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Abstract
Purpose of Review This review discusses the connections between the gut-lung axis, gut and respiratory tract dysbiosis, and 
Candida bloodstream, oral, and respiratory infections in COVID-19 patients.
Recent Findings COVID-19–related dysfunction in the intestinal barrier together with gut and lung dysbiosis played an 
important role in disease pathophysiology, which affected host immune homeostasis giving rise to prominent systemic and 
respiratory bacterial and fungal infections. Higher incidence of Candida bloodstream infections driven by accumulation of 
“classic” risk factors in severely ill COVID-19 patients was noted. Moreover, numerous C. auris outbreaks, characterized by 
high clonality of the strains, were reported from all around the world. Unlike other Candida species, C. auris colonization 
and infection cases most likely resulted from nosocomial transmission.
Summary Infections due to Candida species in severely ill COVID-19 patients reflected the overall immune dysregulation 
and were largely driven by gut and respiratory tract dysbiosis.

Keywords Candida · Candida auris · COVID-19 · COVID-19–associated candidiasis (CAC) · Dysbiosis · Gut-lung axis

Introduction

The COVID-19 pandemic has wreaked a devastating impact 
on global health with mortality approaching 7 million people 
[1]. People at the highest risk of severe COVID-19 were 
those of advanced age and those with comorbidities includ-
ing hypertension, diabetes, chronic heart, and renal diseases 
[2]. Approximately 5–6% of symptomatic infected patients 
developed atypical pneumonia requiring hospitalization with 
many of them progressing to the intensive care unit (ICU) 
with respiratory failure and a further subset developing a 
more lethal cytokine storm resulting in an acute respiratory 
distress syndrome (ARDS) requiring mechanical ventilation 
[3]. A hallmark of severely ill COVID-19 patients was the 
development of a profound immune dysfunction [4] promot-
ing the emergence of opportunistic bacterial, fungal, and 
viral infections [5–8]. Bacterial infections were often mani-
fested as secondary pneumonias, urinary tract infections, and 

sepsis and were closely associated with prolonged hospitali-
zation, mechanical ventilation, and the presence of invasive 
medical devices [9–11]. Individuals with latent tuberculosis 
infection were at increased risk of developing active tubercu-
losis due to the immune system’s compromised state caused 
by COVID-19 [5•]. The extensive use of antibiotics for treat-
ment and prophylaxis, well known to disrupt the normal gut 
microbiota, increased the risk for developing Clostridium 
difficile infections within the gastrointestinal (GI) tract [12]. 
COVID-19 patients were also at heightened risk for devel-
oping viral infections due to herpes simplex virus (HSV), 
cytomegalovirus (CMV), and other respiratory co-infections 
[10, 13].

In recent years, it has been recognized that patients with 
certain severe viral and bacterial respiratory tract infections, 
including influenza, tuberculosis, and those with chronic dis-
eases like chronic obstructive pulmonary disease (COPD), 
are prone to invasive fungal infections [6]. Seriously ill 
hospitalized patients with COVID-19 displayed an array of 
known risk factors for invasive fungal infections including 
lung damage resulting in a need for oxygen therapy, pro-
found immunosuppression, and monoclonal antibody and 
corticosteroid therapy [14, 15•]. Such patients have impaired 
immune function of proinflammatory cytokines like inter-
leukins IL-6, IL-1, IL-12, tumor necrosis factor (TNF), and 
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interferon gamma (IFNγ), which promote opportunistic fun-
gal infections [16]. Hence, patients with severe COVID-19 
were also prone to develop invasive fungal infections [15•], 
particularly those caused by Candida [17••], Mucorales, and 
Aspergillus species [18] resulting in COVID-19–associated 
pulmonary aspergillosis (CAPA) [19, 20], COVID-19–asso-
ciated mucormycosis (CAM) [21], and COVID-19–associ-
ated candidiasis (CAC) [22]. The high prevalence of CAC 
was not surprising given immune and barrier dysregulation 
in the gut and lung [22]. CAC carried a higher mortality 
than candidemia in non-COVID-19 patients during the same 
period [6, 23•]. It is the importance of gut-lung axis, gut, 
and respiratory tract dysbiosis and resulting bloodstream, 
oral and respiratory infections during COVID-19 that is dis-
cussed in this review.

Gut‑Lung Axis in COVID‑19

The lower gastrointestinal tract contains a complex micro-
biome of bacteria, fungi, and viruses, which are largely kept 
in-check in healthy individuals through host and microbial 
interactions [24]. The intestinal mucosa is a critical compo-
nent that serves as a functional barrier. However, a breach in 
host containment can turn harmless commensal organisms 
into disease-causing pathogens that have life-threatening 
consequences for a patient resulting in sepsis, bloodstream 
infection, hyper inflammatory state, and multisystem failures 
[25]. The intestinal immune system harbors over 80% of 
the total body’s lymphocyte population residing in intraepi-
thelial, lamina propria, Peyer’s patches, and mesenteric 
lymph nodes. Peyer’s patches and mesenteric lymph form 
aggregates with the latter connected to lymphatic system via 
drainage channels. The Peyer’s patches in concert with epi-
thelial cells help induce local immune responses by mediat-
ing antigen presenting cell/T-cell interactions and release of 
cytokines [26]. Gut microbiota and their metabolites shape 
a healthy balance of Th17 and Treg cells [27]. Growing evi-
dence supports strong crosstalk between the gut microbiota 
and lung, likely through the same interactions that maintain 
host health/disease balance [28], and the term “gut-lung 
axis” was created to describe this phenomenon.

During COVID-19, severely ill patients developed pro-
found immune dysregulation and were often treated with 
broad-spectrum antibiotics and anti-inflammatory drugs, 
e.g., corticosteroids and cytokine antagonists. The resulting 
gut microbiome dysbiosis was associated with transloca-
tion of bacteria into the blood [29, 30]. The gut has been 
described as a main driver of critical illness [31], which 
induces dysfunction in the intestinal barrier and its hyper-
permeability enabling luminal microbiota and metabolites 
to escape. Colonizing organisms can traverse the barrier 

either via a transcellular pathway involving epithelial cells or 
through a paracellular path involving tight junctions between 
adjacent epithelial cells. Impaired epithelial barrier func-
tion is often observed in inflammatory diseases, cancer, and 
transplantation and is impacted by factors such immune dys-
function and treatment with corticosteroid, cytokine antago-
nists, and antibiotics, as well as high fat diets [32, 33].

Fungi residing in the gastrointestinal tract (gut myco-
biome) play important roles in host immune homeostasis, 
metabolism, and infection prevention [34, 35]. Fungal dysbi-
osis in the gut is associated with numerous diseases, includ-
ing inflammatory bowel disease [36], colorectal cancer [37], 
and asthma [38, 39]. It is now apparent that there is a strong 
association between the gut and respiratory health, which 
surfaced prominently with COVID-19 [28, 38]. The gut-lung 
connection has been demonstrated in human and murine 
studies with some lung diseases influenced by gut microbi-
ome changes and vice versa [39]. Thus, it is not surprising, 
given the ability of SARS-CoV-2 to replicate in both the 
respiratory and digestive tracts [40], that gut mycobiome in 
COVID-19 patients was a focus of several studies. Lv et al. 
compared the gut mycobiome of COVID-19- and H1N1-
infected patients and healthy individuals. They discovered 
that in infected patients (in the comparison to healthy con-
trols), the fungal burden in the gut was higher and that the 
relative abundances of some fungi with important functions 
were lower, but those of several opportunistic pathogenic 
fungi were higher [41]. Zuo et al. specifically identified Can-
dida albicans, Candida auris, and Aspergillus flavus propor-
tions to be increased in COVID-19 patients’ gut [42••].

Similarly, lower respiratory tract dysbiosis with a shift to 
Candida species colonization and a decreased fungal diver-
sity was noted in COVID-19 patients [43, 44••]. These data 
corroborate the notion of SARS-CoV-2–triggered disrup-
tion of lung immune homeostasis, leading to overgrowth of 
pathogenic bacteria and fungi, and inflammation.

Altogether, as summarized in Fig. 1, COVID-19-related 
dysfunction in the intestinal barrier together with gut and 
lung dysbiosis played an important role in disease patho-
physiology, which affected host immune homeostasis giv-
ing rise to prominent systemic and respiratory bacterial and 
fungal infections [30, 45, 46].

Candida Respiratory Tract Colonization 
and Candida Pneumonia in COVID‑19 
Patients

Candida spp. are frequently isolated from respiratory speci-
mens, especially from ICU patients receiving mechanical 
ventilation [47–49]. It was estimated that up to 20% of 
patients acquired tracheobronchial colonization with Can-
dida spp. after 48 h of intubation and ventilation and that 



265Current Fungal Infection Reports (2023) 17:263–280 

1 3

their percent increases with extended ventilation [48]. How-
ever, an understanding of the significance of Candida spp. 
detection from respiratory samples is complicated, as it can 
represent one of the four scenarios: (1) contamination, an 
artifact introduced during sampling; (2) commensalism, 
member of the normal microbiome; (3) colonization, non-
infectious resident that is not a member of a normal micro-
biome; and (4) infection, etiologic agent of infection. The 
diagnosis of Candida pneumonia should be confirmed by 
histopathology [47, 50]. Moreover, the presence of Candida 
spp. in any respiratory specimen always needs to be inter-
preted within its clinical and microbiological context, espe-
cially since there is a growing body of evidence of Candida 
spp. impact on human health even in noninfectious settings 
[51].

Candida pneumonia is rare, but colonization of the lower 
respiratory tract with Candida spp. has been associated with 
longer duration of mechanical ventilation, increased risk of 
ventilator-associated pneumonia (VAP), increased length of 
intensive care unit (ICU) and hospital stay, and higher mor-
tality in mechanically ventilated patients [48, 52–56]. Major 
risk factors for Candida spp. acquisition in the respiratory 
tract include (1) host factors (STAT1 and dectin-1 defective 
mutations); (2) iatrogenic conditions (broad-spectrum antibi-
otics, mechanical ventilation, radiation therapy); (3) immu-
nosuppression (neutropenia, systemic immunosuppression, 

steroid use, HIV, diabetes mellitus, bone marrow or solid 
organ transplant); and (4) extraneous (prolonged hospital 
stay, ICU stay, burns) [51].

Patients with severe viral respiratory tract infections are 
well recognized to be at high risk for developing invasive 
fungal infections including pulmonary aspergillosis and 
mucormycosis [13, 21]. Influenza pneumonias often present 
with increased disease morbidity and mortality, and simi-
lar disease co-dependence was observed during COVID-19 
[14]. In a population of 100 immunosuppressed COVID-
19 patients, Candida species were recovered from 69% of 
bronchoalveolar lavage specimens. Indeed, Candida colo-
nization with restricted species reflected dysbiosis of lung 
and gut microbiota, which correlated with acute respiratory 
distress syndrome among patients [57]. Candida coloniza-
tion in such severely ill patients is typically not deemed to 
directly impact clinical outcomes and is more a reflection 
of generalized immune, barrier and microbiota dysfunction 
[14]. Yet, its contribution to the overall state of COVID-19, 
including ARDS and other clinically significant risk factors, 
needs to be better assessed [58].

In a 2018–2022 study from France, both the incidence 
and prevalence of detection of Candida spp. in respiratory 
specimens increased in COVID-19 pandemic. Moreover, 
the length of stay in the hospital, mechanical ventilation, 
diabetes, and the use of antibacterials were identified as 

Fig. 1  Overview of factors involved in the development of Candida infections in COVID-19 patients. Created with BioRender.com
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independent risk factors of Candida airway colonization 
[59••]. In Iran, C. albicans was found in the respiratory 
specimens of COVID-19 patients, especially those with dia-
betes, malignancies, and kidney disorders [57]. Similarly, we 
found virus- and drug-induced immunosuppression, together 
with prolonged hospital stay and mechanical ventilation, to 
increase the susceptibility to Candida colonization in the 
COVID-19 patients in New Jersey, USA [60]. Additionally, 
results of a Belgian study pointed to biofilms formed on 
endotracheal tubes (ETT), as a reservoir of microorganisms 
that can cause secondary infections in mechanically venti-
lated patients [43].

COVID-19–related epithelial damage of the airways gives 
way to fungal invasion in the respiratory tract. Although the 
most common agents of infection are molds of Aspergillus 
and Mucor genera, Candida lung infections, including C. 
albicans pneumonia with lung abscess [61], post-COVID-19 
fungal empyema thoracis due to C. glabrata [62], and post-
COVID-19 C. glabrata pneumonia [63], were presumptively 
reported, but histopathological evidence was provided only 
in one case [61].

Oral Candidiasis

The human commensal Candida albicans is a normal com-
ponent of the oral cavity microbiota, and the development 
of oral and esophageal thrush is often a hallmark indication 
associated with immune dysfunction among patients with 
cancer and HIV/AIDS [64]. During COVID-19, the oral 
cavity was also impacted in patients resulting in typical oral 
clinical manifestations associated with systemic immune 
dysfunction including white and erythematous plaques, 
blisters, necrotizing gingivitis, ulcerations, salivary gland 
alterations, gustatory dysfunction, and coinfections [65]. 
Furthermore, overgrowth of Candida species was exacer-
bated by virus-infected salivary glands which compromised 
the production of histatin-5, a family of histidine-rich cati-
onic antimicrobial proteins that help maintain a healthy 
balance of Candida in the oral biome [65]. Candida was 
frequently encountered in sputum samples, exceeding 53% 
in some studies, and due to the prolonged and chronic use 
of antifungal, high levels of mono- and multidrug resistance 
among Candida species isolates were reported [66].

Invasive Candida Infections in COVID‑19 
Patients

COVID-19–associated Candida spp. superinfections quickly 
became recognized as complications of the severe disease 
with the first four cases (C. albicans, n = 3; C. glabrata, 
n = 1) reported in 99 patients hospitalized in Wuhan 

Jinyintan Hospital (China) from Jan 1 to Jan 20, 2020 [67]. 
Further studies reported an increased incidence of Candida 
bloodstream infections (candidemia) in COVID-19 patients 
(in comparison to patients without COVID-19), especially in 
the ICU settings (Table 1). However, results of Candida spp. 
clinical isolates genotyping revealed that such an increase 
was not characterized by an uncontrolled nosocomial trans-
mission [60, 68, 69•], except for the spread of  Candida 
auris (see the next section).

Reasons for the higher frequency of candidemia in 
COVID-19 patients are still not fully understood. Unlike 
COVID-19–associated pulmonary aspergillosis (CAPA), 
where hyperinflammation is thought to be the main pre-
disposing mechanism [15•], COVID-19–associated can-
didemia (CAC) most likely results from a combination of 
concomitant “classic” risk factors, such as prolonged hos-
pital stay, ICU stay, (poorly controlled) diabetes mellitus, 
use of broad-spectrum antibiotics, use of corticosteroids, 
presence and duration of CVC, mechanical ventilation, and 
parenteral nutrition (Table 1). Also, as already discussed, a 
path to infection most likely resulted from dysbiosis of the 
fungal gut microbiome, decreased fungal diversity, and a 
shift toward Candida colonization in SARS-CoV-2–infected 
patients. Additionally, pandemic-related issues in over-
whelmed healthcare facilities (crowded hospital rooms, 
decreased staff-to-patient ratios, limited availability of per-
sonal protective equipment (PPE)), leading to breaches in 
infection control practices (deviations from catheter man-
agement policies, inappropriate use of PPE), were possible 
contributors to the increased number of Candida infections 
in COVID-19 patients [50, 68, 77].

In most reports, the predominant identified species was 
C. albicans (Table  1), but some healthcare institutions 
noticed a trend of increasing non-albicans clinical isolates 
over the years. For example, in Gregorio Marañón Hospital 
in Madrid, Spain, the proportion of isolates between 2020 
and 2022 decreased in C. albicans (60.3% vs. 36.7%) and 
increased in C. parapsilosis (10.3% vs. 28.6%) and C. tropi-
calis (8.8% vs. 16.3%) [69•]. Uniquely in India, C. auris was 
found to be the most predominant agent of CAC [96, 97].

Since the beginning of the COVID-19 pandemic, experts 
debated whether it would result in increased prevalence of 
antimicrobial resistance, with Clancy, Buehrle, and Nguyen 
saying “yes” and Collignon and Beggs saying “no.” However, 
they did not make any specific predictions regarding antifun-
gal resistance [98–100]. Regrettably, antifungal drug suscep-
tibility of the CAC isolates was determined rarely (Table 1), 
complicating comprehensive assessment of the situation and 
trend analysis. Posteraro et al. reported development of echi-
nocandin resistance upon caspofungin treatment in a fatal 
case of COVID-19–associated C. glabrata infection [101].

Mortality in CAC patients was in the 28 to 100% range, 
with some healthcare institutions reporting significantly 
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higher mortality in COVID‐19 patients than non‐COVID‐19 
patients [17, 23, 95].

Candida auris in COVID‑19 Patients

Even before the COVID-19 pandemic, Candida auris had 
already established itself as one of the hot topics among infec-
tious diseases experts. In 2019, it was named an urgent threat 
in the CDC’s Antibiotic Resistance (AR) Threats Report due 
to its antifungal drug resistance and easy transmission, often 
leading to nosocomial outbreaks [102]. In the initial months 
of the pandemic, it was speculated that COVID-19 patients, 
especially the ones receiving critical care, would establish a 
population highly vulnerable to colonization and infection by 
C. auris [103]. These predictions proved correct, and numer-
ous C. auris outbreaks occurred in countries all around the 
world (Table 2), as well as single cases in Japan [104], Qatar 
[105], and Turkey [106] were reported. Moreover, broader 
temporal analyses performed in India [79], Israel [107], and 
the USA [108, 109] informed of a growing number of C. 
auris cases during pandemic years. New C. auris introduc-
tions into previously unaffected healthcare facilities were also 
described [107, 110, 111]. The pooled mortality rate of C. 
auris candidiasis from published studies was estimated to 
exceed 60% (64.7% [112], 67.849% [113]).

The outbreaks were characterized by high clonality of 
the strains [107, 110, 114, 115, 118–120, 125, 127, 132] 
supporting the notion of intrahospital transmission of C. 
auris. Prolonged hospital stays, high burden of severely sick 
patients, and challenges in the implementation of infection 
control practices (e.g., extended or incorrect use of personal 
protective equipment) during the COVID-19 pandemic are 
thought to be the main drivers of patients’ colonization 
with C. auris [96, 112, 127]. Lengthy lockdowns and travel 
restrictions most likely also contributed to the local spread 
pattern [114, 127].

Following the CDC guidance [134], echinocandins were 
used as first-line therapy in invasive C. auris cases [96, 97, 
107, 110, 112, 114, 115, 118, 125, 126, 131], followed by 
amphotericin B [96, 112, 118, 125, 126, 131] and azoles 
[107, 110, 118, 125, 126]. Antifungal drug susceptibility 
(if determined) was clade-dependent with isolates of clade 
I (South Asian) showing almost uniform fluconazole resist-
ance and high rates of amphotericin B resistance (Table 2). 
However, in Brazil, the researchers found unexpected low 
antifungal minimal inhibitory concentration (MIC) values 
and the absence of any resistance-conferring mutations 
in clade I isolates [114, 115]. Only a few studies identi-
fied molecular determinants of antifungal drug resistance 
in recovered C. auris clinical isolates. Well-known azole 
resistance-conferring mutations included Erg11 Y132F and 
K143R from India [97], Erg11 K143R and Tac1b A640V 

from Italy (120), Erg11 Y132F from Lebanon [123] and 
Qatar [127], and Erg11 V125A/F126L from the USA [131]. 
Moreover, previously reported echinocandin resistance-
conferring Fks1 mutations S639F and S639Y were detected 
Qatari isolates [127].

COVID-19 patients who developed C. auris infection 
were often severely ill with the most prevalent comorbidities 
being hypertension, diabetes mellitus, and cardiovascular 
diseases [96, 97, 113, 114, 121, 122, 124, 125, 130, 131, 
133]. Other risk factors, including mechanical ventilation, 
extensive antibiotic use, steroid treatment, and placement of 
indwelling devices, also contributed to the C. auris infection 
acquisition [79, 96, 97, 107, 111, 114, 115, 117, 118, 121, 
122, 124–126, 131–133]. In some cases, C. auris infection 
occurred concurrently with bacterial superinfection, fur-
ther complicating patient management [107, 114, 118, 120, 
124–126, 129, 133].

Public health professionals have speculated on the role 
of COVID-19 pandemic-related logistical issues, including 
low PPE compliance due to anticipated/existing PPE short-
ages and relaxation of the measures to control C. auris due 
to the higher workload of healthcare workers, which would 
promote nosocomial transmission of C. auris. Recent expe-
rience has highlighted the urgent need for uninterrupted C. 
auris surveillance and containment efforts.

Conclusion

COVID-19 patients who progressed to severe disease with 
acute respiratory distress were notable for their associated 
immune dysfunction and increased risk for developing 
opportunistic invasive fungal infections, including the ones 
caused by Candida species. Additionally, many of severely 
ill COVID-19 patients were treated with broad‐spectrum 
antibiotics disrupting the normal intestinal flora composition 
[135] and corticosteroids enhancing Candida cells adhesion 
to the epithelial cells [136]. The resulting dysbiosis with 
promotion of Candida growth in the gastrointestinal and res-
piratory tracts with eventual translocation of Candida to the 
bloodstream system led to an increased number of Candida 
infections in COVID-19 patients. For commensal organisms 
like C. albicans and C. glabrata, which form a prominent 
reservoir in the gut, COVID-19 highlighted the importance 
of the gut-lung axis. While Candida in respiratory fluids of 
patients with pneumonia was associated with high mortal-
ity, it did not rise to the level of attributable mortality. Yet, 
such organisms almost certainly increased the body’s overall 
inflammatory state contributing to patient decline. Early and 
appropriate management of lung and gut dysbiosis should 
become a part of routine standard-of-care for such patients 
with the aim of preventing the progression toward invasive 
Candida infections.
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Finally, the steady rise of C. auris colonization and 
infection cases among hospitalized COVID-19 patients is 
a cautionary tale, as this environmentally hearty and drug-
resistant organism continues to prey on the chronically ill 
immunocompromised hosts. Active surveillance of patient 
body sites (axilla, groin, nares) and healthcare environment 
is critical for limiting transmission and preventing infec-
tions. Here, molecular diagnostics methods offer rapid and 
accurate detection of patient and surface colonization and 
can aid in implementation of infection prevention and con-
trol measures especially in case of patient transfers.
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