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Abstract

Purpose of Review This review discusses the connections between the gut-lung axis, gut and respiratory tract dysbiosis, and
Candida bloodstream, oral, and respiratory infections in COVID-19 patients.

Recent Findings COVID-19-related dysfunction in the intestinal barrier together with gut and lung dysbiosis played an
important role in disease pathophysiology, which affected host immune homeostasis giving rise to prominent systemic and
respiratory bacterial and fungal infections. Higher incidence of Candida bloodstream infections driven by accumulation of
“classic” risk factors in severely ill COVID-19 patients was noted. Moreover, numerous C. auris outbreaks, characterized by
high clonality of the strains, were reported from all around the world. Unlike other Candida species, C. auris colonization
and infection cases most likely resulted from nosocomial transmission.

Summary Infections due to Candida species in severely ill COVID-19 patients reflected the overall immune dysregulation
and were largely driven by gut and respiratory tract dysbiosis.

Keywords Candida - Candida auris - COVID-19 - COVID-19-associated candidiasis (CAC) - Dysbiosis - Gut-lung axis

Introduction

The COVID-19 pandemic has wreaked a devastating impact
on global health with mortality approaching 7 million people
[1]. People at the highest risk of severe COVID-19 were
those of advanced age and those with comorbidities includ-
ing hypertension, diabetes, chronic heart, and renal diseases
[2]. Approximately 5-6% of symptomatic infected patients
developed atypical pneumonia requiring hospitalization with
many of them progressing to the intensive care unit (ICU)
with respiratory failure and a further subset developing a
more lethal cytokine storm resulting in an acute respiratory
distress syndrome (ARDS) requiring mechanical ventilation
[3]. A hallmark of severely ill COVID-19 patients was the
development of a profound immune dysfunction [4] promot-
ing the emergence of opportunistic bacterial, fungal, and
viral infections [5—8]. Bacterial infections were often mani-
fested as secondary pneumonias, urinary tract infections, and
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sepsis and were closely associated with prolonged hospitali-
zation, mechanical ventilation, and the presence of invasive
medical devices [9—11]. Individuals with latent tuberculosis
infection were at increased risk of developing active tubercu-
losis due to the immune system’s compromised state caused
by COVID-19 [5e]. The extensive use of antibiotics for treat-
ment and prophylaxis, well known to disrupt the normal gut
microbiota, increased the risk for developing Clostridium
difficile infections within the gastrointestinal (GI) tract [12].
COVID-19 patients were also at heightened risk for devel-
oping viral infections due to herpes simplex virus (HSV),
cytomegalovirus (CMV), and other respiratory co-infections
[10, 13].

In recent years, it has been recognized that patients with
certain severe viral and bacterial respiratory tract infections,
including influenza, tuberculosis, and those with chronic dis-
eases like chronic obstructive pulmonary disease (COPD),
are prone to invasive fungal infections [6]. Seriously ill
hospitalized patients with COVID-19 displayed an array of
known risk factors for invasive fungal infections including
lung damage resulting in a need for oxygen therapy, pro-
found immunosuppression, and monoclonal antibody and
corticosteroid therapy [14, 15¢]. Such patients have impaired
immune function of proinflammatory cytokines like inter-
leukins IL-6, IL-1, IL-12, tumor necrosis factor (TNF), and
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interferon gamma (IFNy), which promote opportunistic fun-
gal infections [16]. Hence, patients with severe COVID-19
were also prone to develop invasive fungal infections [15¢e],
particularly those caused by Candida [17ee], Mucorales, and
Aspergillus species [18] resulting in COVID-19-associated
pulmonary aspergillosis (CAPA) [19, 20], COVID-19-asso-
ciated mucormycosis (CAM) [21], and COVID-19-associ-
ated candidiasis (CAC) [22]. The high prevalence of CAC
was not surprising given immune and barrier dysregulation
in the gut and lung [22]. CAC carried a higher mortality
than candidemia in non-COVID-19 patients during the same
period [6, 23e]. It is the importance of gut-lung axis, gut,
and respiratory tract dysbiosis and resulting bloodstream,
oral and respiratory infections during COVID-19 that is dis-
cussed in this review.

Gut-Lung Axis in COVID-19

The lower gastrointestinal tract contains a complex micro-
biome of bacteria, fungi, and viruses, which are largely kept
in-check in healthy individuals through host and microbial
interactions [24]. The intestinal mucosa is a critical compo-
nent that serves as a functional barrier. However, a breach in
host containment can turn harmless commensal organisms
into disease-causing pathogens that have life-threatening
consequences for a patient resulting in sepsis, bloodstream
infection, hyper inflammatory state, and multisystem failures
[25]. The intestinal immune system harbors over 80% of
the total body’s lymphocyte population residing in intraepi-
thelial, lamina propria, Peyer’s patches, and mesenteric
lymph nodes. Peyer’s patches and mesenteric lymph form
aggregates with the latter connected to lymphatic system via
drainage channels. The Peyer’s patches in concert with epi-
thelial cells help induce local immune responses by mediat-
ing antigen presenting cell/T-cell interactions and release of
cytokines [26]. Gut microbiota and their metabolites shape
a healthy balance of Th17 and Treg cells [27]. Growing evi-
dence supports strong crosstalk between the gut microbiota
and lung, likely through the same interactions that maintain
host health/disease balance [28], and the term “gut-lung
axis” was created to describe this phenomenon.

During COVID-19, severely ill patients developed pro-
found immune dysregulation and were often treated with
broad-spectrum antibiotics and anti-inflammatory drugs,
e.g., corticosteroids and cytokine antagonists. The resulting
gut microbiome dysbiosis was associated with transloca-
tion of bacteria into the blood [29, 30]. The gut has been
described as a main driver of critical illness [31], which
induces dysfunction in the intestinal barrier and its hyper-
permeability enabling luminal microbiota and metabolites
to escape. Colonizing organisms can traverse the barrier
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either via a transcellular pathway involving epithelial cells or
through a paracellular path involving tight junctions between
adjacent epithelial cells. Impaired epithelial barrier func-
tion is often observed in inflammatory diseases, cancer, and
transplantation and is impacted by factors such immune dys-
function and treatment with corticosteroid, cytokine antago-
nists, and antibiotics, as well as high fat diets [32, 33].

Fungi residing in the gastrointestinal tract (gut myco-
biome) play important roles in host immune homeostasis,
metabolism, and infection prevention [34, 35]. Fungal dysbi-
osis in the gut is associated with numerous diseases, includ-
ing inflammatory bowel disease [36], colorectal cancer [37],
and asthma [38, 39]. It is now apparent that there is a strong
association between the gut and respiratory health, which
surfaced prominently with COVID-19 [28, 38]. The gut-lung
connection has been demonstrated in human and murine
studies with some lung diseases influenced by gut microbi-
ome changes and vice versa [39]. Thus, it is not surprising,
given the ability of SARS-CoV-2 to replicate in both the
respiratory and digestive tracts [40], that gut mycobiome in
COVID-19 patients was a focus of several studies. Lv et al.
compared the gut mycobiome of COVID-19- and HIN1-
infected patients and healthy individuals. They discovered
that in infected patients (in the comparison to healthy con-
trols), the fungal burden in the gut was higher and that the
relative abundances of some fungi with important functions
were lower, but those of several opportunistic pathogenic
fungi were higher [41]. Zuo et al. specifically identified Can-
dida albicans, Candida auris, and Aspergillus flavus propor-
tions to be increased in COVID-19 patients’ gut [42ee].

Similarly, lower respiratory tract dysbiosis with a shift to
Candida species colonization and a decreased fungal diver-
sity was noted in COVID-19 patients [43, 44ee]. These data
corroborate the notion of SARS-CoV-2-triggered disrup-
tion of lung immune homeostasis, leading to overgrowth of
pathogenic bacteria and fungi, and inflammation.

Altogether, as summarized in Fig. 1, COVID-19-related
dysfunction in the intestinal barrier together with gut and
lung dysbiosis played an important role in disease patho-
physiology, which affected host immune homeostasis giv-
ing rise to prominent systemic and respiratory bacterial and
fungal infections [30, 45, 46].

Candida Respiratory Tract Colonization
and Candida Pneumonia in COVID-19
Patients

Candida spp. are frequently isolated from respiratory speci-
mens, especially from ICU patients receiving mechanical
ventilation [47-49]. It was estimated that up to 20% of
patients acquired tracheobronchial colonization with Can-
dida spp. after 48 h of intubation and ventilation and that
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Fig. 1 Overview of factors involved in the development of Candida infections in COVID-19 patients. Created with BioRender.com

their percent increases with extended ventilation [48]. How-
ever, an understanding of the significance of Candida spp.
detection from respiratory samples is complicated, as it can
represent one of the four scenarios: (1) contamination, an
artifact introduced during sampling; (2) commensalism,
member of the normal microbiome; (3) colonization, non-
infectious resident that is not a member of a normal micro-
biome; and (4) infection, etiologic agent of infection. The
diagnosis of Candida pneumonia should be confirmed by
histopathology [47, 50]. Moreover, the presence of Candida
spp. in any respiratory specimen always needs to be inter-
preted within its clinical and microbiological context, espe-
cially since there is a growing body of evidence of Candida
spp. impact on human health even in noninfectious settings
[51].

Candida pneumonia is rare, but colonization of the lower
respiratory tract with Candida spp. has been associated with
longer duration of mechanical ventilation, increased risk of
ventilator-associated pneumonia (VAP), increased length of
intensive care unit (ICU) and hospital stay, and higher mor-
tality in mechanically ventilated patients [48, 52-56]. Major
risk factors for Candida spp. acquisition in the respiratory
tract include (1) host factors (STAT1 and dectin-1 defective
mutations); (2) iatrogenic conditions (broad-spectrum antibi-
otics, mechanical ventilation, radiation therapy); (3) immu-
nosuppression (neutropenia, systemic immunosuppression,

steroid use, HIV, diabetes mellitus, bone marrow or solid
organ transplant); and (4) extraneous (prolonged hospital
stay, ICU stay, burns) [51].

Patients with severe viral respiratory tract infections are
well recognized to be at high risk for developing invasive
fungal infections including pulmonary aspergillosis and
mucormycosis [13, 21]. Influenza pneumonias often present
with increased disease morbidity and mortality, and simi-
lar disease co-dependence was observed during COVID-19
[14]. In a population of 100 immunosuppressed COVID-
19 patients, Candida species were recovered from 69% of
bronchoalveolar lavage specimens. Indeed, Candida colo-
nization with restricted species reflected dysbiosis of lung
and gut microbiota, which correlated with acute respiratory
distress syndrome among patients [57]. Candida coloniza-
tion in such severely ill patients is typically not deemed to
directly impact clinical outcomes and is more a reflection
of generalized immune, barrier and microbiota dysfunction
[14]. Yet, its contribution to the overall state of COVID-19,
including ARDS and other clinically significant risk factors,
needs to be better assessed [58].

In a 2018-2022 study from France, both the incidence
and prevalence of detection of Candida spp. in respiratory
specimens increased in COVID-19 pandemic. Moreover,
the length of stay in the hospital, mechanical ventilation,
diabetes, and the use of antibacterials were identified as
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independent risk factors of Candida airway colonization
[59ee]. In Iran, C. albicans was found in the respiratory
specimens of COVID-19 patients, especially those with dia-
betes, malignancies, and kidney disorders [57]. Similarly, we
found virus- and drug-induced immunosuppression, together
with prolonged hospital stay and mechanical ventilation, to
increase the susceptibility to Candida colonization in the
COVID-19 patients in New Jersey, USA [60]. Additionally,
results of a Belgian study pointed to biofilms formed on
endotracheal tubes (ETT), as a reservoir of microorganisms
that can cause secondary infections in mechanically venti-
lated patients [43].

COVID-19-related epithelial damage of the airways gives
way to fungal invasion in the respiratory tract. Although the
most common agents of infection are molds of Aspergillus
and Mucor genera, Candida lung infections, including C.
albicans pneumonia with lung abscess [61], post-COVID-19
fungal empyema thoracis due to C. glabrata [62], and post-
COVID-19 C. glabrata pneumonia [63], were presumptively
reported, but histopathological evidence was provided only
in one case [61].

Oral Candidiasis

The human commensal Candida albicans is a normal com-
ponent of the oral cavity microbiota, and the development
of oral and esophageal thrush is often a hallmark indication
associated with immune dysfunction among patients with
cancer and HIV/AIDS [64]. During COVID-19, the oral
cavity was also impacted in patients resulting in typical oral
clinical manifestations associated with systemic immune
dysfunction including white and erythematous plaques,
blisters, necrotizing gingivitis, ulcerations, salivary gland
alterations, gustatory dysfunction, and coinfections [65].
Furthermore, overgrowth of Candida species was exacer-
bated by virus-infected salivary glands which compromised
the production of histatin-5, a family of histidine-rich cati-
onic antimicrobial proteins that help maintain a healthy
balance of Candida in the oral biome [65]. Candida was
frequently encountered in sputum samples, exceeding 53%
in some studies, and due to the prolonged and chronic use
of antifungal, high levels of mono- and multidrug resistance
among Candida species isolates were reported [66].

Invasive Candida Infections in COVID-19
Patients

COVID-19-associated Candida spp. superinfections quickly
became recognized as complications of the severe disease
with the first four cases (C. albicans, n=3; C. glabrata,
n=1) reported in 99 patients hospitalized in Wuhan
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Jinyintan Hospital (China) from Jan 1 to Jan 20, 2020 [67].
Further studies reported an increased incidence of Candida
bloodstream infections (candidemia) in COVID-19 patients
(in comparison to patients without COVID-19), especially in
the ICU settings (Table 1). However, results of Candida spp.
clinical isolates genotyping revealed that such an increase
was not characterized by an uncontrolled nosocomial trans-
mission [60, 68, 69e], except for the spread of Candida
auris (see the next section).

Reasons for the higher frequency of candidemia in
COVID-19 patients are still not fully understood. Unlike
COVID-19-associated pulmonary aspergillosis (CAPA),
where hyperinflammation is thought to be the main pre-
disposing mechanism [15¢], COVID-19-associated can-
didemia (CAC) most likely results from a combination of
concomitant “classic” risk factors, such as prolonged hos-
pital stay, ICU stay, (poorly controlled) diabetes mellitus,
use of broad-spectrum antibiotics, use of corticosteroids,
presence and duration of CVC, mechanical ventilation, and
parenteral nutrition (Table 1). Also, as already discussed, a
path to infection most likely resulted from dysbiosis of the
fungal gut microbiome, decreased fungal diversity, and a
shift toward Candida colonization in SARS-CoV-2-infected
patients. Additionally, pandemic-related issues in over-
whelmed healthcare facilities (crowded hospital rooms,
decreased staff-to-patient ratios, limited availability of per-
sonal protective equipment (PPE)), leading to breaches in
infection control practices (deviations from catheter man-
agement policies, inappropriate use of PPE), were possible
contributors to the increased number of Candida infections
in COVID-19 patients [50, 68, 77].

In most reports, the predominant identified species was
C. albicans (Table 1), but some healthcare institutions
noticed a trend of increasing non-albicans clinical isolates
over the years. For example, in Gregorio Marafién Hospital
in Madrid, Spain, the proportion of isolates between 2020
and 2022 decreased in C. albicans (60.3% vs. 36.7%) and
increased in C. parapsilosis (10.3% vs. 28.6%) and C. tropi-
calis (8.8% vs. 16.3%) [69¢]. Uniquely in India, C. auris was
found to be the most predominant agent of CAC [96, 97].

Since the beginning of the COVID-19 pandemic, experts
debated whether it would result in increased prevalence of
antimicrobial resistance, with Clancy, Buehrle, and Nguyen
saying “yes” and Collignon and Beggs saying “no.” However,
they did not make any specific predictions regarding antifun-
gal resistance [98—100]. Regrettably, antifungal drug suscep-
tibility of the CAC isolates was determined rarely (Table 1),
complicating comprehensive assessment of the situation and
trend analysis. Posteraro et al. reported development of echi-
nocandin resistance upon caspofungin treatment in a fatal
case of COVID-19-associated C. glabrata infection [101].

Mortality in CAC patients was in the 28 to 100% range,
with some healthcare institutions reporting significantly
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higher mortality in COVID-19 patients than non-COVID-19
patients [17, 23, 95].

Candida auris in COVID-19 Patients

Even before the COVID-19 pandemic, Candida auris had
already established itself as one of the hot topics among infec-
tious diseases experts. In 2019, it was named an urgent threat
in the CDC’s Antibiotic Resistance (AR) Threats Report due
to its antifungal drug resistance and easy transmission, often
leading to nosocomial outbreaks [102]. In the initial months
of the pandemic, it was speculated that COVID-19 patients,
especially the ones receiving critical care, would establish a
population highly vulnerable to colonization and infection by
C. auris [103]. These predictions proved correct, and numer-
ous C. auris outbreaks occurred in countries all around the
world (Table 2), as well as single cases in Japan [104], Qatar
[105], and Turkey [106] were reported. Moreover, broader
temporal analyses performed in India [79], Israel [107], and
the USA [108, 109] informed of a growing number of C.
auris cases during pandemic years. New C. quris introduc-
tions into previously unaffected healthcare facilities were also
described [107, 110, 111]. The pooled mortality rate of C.
auris candidiasis from published studies was estimated to
exceed 60% (64.7% [112], 67.849% [113]).

The outbreaks were characterized by high clonality of
the strains [107, 110, 114, 115, 118-120, 125, 127, 132]
supporting the notion of intrahospital transmission of C.
auris. Prolonged hospital stays, high burden of severely sick
patients, and challenges in the implementation of infection
control practices (e.g., extended or incorrect use of personal
protective equipment) during the COVID-19 pandemic are
thought to be the main drivers of patients’ colonization
with C. auris [96, 112, 127]. Lengthy lockdowns and travel
restrictions most likely also contributed to the local spread
pattern [114, 127].

Following the CDC guidance [134], echinocandins were
used as first-line therapy in invasive C. auris cases [96, 97,
107, 110, 112, 114, 115, 118, 125, 126, 131], followed by
amphotericin B [96, 112, 118, 125, 126, 131] and azoles
[107, 110, 118, 125, 126]. Antifungal drug susceptibility
(if determined) was clade-dependent with isolates of clade
I (South Asian) showing almost uniform fluconazole resist-
ance and high rates of amphotericin B resistance (Table 2).
However, in Brazil, the researchers found unexpected low
antifungal minimal inhibitory concentration (MIC) values
and the absence of any resistance-conferring mutations
in clade I isolates [114, 115]. Only a few studies identi-
fied molecular determinants of antifungal drug resistance
in recovered C. auris clinical isolates. Well-known azole
resistance-conferring mutations included Ergl1 Y132F and
K143R from India [97], Ergl1 K143R and Taclb A640V

from Italy (120), Ergl1l Y132F from Lebanon [123] and
Qatar [127], and Ergl1 V125A/F126L from the USA [131].
Moreover, previously reported echinocandin resistance-
conferring Fks1 mutations S639F and S639Y were detected
Qatari isolates [127].

COVID-19 patients who developed C. auris infection
were often severely ill with the most prevalent comorbidities
being hypertension, diabetes mellitus, and cardiovascular
diseases [96, 97, 113, 114, 121, 122, 124, 125, 130, 131,
133]. Other risk factors, including mechanical ventilation,
extensive antibiotic use, steroid treatment, and placement of
indwelling devices, also contributed to the C. auris infection
acquisition [79, 96, 97, 107, 111, 114, 115, 117, 118, 121,
122, 124-126, 131-133]. In some cases, C. auris infection
occurred concurrently with bacterial superinfection, fur-
ther complicating patient management [107, 114, 118, 120,
124-126, 129, 133].

Public health professionals have speculated on the role
of COVID-19 pandemic-related logistical issues, including
low PPE compliance due to anticipated/existing PPE short-
ages and relaxation of the measures to control C. auris due
to the higher workload of healthcare workers, which would
promote nosocomial transmission of C. auris. Recent expe-
rience has highlighted the urgent need for uninterrupted C.
auris surveillance and containment efforts.

Conclusion

COVID-19 patients who progressed to severe disease with
acute respiratory distress were notable for their associated
immune dysfunction and increased risk for developing
opportunistic invasive fungal infections, including the ones
caused by Candida species. Additionally, many of severely
ill COVID-19 patients were treated with broad-spectrum
antibiotics disrupting the normal intestinal flora composition
[135] and corticosteroids enhancing Candida cells adhesion
to the epithelial cells [136]. The resulting dysbiosis with
promotion of Candida growth in the gastrointestinal and res-
piratory tracts with eventual translocation of Candida to the
bloodstream system led to an increased number of Candida
infections in COVID-19 patients. For commensal organisms
like C. albicans and C. glabrata, which form a prominent
reservoir in the gut, COVID-19 highlighted the importance
of the gut-lung axis. While Candida in respiratory fluids of
patients with pneumonia was associated with high mortal-
ity, it did not rise to the level of attributable mortality. Yet,
such organisms almost certainly increased the body’s overall
inflammatory state contributing to patient decline. Early and
appropriate management of lung and gut dysbiosis should
become a part of routine standard-of-care for such patients
with the aim of preventing the progression toward invasive
Candida infections.
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Finally, the steady rise of C. auris colonization and
infection cases among hospitalized COVID-19 patients is
a cautionary tale, as this environmentally hearty and drug-
resistant organism continues to prey on the chronically ill
immunocompromised hosts. Active surveillance of patient
body sites (axilla, groin, nares) and healthcare environment
is critical for limiting transmission and preventing infec-
tions. Here, molecular diagnostics methods offer rapid and
accurate detection of patient and surface colonization and
can aid in implementation of infection prevention and con-
trol measures especially in case of patient transfers.
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