chem 269:4424–4430

Galectin-3 and the tumor microenvironment 49



24. Thery C, Boussac M, Veron P et al (2001) Proteomic analysis of
dendritic cell-derived exosomes: a secreted subcellular compart-
ment distinct from apoptotic vesicles. J Immunol 166:7309–7318

25. Baptiste TA, James A, Saria M et al (2007) Mechano-transduction
mediated secretion and uptake of galectin-3 in breast carcinoma
cells: implications in the extracellular functions of the lectin. Exp
Cell Res 313:652–664

26. Zhu WQ, Ochieng J (2001) Rapid release of intracellular
galectin-3 from breast carcinoma cells by fetuin. Cancer Res
61:1869–1873

27. Agrwal N, Sun Q, Wang SY et al (1993) Carbohydrate-binding
protein 35. I. Properties of the recombinant polypeptide and the
individuality of the domains. J Biol Chem 268:14932–14939

28. Umemoto K, Leffler H, Venot A et al (2003) Conformational
differences in liganded and unliganded states of galectin-3.
Biochemistry 42:3688–3695

29. Mazurek N, Conklin J, Byrd JC et al (2000) Phosphorylation of
the beta-galactoside-binding protein galectin-3 modulates bind-
ing to its ligands. J Biol Chem 275:36311–36315

30. Kuwabara I, Liu FT (1996) Galectin-3 promotes adhesion of
human neutrophils to laminin. J Immunol 156:3939–3944

31. van den Brule FA, Buicu C, Sobel ME et al (1995) Galectin-3, a
laminin binding protein, fails to modulate adhesion of human
melanoma cells to laminin. Neoplasma 42:215–219

32. Sato S, Hughes RC (1992) Binding specificity of a baby hamster
kidney lectin for H type I and II chains, polylactosamine glycans,
and appropriately glycosylated forms of laminin and fibronectin.
J Biol Chem 267:6983–6990

33. Hikita C, Vijayakumar S, Takito J et al (2000) Induction of
terminal differentiation in epithelial cells requires polymerization
of hensin by galectin 3. J Cell Biol 151:1235–1246

34. Ochieng J, Warfield P, Green-Jarvis B et al (1999) Galectin-3
regulates the adhesive interaction between breast carcinoma cells
and elastin. J Cell Biochem 75:505–514

35. Probstmeier R, Montag D, Schachner M (1995) Galectin-3, a
beta-galactoside-binding animal lectin, binds to neural recogni-
tion molecules. J Neurochem 64:2465–2472

36. Ochieng J, Leite-Browning ML, Warfield P (1998) Regulation of
cellular adhesion to extracellular matrix proteins by galectin-3.
Biochem Biophys Res Commun 246:788–791

37. Matarrese P, Fusco O, Tinari N et al (2000) Galectin-3
overexpression protects from apoptosis by improving cell
adhesion properties. Int J Cancer 85:545–554

38. Raz A, Zhu DG, Hogan V et al (1990) Evidence for the role of
34-kDa galactoside-binding lectin in transformation and metas-
tasis. Int J Cancer 46:871–877

39. Dong S, Hughes RC (1997) Macrophage surface glycoproteins
binding to galectin-3 (Mac-2-antigen). Glycoconj J 14:267–
274

40. Ohannesian DW, Lotan D, Thomas P et al (1995) Carcinoem-
bryonic antigen and other glycoconjugates act as ligands for
galectin-3 in human colon carcinoma cells. Cancer Res 55:2191–
2199

41. Bresalier RS, Byrd JC, Wang L et al (1996) Colon cancer mucin:
a new ligand for the beta-galactoside-binding protein galectin-3.
Cancer Res 56:4354–4357

42. Warfield PR, Makker PN, Raz A et al (1997) Adhesion of human
breast carcinoma to extracellular matrix proteins is modulated by
galectin-3. Invasion Metastasis 17:101–112

43. Furtak V, Hatcher F, Ochieng J (2001) Galectin-3 mediates the
endocytosis of beta-1 integrins by breast carcinoma cells.
Biochem Biophys Res Commun 289:845–850

44. Ochieng J, Gerold M, Raz A (1992) Dichotomy in the laminin-
binding properties of soluble and membrane-bound human
galactoside-binding protein. Biochem Biophys Res Commun
186:1674–1680

45. Woo HJ, Lotz MM, Jung JU et al (1991) Carbohydrate-binding
protein 35 (Mac-2), a laminin-binding lectin, forms functional
dimers using cysteine 186. J Biol Chem 266:18419–18422

46. Knibbs RN, Agrwal N, Wang JL et al (1993) Carbohydrate-
binding protein 35. II. Analysis of the interaction of the
recombinant polypeptide with saccharides. J Biol Chem
268:14940–14947

47. Yang RY, Hill PN, Hsu DK et al (1998) Role of the carboxyl-
terminal lectin domain in self-association of galectin-3. Bio-
chemistry 37:4086–4092

48. Ahmad N, Gabius HJ, Andre S et al (2004) Galectin-3
precipitates as a pentamer with synthetic multivalent carbohy-
drates and forms heterogeneous cross-linked complexes. J Biol
Chem 279:10841–10847

49. Inohara H, Akahani S, Koths K et al (1996) Interactions between
galectin-3 and Mac-2-binding protein mediate cell–cell adhesion.
Cancer Res 56:4530–4534

50. Glinsky VV, Glinsky GV, Rittenhouse-Olson K et al (2001) The
role of Thomsen–Friedenreich antigen in adhesion of human
breast and prostate cancer cells to the endothelium. Cancer Res
61:4851–4857

51. Glinsky VV, Huflejt ME, Glinsky GV et al (2000) Effects of
Thomsen–Friedenreich antigen-specific peptide P-30 on beta-
galactoside-mediated homotypic aggregation and adhesion to the
endothelium of MDA-MB-435 human breast carcinoma cells.
Cancer Res 60:2584–2588

52. Grassadonia A, Tinari N, Iurisci I et al (2004) 90K (Mac-2 BP)
and galectins in tumor progression and metastasis. Glycoconj J
19:551–556

53. Hughes RC (2001) Galectins as modulators of cell adhesion.
Biochimie 83:667–676

54. Nangia-Makker P, Honjo Y, Sarvis R et al (2000) Galectin-3
induces endothelial cell morphogenesis and angiogenesis. Am J
Pathol 156:899–909

55. Lehr JE, Pienta KJ (1998) Preferential adhesion of prostate
cancer cells to a human bone marrow endothelial cell line [see
comments]. J Natl Cancer Inst 90:118–123

56. Khaldoyanidi SK, Glinsky VV, Sikora L et al (2003) MDA-MB-
435 human breast carcinoma cell homo- and heterotypic
adhesion under flow conditions is mediated in part by Thom-
sen–Friedenreich antigen–galectin-3 interactions. J Biol Chem
278:4127–4134

57. Gil CD, La M, Perretti M et al (2006) Interaction of human
neutrophils with endothelial cells regulates the expression of
endogenous proteins annexin 1, galectin-1 and galectin-3. Cell
Biol Int 30:338–344

58. Krishnan V, Bane SM, Kawle PD et al (2005) Altered melanoma
cell surface glycosylation mediates organ specific adhesion and
metastasis via lectin receptors on the lung vascular endothelium.
Clin Exp Metastasis 22:11–24

59. Inohara H, Raz A (1994) Effects of natural complex carbohy-
drate (citrus pectin) on murine melanoma cell properties related
to galectin-3 functions. Glycoconj J 11:527–532

60. Nangia-Makker P, Hogan V, Honjo Y et al (2002) Inhibition of
human cancer cell growth and metastasis in nude mice by oral
intake of modified citrus pectin. J Natl Cancer Inst 94:1854–1862

61. Zou J, Glinsky VV, Landon LA et al (2005) Peptides specific to
the galectin-3 carbohydrate recognition domain inhibit metastasis-
associated cancer cell adhesion. Carcinogenesis 26: 309–318

62. Fukushi J, Makagiansar IT, Stallcup WB (2004) NG2 proteo-
glycan promotes endothelial cell motility and angiogenesis via
engagement of galectin-3 and alpha3beta1 integrin. Mol Biol
Cell 15:3580–3590

63. Sano H, Hsu DK, Yu L et al (2000) Human galectin-3 is a novel
chemoattractant for monocytes and macrophages. J Immunol
165:2156–2164

50 P. Nangia-Makker et al.



64. Camby I, Belot N, Rorive S et al (2001) Galectins are differentially
expressed in supratentorial pilocytic astrocytomas, astrocytomas,
anaplastic astrocytomas and glioblastomas, and significantly mod-
ulate tumor astrocyte migration. Brain Pathol 11:12–26

65. SavinoW,Mendes-Da-CruzDA, Smaniotto S et al (2004)Molecular
mechanisms governing thymocyte migration: combined role of
chemokines and extracellular matrix. J Leukoc Biol 75:951–961

66. O'Driscoll L, Linehan R, Liang YH et al (2002) Galectin-3
expression alters adhesion, motility and invasion in a lung cell
line (DLKP), in vitro. Anticancer Res 22:3117–3125

67. Lagana A, Goetz JG, Cheung P et al (2006) Galectin binding to
Mgat5-modified N-glycans regulates fibronectin matrix remod-
eling in tumor cells. Mol Cell Biol 26:3181–3193

68. Hittelet A, Camby I, Nagy N et al (2003) Binding sites for Lewis
antigens are expressed by human colon cancer cells and
negatively affect their migration. Lab Invest 83:777–787

69. Debray C, Vereecken P, Belot N et al (2004) Multifaceted role of
galectin-3 on human glioblastoma cell motility. Biochem Bio-
phys Res Commun 325:1393–1398

70. Nangia-Makker P, Ochieng J, Christman JK et al (1993)
Regulation of the expression of galactoside-binding lectin during
human monocytic differentiation. Cancer Res 53:5033–5037

71. Jeng KC, Frigeri LG, Liu FT (1994) An endogenous lectin,
galectin-3 (epsilon BP/Mac-2), potentiates IL-1 production by
human monocytes. Immunol Lett 42:113–116

72. Liu FT, Hsu DK, Zuberi RI et al (1995) Expression and function
of galectin-3, a beta-galactoside-binding lectin, in human
monocytes and macrophages. Am J Pathol 147:1016–1028

73. Yamaoka A, Kuwabara I, Frigeri LG et al (1995) A human
lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide
production by neutrophils. J Immunol 154:3479–3487

74. Almkvist J, Faldt J, Dahlgren C et al (2001) Lipopolysaccharide-
induced gelatinase granule mobilization primes neutrophils for
activation by galectin-3 and formylmethionyl-Leu-Phe. Infect
Immun 69:832–837

75. Feuk-Lagerstedt E, Jordan ET, Leffler H et al (1999) Identifica-
tion of CD66a and CD66b as the major galectin-3 receptor
candidates in human neutrophils. J Immunol 163:5592–5598

76. Fernandez GC, Ilarregui JM, Rubel CJ et al (2005) Galectin-3
and soluble fibrinogen act in concert to modulate neutrophil
activation and survival: involvement of alternative MAPK
pathways. Glycobiology 15:519–527

77. Hsu DK, Hammes SR, Kuwabara I et al (1996) Human T
lymphotropic virus-I infection of human T lymphocytes induces
expression of the beta-galactoside-binding lectin, galectin-3. Am
J Pathol 148:1661–1670

78. Kimata H (2002) Enhancement of IgE production in B cells by
neutrophils via galectin-3 in IgE-associated atopic eczema/
dermatitis syndrome. Int Arch Allergy Immunol 128:168–170

79. Sharma UC, Pokharel S, van Brakel TJ et al (2004) Galectin-3
marks activated macrophages in failure-prone hypertrophied hearts
and contributes to cardiac dysfunction. Circulation 110:3121–3128

80. Neidhart M, Zaucke F, von Knoch R et al (2005) Galectin-3 is
induced in rheumatoid arthritis synovial fibroblasts after adhesion to
cartilage oligomeric matrix protein. Ann Rheum Dis 64:419–424

81. Dennis JW, Pawling J, Cheung P et al (2002) UDP-N-
acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylgluco-
saminyltransferase V (Mgat5) deficient mice. Biochim Biophys
Acta 1573:414–422

82. Demetriou M, Granovsky M, Quaggin S et al (2001) Negative
regulation of T-cell activation and autoimmunity by Mgat5 N-
glycosylation. Nature 409:733–739

83. Suliman A, Lam A, Datta R et al (2001) Intracellular
mechanisms of TRAIL: apoptosis through mitochondrial-depen-
dent and -independent pathways. Oncogene 20:2122–2133

84. Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of
galectins. Biochim Biophys Acta 1572:263–273

85. Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3
modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S
A 93:6737–6742

86. Akahani S, Nangia-Makker P, Inohara H et al (1997) Galectin-3:
a novel antiapoptotic molecule with a functional BH1 (NWGR)
domain of Bcl-2 family. Cancer Res 57:5272–5276

87. Hanada M, Aime-Sempe C, Sato T et al (1995) Structure–
function analysis of Bcl-2 protein. Identification of conserved
domains important for homodimerization with Bcl-2 and hetero-
dimerization with Bax. J Biol Chem 270:11962–11969

88. Fukumori T, Takenaka Y, Yoshii T et al (2003) CD29 and CD7
mediate galectin-3-induced type II T-cell apoptosis. Cancer Res
63:8302–8311

89. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and
modulation. Science 281:1305–1308

90. Schulze-Osthoff K, Ferrari D, Los M et al (1998) Apoptosis
signaling by death receptors. Eur J Biochem 254:439–459

91. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-
1/Fas) signaling pathways. Embo J 17:1675–1687

92. Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res
256:12–18

93. Peter ME, Krammer PH (1998) Mechanisms of CD95 (APO-1/
Fas)-mediated apoptosis. Curr Opin Immunol 10:545–551

94. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC
and beyond. Cell Death Differ 10:26–35

95. Fukumori T, Takenaka Y, Oka N et al (2004) Endogenous
galectin-3 determines the routing of CD95 apoptotic signaling
pathways. Cancer Res 64:3376–3379

96. Lee YJ, Song YK, Song JJ et al (2003) Reconstitution of galectin-3
alters glutathione content and potentiates TRAIL-induced cytotox-
icity by dephosphorylation of Akt. Exp Cell Res 288:21–34

97. Mazurek N, Sun YJ, Liu KF et al (2007) Phosphorylated
galectin-3 mediates tumor necrosis factor-related apoptosis-
inducing ligand signaling by regulating phosphatase and tensin
homologue deleted on chromosome 10 in human breast
carcinoma cells. J Biol Chem 282:21337–21348

98. Rabinovich GA, Cumashi A, Bianco GA et al (2006) Synthetic
lactulose amines: novel class of anticancer agents that induce tumor-
cell apoptosis and inhibit galectin-mediated homotypic cell aggrega-
tion and endothelial cell morphogenesis. Glycobiology 16:210–220

99. Hsu DK, Zuberi RI, Liu FT (1992) Biochemical and biophysical
characterization of human recombinant IgE- binding protein, an
S-type animal lectin. J Biol Chem 267:14167–14174

100. Ochieng J, Green B, Evans S et al (1998) Modulation of the
biological functions of galectin-3 by matrix metalloproteinases.
Biochim Biophys Acta 1379:97–106

101. Raz A, Pazerini G, Carmi P (1989) Identification of the
metastasis-associated, galactoside-binding lectin as a chimeric
gene product with homology to an IgE-binding protein. Cancer
Res 49:3489–3493

102. Ochieng J, Fridman R, Nangia-Makker P et al (1994) Galectin-3
is a novel substrate for human matrix metalloproteinases-2 and -
9. Biochemistry 33:14109–14114

103. Nagase H, Woessner JF, Jr. (1999) Matrix metalloproteinases. J
Biol Chem 274:21491–21494

104. John CM, Leffler H, Kahl-Knutsson B et al (2003) Truncated
galectin-3 inhibits tumor growth and metastasis in orthotopic
nude mouse model of human breast cancer. Clin Cancer Res
9:2374–2383

105. Nangia-Makker P, Raz T, Tait L, Hogan V, Fridman R, Raz A
(2007) Galectin-3 cleavage: a novel surrogate marker for matrix
metalloproteinase activity in growing breast cancer. Cancer Res
67:11760–11768

Galectin-3 and the tumor microenvironment 51


	Regulation of Tumor Progression by Extracellular Galectin-3
	Abstract
	Introduction
	Structure of Galectin-3 and Its Cellular and Extracellular Distribution in Normal and Cancer Cells
	Role of Galectin-3 in Cell–Matrix and Cell–Cell Interactions
	Role of Galectin-3 in Cell Migration, Chemotaxis and Cell Activation
	Regulation of Apoptosis by Extracellular Galectin-3
	Regulation of Angiogenesis and Tumor Progression by Galectin-3
	Cleavage of Galectin-3 by MMPs In Vitro and In Vivo
	Concluding Remarks
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


