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Abstract
Numerical modeling is an important tool assisting in the designing and optimization of the production technology. The
highest predictive capabilities are offered by multiscale modeling. The most important limitation of its wide application is
computational cost. One of possible solutions is application of metamodels for fine scale modeling. In this paper, a systematic
approach to development of metamodels is presented. All necessary steps, analyzing the model, selecting the metamodel
inputs and outputs, gathering the training and testing datasets, choosing a metamodelling technique, training and testing the
metamodel are described with a scientific background and practical examples. Development of the exemplary metamodel,
replacing thermodynamic modeling of precipitation kinetic is presented.
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Introduction

Most modern metallic products are highly complex and
sophisticated. In order to achieve the desired material
properties, manufacturers aim to control the development
of their products down to the microscopic scale. The
production processes usually consist in a succession of
thermo-mechanical steps during which the microstructure
of the material evolves in a complex manner. Numerical
modeling is used to assist in the designing and optimization
of the production technology, but modeling the thermo-
mechanical treatments (TMT) of metallic alloys requires the
consideration of various phenomena happening in several
spatial and temporal scales.

Complex multiscale models for metallic materials usu-
ally combine a macroscopic solution of heat transfer and
deformation with finer scale models for the underlying
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microscopic phenomena such as dislocation density evolu-
tion, recrystallization and phase transformations. The Agile
Multiscale Modeling Methodology (AM3) [1–4] was devel-
oped in order to ease the development of such models.
It defines a standard model structure in which a macro-
scopic component interacts with several microscopic mod-
ules according to a set of user-defined rules. Although the
AM3 simplifies the model structure, the microscopic mod-
ules can remain quite complex and consuming in terms of
computer power. Modeling the kinetics of phase transfor-
mations, for example, often requires the use of a third party,
resource demanding thermodynamics solver, that cancels
the gains of the AM3.

In order to deal with such demanding microscopic
models, the concept of metamodelling is introduced in
the AM3. Metamodels are designed to cut down the
complexity of the models to which they refer while keeping
an acceptable degree of accuracy and reliability. The
models are usually built to represent physical mechanisms,
while the metamodels are representations of the models,
numerically built to reduce their complexity. In this paper,
a metamodel is built on top of a microscopic precipitation
model for second-phase particles, within the framework of
an AM3-structured multiscale model for TMT of metallic
materials [4].
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Agile multiscale modeling technology (AM3)

The AM3 is a design methodology for structuring complex
multiscale models. It aims to reduce the programming effort
required to develop fully coupled models, and limit the
computing resources needed by the model. The multiscale
model consists in a macroscopic module linked to several
lower-scale modules. The state of the model is continuously
tracked by a Knowledge Base System and relayed to a
control unit that decides on the run whether to use a lower
scale model, and which one to use, in order to provide the
best compromise between reliability and computing time.
The decisions made by the control unit are based on a set of
user defined rules that provide, among others, the range of
applicability of each fine-scale model.

Fine scale models classically feature local variables,
averaged over a Representative Volume Element (RVE)
or a Statistical Volume Element (SVE) [5, 6]. In a
coarse domain, an instance of the fine scale model needs
to be run for each computational point. If the fine
scale model is computationally demanding, the overall
simulation will require large computational resources and/or
a long computational time, even in a parallel or a cloud
environment. Instead, the AM3 framework introduces
adaptability, meaning that the structure of the multiscale
model can adapt to the actual conditions – phenomena
expected to be present in a process, required reliability
and available computing power. Fine scale models are used
only when and where they are needed. In the original AM3
approach, fine scale models could just be turned on or off.
In presented research, several models may be available for
the same variables, differing mainly by the computational
costs and the reliability but also by the range of applicability.
The control unit can choose the most relevant one. For
example, there could be two models of recrystallization,
one based on Internal Variable (IV) approach [7] and a
second based on Phase Field method [8]. The first is much
less computationally demanding, however reliability of the
IV-based model worsens rapidly when process conditions
become different from the ones for which the IV model had
been calibrated. Hence, in some range of process parameters
both models provides the same reliability. In other range,
the IV model is clearly non-applicable. In both ranges an
optimal choice of the model is clear – IV-based in the first
one and Phase Field in the second. However, there is still a
range when both models may be used and their relevancy
depends on process parameters but also required reliability
and available computing power. In the present state of
the AM3 framework, the mentioned above KBS system is
able to decide is fine scale model necessary in particular

computational point and if yes, which fine scale model is
most relevant in particular conditions and requirements.

Themetamodelling idea

A computer model (hereinafter referred to just as “model”)
is the algorithms and equations used to capture the behavior
of the process.

Simulating real processes usually requires complex
models, which in turn require significant computing
resources. Therefore, it makes sense to look for approximate
methods that allow a reduction of computing time
while keeping a required accuracy. The main idea of
metamodelling lies in the assumption that a metamodel
(called also the surrogate model) approximates a model
previously defined [9]. The metamodel must accurately
correspond to the model, but its output has to be
returned with a significantly lower computational effort than
using the model. Metamodelling is a construction of an
approximate model of the analyzed process on the basis
of the model of the same process. In other words, the
metamodel is the model of the model. The accuracy of
the metamodel, usually verified using statistical methods,
depends on the applied metamodelling technique and the
number of measured data points used to parametrize the
metamodel. Generally, the larger the dataset used to train
a metamodel, the greater the degree of accuracy achieved.
However, producing a data point requires a time consuming
simulation using the model. Therefore it is advisable to
restrict the number of data points. This can be achieved
using Sensitivity Analysis (SA) [10, 11] or Design of
Experiments (DoE) [12]. Metamodels can be built using
several approaches. Two of them will be considered within
the scope of this work: the Artificial Neural Network
method and the Kriging method [13].

The majority of metamodel applications concerns single-
scale models, but Hambli and Barkaoui presented the
application of a metamodel in multiscale modeling [14,
15]. Combining a knowledge-based adaptive multiscale
model with metamodelling is a promising idea in the
context of the AM3 approach. If metamodels of the fine
scale models were to be added to the set of available
choices, they would be promoted by the KBS due to their
lower computational requirements, if they only provide
acceptable reliability. However, this approach is more
challenging than classical metamodelling. AM3 is a generic
methodology, independent of any particular numerical
problem. Hence, the issue is not to develop a metamodel for
particular phenomena, but rather to develop a methodology,
supporting the development of metamodels. Also, because
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AM3 promotes adaptability, any metamodel developed in
that context must be described with corresponding rules and
facts in the KBS concerning their conditions of applicability
and reliability.

The general workflow

The general workflow of development of a metamodel
process consists of six steps:

1. Analyzing the model
2. Selecting the metamodel inputs and outputs
3. Gathering the training and testing datasets
4. Choosing a metamodelling technique
5. Training the metamodel
6. Testing the metamodel.

The preliminary analysis of a model provides some
information about its character. Knowledge about the model
linearity and a time invariance is very useful during the
development of a metamodel. Particularly, if the model
takes into consideration the history of the process, a
different metamodelling technique must be used. Input
selection for the metamodel can be done arbitrarily by
the designer [16] or based on a sensitivity analysis [17]
(described in the next section). The next step consists in
gathering training and testing datasets, for which multiple
simulations are required. The simulations done during the
SA can additionally be used for that purpose. Basing on
the character of the model (linearity, time invariance etc.)
and the size of the training dataset, a technique is chosen
to build the metamodel. There are no clear guidelines on
how to make this decision. Some hints can be found in [13].
A metamodel training method is dedicated to each specific
metamodel type. Final testing of the developed metamodel
is performed with statistical evaluation methods.

Sensitivity analysis

Sensitivity analysis (SA) helps investigating the influence
of the input parameters on the model outputs [10, 11].
A physical phenomenon usually is described as a system
of mathematical equations (model of a problem) and
the parameters of the model (the input and coefficients)
characterize the phenomenon. The main objectives of a
sensitivity analysis are threefold: i) determine the regularity
and reliability of the model to verify its structure, ii)
determine the parameters sets having the lowest and highest
impact on the model and iii) determine possible correlations
between model parameters. In this paper, two algorithms of
SA are used: the method called Factorial Design (FD) [10]

and an approach based on the Morris Design (MD) [18]. The
main assumaptions and the algorithms steps are presented
briefly below.

In the two-level FD, for each parameter the upper limit
(marked as ”+”) and the lower limit (marked as ”-”) is
specified and they define two-levels of the parameter. The
points in the algorithm are generated starting with all low
levels and ending levels. It means that for k parameters,
model is run 2k times. The average response from high level
runs is contrasted with the average response from the low
runs to determine the effect:

EffectFD =
∑

y+

n+ −
∑

y−

n− (1)

where y is the model output, ”+”, ”-” is the upper/lower
limit of the parameter range, respectively, n is the number
of model simulations at each level.

In the MD algorithm, the term main effect of parameter is
introduced and it is determined by computing a number of
local measures at different points in the input space and next
estimated by mean value and standard deviation. Let x be an
n-dimensional vector of model parameters xi . The primary
assumption of the algorithm is that all xi components are
defined on [0, 1] interval. In most practical problems xi

components are of various physical units and the parameters
have to be rescaled to [0, 1]. The conversion is necessary
to compare the results obtained for various parameters. It is
feasible only if estimated elementary effects are expressed
with the same units for all parameters. Let the components
xi , i = 1, . . . n, accept k values in the set {0, 1/(k − 1)/k −
2), . . . , 1}. Then the parameters domain � ⊆ �n forms an
n-dimensional k-level grid. Let � depend on k and describe
the side length of the grid element:

� = 1

k − 1
(2)

The elementary effect ξi of the ith parameter at a given point
x calculated for y model output is defined as:

ξi (x) =
∣
∣
∣
∣
y(x1, . . . , xi−1, xi + �, xi+1, . . . , xk) − y(x)

�

∣
∣
∣
∣

(3)

where x is any value in the � domain such that the perturbed
point x + � is also in �. A finite distribution Fi for each
parameter xi is obtained by sampling x in �. The number of
elements of Fi is equal to (k − 1)kn−1.

Distribution Fi of elementary effects is described by
mean μ and standard deviation σ . A mean characterizes
the sensitivity of the model output with respect to the ith

parameter. A high mean indicates that the parameter is
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important and it substantially influences the output. A high
standard deviation implies that the parameter interacts with
other parameters or its effect to the model is nonlinear.

Comparing MD and the two-level FD methods of
estimation the parameter effect to model output, it is
observed, that FD is computationally cheaper than MD: for
three parameters, FD requires 23 = 8 runs of the model
while MD needs 16 runs to obtained equivalent results.

In most metamodelling methods, keeping inputs with a
low sensitivity index might decrease the reliability of the
metamodel. Increasing the number of input parameters also
exponentially increases the training time and the minimal
cardinal of the training set. In the context of metamodelling,
a sensitivity analysis is used to optimize the structure of
the metamodel by comprehensively reducing the number of
inputs [19].

The case

The exemplary case introduced here after follows up on the
author’s previous work [4], where an AM3 structured mul-
tiscale model for TMT of metallic alloys is developed. It
is composed of three main components: (i) a macroscale
module for the macroscopic deformation and heat flux dur-
ing thermo-mechanical treatment, typically a finite element
code, (ii) a constitutive module calculating the mechanical
response of the material to the evolution of user defined
microscopic variables and (iii) the microsctural module(s)
in charge of computing the microscopic mechanisms behind
the evolution of the aforementioned internal variables.

Detailed discussion of the whole model can be found
in [4]. From the perspective of this paper, it is impor-
tant that the macroscopic component of the multiscale
model depends on several parameters of a microstruc-
ture, including precipitations. In this work, a commercial
grade aluminum alloy 6082 is annealed in isothermal con-
dition between 250circC and 550circC. During annealing,
phase transformations are expected happen. The external
materials calculator MatCalc [20, 21] is integrated in the
multiscale model as a microscopic that computes the precip-
itation kinetics of second-phase particles. It is however only
one-way coupled so far: the material state and the environ-
mental variables (temperature, heat flux) calculated by the
macroscale model is passed to MatCalc, but there is no feed-
back. In many cases this solution is sufficient — usually,
deformation happens on a much shorter time scale than pre-
cipitation kinetics. When that is not any more the case, for
example during static heat treatment, a full coupling is nec-
essary. The target structure of the multiscale model is shown
in Fig. 1.

The main obstacle to a direct integration of a Thermody-
namics solver for precipitation kinetics into the macroscopic

Fig. 1 The configuration of multiscale model

model is the computation cost. In the context of finite ele-
ment simulations, the precipitation model should be run for
each element in the FE mesh, leading to very large compu-
tation times. It is possible to replace the Thermodynamics
solver with empirical equations and the IV approach [22]
to reduce the computation time, but numerous assumptions
and simplifications are necessary. Alternatively, the model
for precipitation may be replaced with a metamodel.

Model (step 1)

The precipitation model actually consists in an external
solver — the Matcalc thermodynamic toolbox — that
aims to simulate the kinetics of phase transformations
based on distinct physical mechanisms, such as atomic
diffusion in solids, cluster migration, vacancy formation and
annihilation, interface migration, etc. Three initial material
states, obtained with pre-computations were considered: as
cast, homogenized and hot-rolled. The three states differ
mainly by their state of precipitation, i.e. the number
of phases present in their microstructure, the quantity of
particles of each phase and their distribution, but also by the
quantity of structural defects (dislocations, grain/subgrain
boundaries, atomic vacancies) they present. Structural
defects promote diffusion, therefore they play a crucial role
in the kinetics of phase transformation.

In a MatCalc script, it is possible to activate/deactivate
the presence of a particular phase, making it handy to
simulate different initial material states.

The independent variables are the temperature and the
accumulated strain, for each element of the FE mesh. The
MatCalc model does not impose any restriction on the
values of these conditions (in reasonable range). Contrary,
development of the metamodel requires strictly defined
range of input values since the training records cannot be too
sparsely distributed (to keep the accuracy of the metamodel
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on acceptable level) and their number is limited (due to
the restricted time necessary to generate the training set).
Additionally, the response of the metamodel should only
feature a limited number of output variables. Hence, the
model upon which it is based must be described with a
precisely-defined, limited set of independent input variables
— constrained by lower and upper limits — and a set of
output variables. This means that the metamodel is restricted
to represent a family of processes, loosing a part of the
model generality. The metamodel developed in this work
is able to describe a set of TMT processes, consisting of
heating up, holding at high temperature and cooling down
to room temperature.

Inputs and outputs(step 2)

The family of TMT processed here can be described with
7 parameters. Six parameters are necessary to describe the
process itself, namely the grain size, the subgrain size, the
heating and cooling rates, the isothermal holding time and
the temperature history (Fig. 2a). The seventh parameter is
a certain initial precipitation state that is required by the
model (as cast, homogenized or hot-rolled).

Numerical simulations are often conducted only with
nominal boundary conditions, the way they are described
theoretically. But in a large FE computational domain, the

Fig. 2 The exemplary model outputs (for cast case)

Table 1 Lower and upper bounds of the input parameters

Variable Symbol Lower bound Upper bound

grain size gs 50μm 300μm

subgrain size sgs 50μm 200μm

annealing temperature T i 250 ◦C 550 ◦C

heating rate hr 0.02 ◦C s−1 0.5 ◦C s−1

holding time t i 1000s 14000s

cooling rate cr 0.01 ◦C s−1 2 ◦C s−1

local conditions may significantly differ from the nominal
ones, mainly because of the shape of the part and the
applied heating and cooling methods (e.g. the “nominal”
cooling rate is 2 ◦C s−1, while “real” cooling rates are much
higher close to the sample surface and lower deep inside).
Therefore, the range of parameters for the metamodel
must exceed the technologically justified range. The chosen
lower and upper bounds are shown in Table 1.

The last issue is the output of the model. Many outputs
are made available by the MatCalc simulator, of which
the number of precipitates and their size are the most
relevant in the context of the multiscale model described
above. MatCalc outputs detailed distributions of the number
of precipitates and their diameter, which cannot be used
under this form in the other models (like the flow stress
model), nor can be reproduced by a metamodel. In this
work, the outputs from the precipitation kinetic model are:
(i) the aggregated mean precipitate diameters, (ii) their
phase fractions and (iii) the numbers of precipitates for all
second phases, with a lower limit of 0.01μm imposed on the
particle diameter. The aggregated number of precipitates N

is computed with the following formula:

N =
card(P )∑

p=1

card(Rp)∑

i=1

np,i (4)

Where P is the set of all phases, Rp is the set of all
precipitates of phase p, and np,i counts as 1 if the ith particle
of the pth phase has a diameter greater than 0.01μm, 0
otherwise. Exemplary output values are shown in Fig. 2b–d.

Training data (step 3)

Acquiring data for training the metamodel requires running
the model numerous times. If the computational time of
a single run is high, the whole procedure requires an
unacceptable time. Before defining the parameter ranges
to be used in a numerical experiment, the dependency
of the computing time on the input parameters has
been investigated. For each of the six input parameters,
simulations were ran with the lower bound, the medium
value and the upper bound, and that for all three initial
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Fig. 3 Sensitivity analysis for computing time of a simulating model

material states. It was observed that the computation
time was very disperse. With an Intel Core i7, most
of the simulations lasted below 50s, but several runs
were not completed after 3600s, which is too long for
training purposes. In order to keep reasonable computation
times, the range of applicability of the metamodel had
to be limited. A sensitivity analysis conducted with a
factorial design methodology revealed that the computation
time depends mostly on the annealing temperature, the
cooling rate and the initial state of the material (Fig. 3).
Computations for 13 temperatures (i.e. 250, 275, 300, 325,
350, 375, 400, 425, 450, 475, 500, 525, 550 ◦C), 9 cooling
rates (i.e. 0.01, 0.02, 0.04, 0.08, 0.15, 0.3, 0.5, 1, 2 ◦C
s−1) and the 3 material states (i.e. cast, homogenized and
hot-rolled) were then computed (351 cases). On the basis
of the computation time needed for those simulations, the
optimal parameter range was identified with the Iterative
Dichotomiser 3 (ID3) algorithm [23]. The latter is an
algorithm for generating a decision tree from a dataset. The
computation times were divided in two classes, allowed
and not allowed, with a threshold time of 1000s. The ID3
algorithm was then used to generate a set of rules defining
the boundaries of the allowed parameter domains. For the

as cast initial state, all records were checked as allowed. For
the initially homogenized and hot-rolled states the allowed
domains are shown in Fig. 4.

The ID3 rules generated for the initially “homogenized”
material are:

homogenization temperature <= 325;
OR
homogenization temperature <= 450,
cooling rate <= -0.08,
homogenization temperature > 375;
OR
homogenization temperature > 325,
cooling rate <= -0.08,
homogenization temperature <= 350;
OR
homogenization temperature > 475,
cooling rate <= -1;
OR
homogenization temperature > 325,
cooling rate > -0.04,
homogenization temperature <= 375;
OR
cooling rate <= -0.08,
homogenization temperature <= 375,
homogenization temperature > 350,
cooling rate > -0.5;
OR
cooling rate > -1,
homogenization temperature > 525,
cooling rate <= -0.15;

The rules for the initially hot-rolled material are:

homogenization temperature <= 325;
OR
homogenization temperature > 325,
cooling rate <= -0.5;
OR

Fig. 4 The metamodel
applicability ranges for
”homogenized” and ”hot-rolled”
initial conditions.

a b
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cooling rate > -0.5,
cooling rate <= -0.15,
homogenization temperature > 375;
OR
homogenization temperature > 325,
cooling rate <= -0.04,
cooling rate > -0.08;

Due to the computational time constraints discussed
above, all sets of parameters for the training dataset must
fulfill the constraints imposed by these rules.

Metamodel (step 4-6)

Figure 2 shows a dynamic character of the considered
model. According to the previously made assumptions
the metamodel should be able to predict the values of
mean radius of precipitations, number of precipitations
and summary fraction of participations as a function of
time. The most of metamodels described in the literature
represents history-independent values (e.g. [5, 6]). In the
case described in this paper, the metamodelled relationships
are history-dependent, non-linear and non-differentiable.
Hence, it is practically not possible to describe these values
with a mathematical equation. Building a metamodel of a
history-dependent, strongly varying process is a difficult
task. One of the possible approaches is application of
Artificial Neural Networks (ANNs). An application of
ANN in microstructure evolution has been presented e.g.
in [24]. The Authors used ANN to predict the stress-strain
response for a unit cell with different geometry and damage
parameters. Yet, the applied network had feed-forward (F-
F) structure. Employing F-F ANN makes impossible to
include the previous values of input signal and cannot be
used as a metamodel of considered process. This problam
can be solved with recurrent ANN. However, our previous
works (i.e. [25]) had shown that this ANN approach is
very demanding in case of recurrent network. Hence, other
possibilities had been investigated.

The decision was made to use Piecewise Linear
Functions (PLFs) to formulate the metamodel, as it is shown
in Fig. 5. Each PLF is defined by M nodes (marked with red
stars in Fig. 5). An individual PLF is established for the each

Fig. 5 The exemplary PLF with marked nodes (for M = 9)

output and for the each initial material state, hence finally
the metamodel consisted of 9 PLFs.

A single simulation provides the record of each output
as the sequences of points (ti , vi), where ti is the time
coordinate of the ith point in the sequence, and vi is the
value coordinate of the ith point in the sequence. To define
the PLF the M points must be chosen to became the nodes
(t∗i , v∗

i ).
Since the quality of interpolation is very sensitive to the

method of points selection, a dedicated algorithm had been
developed. The algorithm is composed of the preliminary
step and three steps performed in the loop, see Fig. 6.

During the preliminary step the repeating points are
removed and values of ti and vi vectors are scaled into the
range [−1, 1]. Next the initial set of nodes is established.
The first and last points in the profile became the end-
nodes. The mid-nodes are evenly distributed between the
end-nodes. In each iteration the mid-nodes are moved one
by one. Three forms of move can be applied. The base one
is replacing of the point already selected to be the node by
its left and right neighbors. After replacing of the single
node, the approximation error is calculated as the integral
of the absolute value of the difference between the values
of PLF and the values of the model output using trapezoidal
method. If the error is reduced, the new point became the node.

If none of the nodes are moved then the second way
applies, moving nodes which are already lined on a straight
line. For an each mid-node, coefficients of second order
polynomial are computed based on the node and its two
neighbors. If the coefficient of the second power is less then
the assumed threshold, the node is moved to the middle of
the PLF section characterized by the greatest approximation
error. The similar displacement is made for nodes lying too
close to each other (the third form of node movement). The
algorithm stops when none of the nodes has been moved
during the last iteration or after exceeding the maximal
number of iteration. The approximation had been performed
for several numbers of nodes, varying from 6 to 10. On the
ground of this preliminary results, the number of nodes was
established to M = 9.

When the nodes are selected, the relation between their
coordinates (t∗i , v∗

i ) and the input parameters must be
defined. There are several approximation methods available.
The feedforward ANNs had been firstly considered, how-
ever due to the relatively small number of available training
records (2071 in ”casted” set, 825 in ”homogenized” set
and 779 in ”hot-rolled” set) the Kriging method was cho-
sen [13]. Kriging is based on the idea that a value in a
given point can be estimated on the basis of an average of
known values in the neighboring points, assuming that the
influences of these points are proportional to the distance
to the considered point. In other words, the approxima-
tion procedure has to follow the trends of the experimental
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Fig. 6 Flowchart of the nodes selection algorithm. a main diagram; (b, d) detailed diagrams of: b moving nodes to its neighboring points, c
moving nodes lying in the line and d moving nodes lying close to each other

data and the surrogate function should increase when such
increase is expected for an increment of the variables [26].
The definition of the Kriging metamodel requires selection
the regression and correlation models. The most commonly
used regression models are low order polynomials. As cor-
relation model the exponential, gauss, linear, spherical,
cubic or spline function can be applied. Within this paper,

the zero order polynomial and gauss function were used as
the regression and correlation model, respectively.

As mentioned above, the metamodel consists 9 PLFs,
each PLF is defined by 9 nodes and the each node has
two coordinates. That requires 162 Kriging approximators.
However, the coordinates of the first node in each PLF are
known a’priori (the time equal to 0 and the value equal
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to the corresponding output from simulation model), the
final number of necessary Kriging approximations is equal
to 142. To improve the approximation accuracy, only the
inputs with the significant influence are taken into account.
The influence was examined using SA. The results are
shown in Fig. 7a. For the each output variable (mean radius
of precipitation, number of precipitation and summary
fraction of precipitations), there are 9 time coordinates
and 9 values. The dark square means that the specific
node coordinate (time or value) is not influenced by the
specific input, e.g. analyzing the second row from the top
it can be seen that for mean radius of precipitation time

coordinate of the second node in ”casted” case depends only
on the heating rate (hr), while in the ”homogenized” case it
depends on all inputs except for the cooling rate (cr).

Due to the occurance of zero values in the testing set the
Kriging approximations were evaluated by the absolutive
error described by following formula:

ε∗ = 1

N

√
√
√
√

N∑

i=1

(
x̃∗
i − x∗

i

)2
(5)

where: N is the number of testing records, x̃∗
i is the time

(t̃∗i ) or value (ṽ∗
i ) coordinate of the ith node computed by the

Fig. 7 The SA results (a) and
the errors of Kriging
approximators (b) a b
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Fig. 8 Metamodel error

Kriging approximator, x∗
i is the exact respective value. The

obtained errors are presented in Fig. 7b. The main impact on
the obtained errors has the number of training points. Due
to long computing times, the number of available records
was equal to 2071, 825 and 779 for casted, homogenized
and hot-rolled material state, respectively. The performed
Sensitivity Analysis reviles the model inputs which have
negligible influence on the output value and thus, they

weren’t took into account during building the metamodel.
It makes metamodel less complicated but also it reduces
the number of training records. In some cases the number
of records used for training was reduced to 239. The mean
error of all Kriging approximators is equal to 0.129. Taking
into account that the values of x∗

i lie within the range [−1, 1]
the error seems to be high. However, as it was presented in
[13], the error can be reduced by increasing the number of
records in training set.

Results (step 7)

The metamodel accuracy was evaluated using testing
datasets consisted of model simulations which was not used
during the training. Errors were calculated separately for the
each PLF using the equation:

εPLF = 1

N

N∑

i=1

1

ni

ni
∑

j=1

∣
∣
∣PLF

(
t ij

)
− vi

j

∣
∣
∣

vi
(6)

Fig. 9 Exemplary metamodel
outputs
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where: N is the number of testing records, ni is the number
of the points in the ith sequence, (t ij , v

i
j ) is j th point in the

ith sequence and vi is the mean value in the ith sequence. The
values of each PLF error are presented in Fig. 8. The best and
the worst cases from the testing set are presented in Fig. 9

Metamodelling is aimed at replacing of a model with a
metamodel, which is much faster and sufficiently accurate.
The first criterion is fulfilled indisputably – the computing
time of the metamodel is few orders of magnitude smaller
than the computing time of model. Accuracy of the
metamodel requires more thorough discussion. If mean
errors of PLFs are analyzed, the error level is close to 2%,
which is very good results. However, analysis of best/worse
cases shows less satisfying results. As expected, the most of
the bests cases shows almost perfect fitting of approximated
values to simulated ones. However, some distribuances
are present (5th curve in Fig. 9). If the value itself is
analyzed (number of precipitates in this case), result is fully
satisfactory, however if the metamodel would be used to
calculate a goal function in optimization procedure, such
inconsistency might be a source of some problems.

Analysis of the worst cases shows, that even relatively
small error value does not guarantee reliable representation
of model. It can be noticed, that for several cases the
result of metamodel are completely wrong, missing both
values and trends (e.g. 8th curve in Fig. 9). The second
important issue is an erroneous character of some curves
with time coordinate of last point lower then at least one
of other points. That shows some deficiency of developed
algorithm of PLF representation of model outputs, in which
each output variable is evaluated separately. The main
source of inaccuracy of the created metamodels is the
small number of training data. The error can be reduced
by performing more model simulations and re-training the
Kriging approximators.

Discussion and conclusions

The obtained results shows that developed methodology
of metamodelling can lead to successful replacement of
a model with a metamodel. Low values of the mean
metamodelling error indicates very good reliability of
PLF-based approximation. However, the present form of
the algorithm does not eliminate the situation, when for
some specific combinations of input parameters, results
are completely wrong. This is a significant drawback and
the proper arrangements will be included to the algorithm
in future. One of the most important issues is detection
of PLF approximation not being the functions (e.g. 6th
to 9th curves in Fig. 9). The advantage arising from
embedding of metamodels in AM3 framework is that the
metamodel does not have to be valid in whole domain.

Instead, knowledge-based controlling module of multiscale
model can be enriched with rules denying application of
the metamodel in some sub-domains, replacing it back with
model itself. Besides, it is expected that increasing the
number of model computations will significantly increase
both the reliability and possible range of application of
metamodels. That will be achieved with application of High
Performance Computing techniques, planned for the near
future.
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