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Abstract To determine whether the presence of ischemic heart
disease (IHD) per se, or rather the co-presence of heart failure
(HF), is the primummovens for less effective stem cell products
in autologous stem cell therapy, we assessed numbers and func-
tion of bone marrow (BM)-derived progenitor cells in patients
with coronary artery disease (n = 17), HF due to ischemic car-
diomyopathy (n = 8), non-ischemic HF (n = 7), and control sub-
jects (n = 11). Myeloid and erythroid differentiation capacity of
BM-derived mononuclear cells was impaired in patients with
underlying IHD but not with non-ischemic HF. Migration ca-
pacity decreasedwith increasing IHD severity. Hence, IHD,with
or without associated cardiomyopathy, is an important determi-
nant of progenitor cell function. No depletion of hematopoietic
and endothelial progenitor cells (EPC) within the BM was ob-
served, while circulating EPC numbers were increased in the
presence of IHD, suggesting active recruitment. The observed

myelosuppression was not driven by inflammation and thus
other mechanisms are at play.
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IHD Ischemic heart disease
MNC Mononuclear cells
LVEF Left ventricular ejection fraction
PB Peripheral blood

Introduction

More than a decade ago, the use of autologous bone marrow
(BM)-derived stem cell transplantation was introduced as
promising therapy to regenerate infarcted myocardium [1].
Convincing animal data set the stage for thoughtful clinical
trials, testing this therapy as a Bproof-of-concept.^
Particularly, the total non-selected BM-derived mononuclear
cell (MNC) fractions, but also mesenchymal stem cells, he-
matopoietic, and endothelial progenitor cells, were studied.
Despite the heterogeneity in terms of stem/progenitor cell
type, as well as dosing and route of administration, several
meta-analyses in the field confirmed its safety and beneficial
impact on left ventricular ejection fraction (LVEF), infarct
size, and myocardial perfusion [2, 3]. These benefits were
most likely mediated by paracrine actions of injected cells in
ischemic tissue, i.e., stimulation of angiogenesis, inhibition of
apoptosis of endothelial cells and cardiomyocytes, activation
of cardiac stem cells, and recruitment of additional progenitor
cells [4].

Despite the initial success of autologous stem cell therapy
in the setting of acute myocardial infarction, the outcomes in
patients with chronic ischemic heart disease (IHD) and ische-
mic cardiomyopathy were rather disappointing [5, 6]. Clinical
trials reported a mild cardiac improvement in LVEF of ±3% in
patients with IHD, irrespective of reduced LVEF at baseline,
compared to the placebo group 3–6months after intracoronary
BM-MNC administration [7, 8].

For patients with dilated cardiomyopathy, results were con-
flicting: the INTRACELL trial did not find any significant
increase in LVEF 3 months after intramyocardial injection of
BM-MNC compared to the control group [9]. In contrast, the
REGENERATE-DCM trial reported a 5 % increase in LVEF
3 months after intracoronary administration of BM cells in
patients with non-ischemic heart failure (HF) compared to
baseline [10]. Hence, researchers were drawn back to the
bench to investigate why results have proved inferior to what
was anticipated from clinical studies.

At present, there is an emerging evidence base for a general
myelosuppression in patients with chronic IHD, affecting both
the functionality and the number of stem/progenitor cells in the
BM. For example, in search for an explanation of HF-associated
anemia, several groups reported a reduced proliferation and dif-
ferentiation capacity of BM-derived progenitor cells in vitro in
ischemic but not in dilated cardiomyopathy [11–14]. Jakob et al.
demonstrated the in vivo clinical impact of this functional defi-
cit: progenitor cells obtained from patients with ischemic

cardiomyopathy showed a reduced capacity to promote cardiac
function and neovascularization after myocardial injection in a
hindlimb ischemia mice model when compared to progenitor
cells acquired from healthy subjects [15]. Also in patients with
isolated coronary artery disease (CAD), and thus without con-
comitant HF, intrinsic impairment of hematopoietic stem cell
differentiation was observed [16].

Taken together, results from clinical trials suggest that the
BM compartment in ischemic HF, and also in isolated CAD,
might be dysfunctional. So far, the extent and severity of BM
suppression have not been compared between these various
underlying etiologies. We hypothesize that the extent of BM
dysfunction will be more prominent in the presence of HF,
since the existence of low-grade systemic inflammation in
the HF syndrome may aggravate myelosuppression [17, 18].

In this regard, we performed a systematic evaluation of pro-
genitor cell numbers and functionality in a broad range of car-
diovascular diseases: CAD, HF due to ischemic cardiomyopa-
thy, HF due to non-ischemic cardiomyopathy, and compared this
with a healthy control group. Moreover, inflammation was ex-
plored as a potential mechanism of BM dysfunction.

Methods

Detailed methods are available in online supplementary
material.

Study Population

Thirty-two patients undergoing elective cardiac surgery via me-
dian sternotomy (coronary artery bypass grafting, mitral valve
surgery, or implantation of ventricular assist device) were strat-
ified into groups according to the presence of significant IHD
and/or HF. Hence, there was a first group of patients with IHD
without HF (i.e., CAD group), a second group with HF due to
IHD (i.e., ischemic cardiomyopathy or ICM group), and a third
groupwith HF due to other reasons than IHD (i.e., non-ischemic
HF group). Eleven subjects without significant past history of
cardiovascular disease served as controls. The study complied
with the Helsinki Declaration and was approved by the local
ethics committee, and written informed consent was obtained
from all subjects.

Sampling and Isolation of BM- and PB-MNC

In patients, BM (2 × 10 ml) was aspirated by sternal puncture
under general anesthesia; arterial peripheral blood (PB, 12 ml)
was sampled simultaneously via arterial catheter. In control sub-
jects, BM was aspirated at the time of bone prelevation of the
iliac crest prior to jaw reconstruction; venous PB was sampled
by venipuncture. BM- and PB-MNC were isolated by density
gradient centrifugation immediately after sampling.
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Clinical and Biochemical Assessment

All patients underwent coronary angiography and standard
transthoracic echocardiography pre-operatively to determine
the complexity of IHD (Syntax score) and LVEF, respectively.
The Syntax score, an angiographic tool to quantify the com-
plexity of coronary artery lesions, was calculated using the
online Syntax score calculator [19]. Physical capacity was
evaluated by the 6-min walk test. The Framingham risk score
representing the 10-year risk for cardiovascular disease was
calculated for each patient [20]. CRP, hemoglobin, creatinine,
leukocyte, total cholesterol, HDL, and LDL circulating levels
were measured pre-operatively.

Assessment of BM Purity

The percentage of bone matrix vesicle-bound bone alkaline
phosphatase (ALP) of total ALP activity, as a marker for the
purity of BM aspirates, was quantified in BM serum as de-
scribed previously [21]. BM aspirates in which the percentage
of bone matrix vesicle-bound ALP was less than 15 % were
excluded from the study for quality reasons.

Transwell Migration Assay of BM-MNC

In vitro migratory capacity of BM-MNC towards stromal cell-
derived factor-1α (SDF-1α, 100 ng/ml, R&D Systems Europe
Ltd., UK) and vascular endothelial growth factor (VEGF,
50 ng/ml, R&D Systems Europe Ltd.) was evaluated after
4 h using a modified Boyden chamber.

Colony-Forming Unit Assays

Isolated BM-MNC were aliquoted in duplicate in Methocult
H4535 Enriched without EPO medium (Stem Cell
Technologies, France) for induction of differentiation into
the myeloid lineage (granulocyte/macrophage colony-
forming units, GM-CFU), as well as in Methocult H4434
Classic medium (Stem Cell Technologies) for induction of
differentiation into the erythroid lineage (erythroid burst-
forming units, BFU-E). After incubation for 14 days, the num-
ber of GM-CFU and BFU-E was counted.

Paracrine Activity of BM-MNC

Isolated BM-MNC were seeded on gelatin-coated 24-well
plates (5 × 106 cells/well). After incubation for 24 h, superna-
tant was collected, in which VEGF levels were measured
using a humanVEGF ELISA kit (R&DSystems Europe Ltd.).

Flow Cytometry for Hematopoietic and Endothelial
Progenitor Cell Enumeration

Multiparametric flow cytometry was applied for the assess-
ment of the cellular composition of the BM-MNC fraction, as
well as for the specific enumeration of hematopoietic (HPC,
CD45dimCD34+SSClow, ISHAGE gating strategy [22]) and
endothelial (EPC, CD45dimCD34+KDR+, EPC-gating proto-
col standardized by our laboratory [23]) progenitor cells in
both BM- and PB-MNC samples using APC-H7-labeled
CD45 (BD), PE-Cy7-labeled CD34 (BD), and APC-labeled
KDR (R&D Systems) antibodies. HPC and EPC numbers
were expressed as relative numbers among CD45+ events.
Early and late apoptosis was assessed by 7-AAD (BD) and
FITC-labeled Annexin V staining (BD).

Inflammatory and Angiogenic Cytokine Levels

Levels of the inflammatory cytokines tumor necrosis factor
alpha (TNFα), interferon gamma (IFNγ), and interleukin 6
(IL-6) and the angiogenic cytokines VEGF and basic fibro-
blast growth factor (bFGF) were measured in PB and BM
plasma using Meso Scale Discovery multiplex platforms
(Meso Scale Diagnostics, Maryland, USA).

Molecular Expression of Inflammatory and Angiogenic
Receptors

Expression of TNFR1 and TNFR2 (TNFα receptors),
IFNGR1 (IFNγ receptor 1), IL6-R (IL-6 receptor), CXCR4
(SDF-1α receptor), and VEGFR2 (VEGF receptor 2) in BM-
MNC was normalized to GAPDH and calculated by real-time
qPCR using the ΔΔCT method.

Statistical Analysis

Results are expressed as median (interquartile range (IQR)).
IBM SPSS Statistics version 22.0 was used for statistical anal-
ysis. Normality of the variables was tested with Shapiro-Wilk
and by visual Q–Q plot inspection. Logarithmic transforma-
tion of skewed data was done to obtain a normal distribution.
Comparison between different groups was performed using
ANOVA (normally distributed data), Kruskal-Wallis (skewed
data), or chi-square test (nominal data), as appropriate. To
evaluate the specific influence of either IHD or HF, a two-
way ANOVA was performed for each parameter with IHD,
HF, and the interaction between IHD and HF as independent
factors. All models were adjusted for age. When the interac-
tion between IHD and HF was not significant, it was removed
from the model. Post hoc pairwise comparison was obtained
by Mann–Whitney U and adjusted with the Bonferroni-Holm
correction for multiple testing. Correlations were evaluated by
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the Pearson or Spearman test, as appropriate. A p value of
<0.05 was considered statistically significant.

Results

Patient Characteristics

After exclusion of impure BM aspirates, i.e., samples that
were contaminated with PB (n = 12), 43 subjects were includ-
ed in the analysis. Figure 1 shows the stratification into groups
based on the presence of IHD and/or HF.

Demographic and clinical characteristics of the different
cohorts are depicted in Table 1. Groups were similar with
respect to age and gender. Syntax scores were similar between
the ICM and CAD groups, indicating a comparable IHD com-
plexity. Patients with ICM showed significantly lower LVEF

compared to patients with non-ischemic HF (p = 0.015), but
New York Heart Association (NYHA) class was not different.

Furthermore, three control subjects received ACE inhibi-
tors, beta-blockers, and/or statins as treatment for arterial hy-
pertension or hypercholesterolemia, respectively.

Functional Analysis of BM-MNC

Table 2 shows the results for the various functional tests that
were performed in BM-MNC in the four groups. The results
of the two-way ANOVA model with IHD and HF are shown
separately in Table 3. For all parameters, the interaction be-
tween IHD and HF was not significant and could be removed
from the model.

This analysis revealed a significant decrease in myeloid
(GM-CFU; p = 0.009) and erythroid (BFU-E; p = 0.033) dif-
ferentiation capacity of BM-MNC in the presence of IHD.

Fig. 1 Patient inclusion and stratification diagram. Abbreviations: BM, bone marrow; CAD, coronary artery disease; CABG, coronary artery bypass
grafting;HF, heart failure; CVD, cardiovascular disease; ICM, ischemic cardiomyopathy; IHD, ischemic heart disease;MV surgery, mitral valve surgery
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This is illustrated in Fig. 2a, b. The presence of HF did not
affect the differentiation capacity of BM-MNC; however,
within HF patients, a significant positive correlation between
GM-CFU numbers and LVEF was observed (Fig. 2c).

Additionally, whereas migratory capacity of BM-MNC
did not differ between groups, it strongly correlated with
IHD complexity, as assessed by the Syntax score

(Fig. 2d). VEGF production of isolated BM-MNC was
measured in a subset of the study population (Table 2),
but no differences in VEGF production after 24-h incuba-
tion were detected between groups.

For the total cohort, a significant negative relation between
age and GM-CFU (r = −0.416; p = 0.014; Fig. 2e) and BFU-E
(r = −0.332; p = 0.042; Fig. 2f) was observed.

Table 1 Demographic and clinical characteristics of the study population

Group CAD (n = 17) ICM (n = 8) Non-ischemic HF (n = 7) Control subjects (n = 11) P value

General

Age (years) 65 (60–72) 60 (42–72) 59 (52–64) 55 (40–66) 0.055

Sex (M) 14 7 5 7 0.575

BMI (kg/m2) 28 (24–31) 25 (22–31) 28 (21–35) 24 (23–26) 0.323

Systolic BP (mmHg) 139 (129–157) 125 (112–151) 119 (111–138) N.A. 0.177

Cardiac evaluation

IHD + + − − N.A.

HF − + + − N.A.

LVEF (%) 60 (56–68) 22 (16–39) 45 (35–50) N.A. <0.001

NYHA I/II/III/IV N.A. 0/4/3/0 0/3/3/2 N.A. 0.352

n-vessel disease (1/2/3) 3/7/7 2/2/4 0/0/0 N.A. <0.001

Syntax Score 16 (10–25) 20 (9–23) N.A. N.A. 0.861

Framingham Score 16 (11–26) 15 (4–24) 8 (2–15) N.A. 0.191

6-MWT (m) 556 (500–638) 350 (260–400) 600 (524–614) N.A. 0.081

Hematological and biochemical analysis

Hb (g/dl) 13.5 (13.0–14.4) 15.1 (12.0–15.8) 12.8 (12.4–14.8) 14.6 (12.7–15.7) 0.524

Leukocytes (10E9/l) 6.2 (5.5–7.6) 8.4 (7.1–9.4) 8.6 (7.7–9.5) 7.0 (5.5–8.4) 0.073

Creatinine (mg/dl) 0.9 (0.8–1.1) 1.1 (0.9–1.3) 0.9 (0.8–1.1) 0.8 (0.7–1.0) 0.029

eGFR (ml/min) 84 (71–94) 75 (67–82) 82 (73–98) 94 (89–103) 0.149

CRP (mg/l) 1.5 (1.5–2.3) 5.7 (1.5–19.2) 3.4 (1.5–10.0) 1.5 (1.5–4.0) 0.096

TG (mg/dl) 114 (88–210) 118 (88–262) 114 (77–140) N.A. 0.301

Total cholesterol (mg/dl) 170 (139–190) 210 (138–226) 208 (164–249) N.A. 0.470

HDL (mg/dl) 44 (30–55) 37 (35–45) 52 (43–61) N.A. 0.019

LDL (mg/dl) 94 (65–119) 144 (75–157) 139 (101–170) N.A. 0.249

Medication (N)

ACE inhibitors/ARB 8 5 4 2 0.200

Beta-blockers 11 4 6 1 0.006

Diuretics 4 5 6 0 0.001

Statins 16 5 1 2 <0.001

Surgery (N)

CABG 17 6 0 0 <0.001

MV surgery 0 1 7 0 <0.001

VAD 0 2 0 0 0.027

Maxillofacial 0 0 0 11 <0.001

Data are expressed as median (IQR). P values for comparison between groups by ANOVA, Kruskal-Wallis, or chi-square test, as appropriate

ACE angiotensin-converting enzyme, ARB angiotensin II receptor blockers, BP blood pressure, BMI bodymass index,CAD coronary artery disease,HF
heart failure, CABG coronary artery bypass grafting, CRP C-reactive protein, eGFR estimated glomerular filtration rate, Hb hemoglobin, HDL high-
density lipoprotein, ICM ischemic cardiomyopathy, IHD ischemic heart disease, LDL low-density lipoprotein, LVEF Left ventricular ejection fraction,
MV mitral valve, NYHA New York Heart Association class, TG triglycerides, VAD ventricular assist device, 6-MWT 6-min walk test

270 J. of Cardiovasc. Trans. Res. (2016) 9:266–278



Table 2 Functional/numerical assessment of MNC in BM and PB

Parameter CAD ICM Non-ischemic HF Control subjects

Bone marrow

Functional analysis N = 17 N = 8 N = 7 N = 11

Migration capacity (%) BM-MNC 31 (20–38) 26 (18–31) 29 (26–35) 32 (23–39)

GM-CFU (N) 42 (21–55) 43 (33–69) 68 (37–114) 73 (55–82)

BFU-E (N) 29 (18–36) 31 (27–42) 25 (17–61) 40 (36–55)

N = 13 N = 5 N = 2 N = 4

VEGF (pg/ml) 138 (91–191) 132 (89–380) 121 (97–N.A.) 175 (119–227)

Numerical analysis N = 17 N = 8 N = 7 N = 11

BM HPC (/106 CD45+ BM-MNC) 12117 (8329–16465) 14309 (9166–16839) 1196 (5800–22089) 16703 (12076–20914)

BM EPC (/106 CD45+ BM-MNC) 310 (118–529) 255 (64–796) 136 (38–304) 242 (80–508)

Early apoptosis (%) BM-MNC 0.33 (0.16–0.60) 0.24 (0.06–0.32) 0.65 (0.33–0.92) 0.42 (0.26–0.59)

Late apoptosis (%) BM-MNC 0.25 (0.11–0.70) 0.09 (0.04–0.30) 0.74 (0.31–1.05) 0.52 (0.14–0.85)

Peripheral blood

Numerical analysis N = 13 N = 5 N = 7 N = 11

PB HPC (/106 CD45+ PB-MNC) 863 (534–1153) 2089 (889–2453) 1056 (646–1261) 672 (589–798)

PB EPC (/106 CD45+ PB-MNC) 76 (40–112) 299 (68–464) 26 (11–74) 29 (17–39)

Early apoptosis (%) PB-MNC 0.23 (0.15–0.32) 0.11 (0.08–0.29) 0.16 (0.07–0.38) 0.08 (0.04–0.11)

Late apoptosis (%) PB-MNC 0 (0–0.01) 0 (0–0.02) 0.01 (0–0.01) 0.01 (0–0.01)

Data are expressed as median (IQR). Abbreviations as in Table 1

BFU-E erythroid burst-forming units, BM bone marrow, EPC endothelial progenitor cells, GM-CFU granulocyte-macrophage colony-forming units,
HPC hematopoietic progenitor cells,MNC mononuclear cells, PB peripheral blood, VEGF vascular endothelial growth factor

Table 3 Parameter estimates resulting from ANOVA analysis for numerical and functional assessments in BM and PB

Parameter IHD HF Model

Beta coefficient SE P value Beta coefficient SE P value P value

Bone marrow

Functional analysis

Migratory capacity (%) BM-MNC −1.585 3.143 0.617 −3.214 3.030 0.296 0.521

GM-CFU (N) −25.076 8.930 0.009 3.550 8.768 0.688 0.012

BFU-E (N) −10.106 4.553 0.033 −0.302 4.597 0.948 0.083

Numerical analysis

BM HPC (/106 CD45+ BM-MNC) −1175.230 1897.721 0.540 −1631.138 1855.751 0.385 0.200

Log BM EPC (/106 CD45+ BM-MNC) 0.130 0.165 0.436 −0.181 0.161 0.268 0.317

Log early apoptosis (%) BM-MNC −0.294 0.146 0.051 −0.097 0.142 0.500 0.133

Log late apoptosis (%) BM-MNC −0.333 0.154 0.037 −0.144 0.151 0.346 0.059

Peripheral blood

Numerical analysis

Log PB HPC (/106 CD45+ BM-MNC) 0.147 0.075 0.058 0.187 0.068 0.010 0.029

Log PB EPC (/106 CD45+ BM-MNC) 0.612 0.133 <0.001 0.255 0.121 0.042 <0.001

Log early apoptosis (%) PB-MNC 0.201 0.136 0.149 0.080 0.123 0.522 0.234

Log late apoptosis (%) PB-MNC −0.018 0.223 0.936 0.213 0.203 0.304 0.547

Abbreviations as in Tables 1 and 2. The regression model tested IHD and HF as independent factors (adjusted for age) for each parameter. All models
were adjusted for age

SE standard error
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To exclude the possibility that the observed differences in
myeloid and erythroid differentiation capacity are related to
differences in cellular composition of the BM-MNC sample, a
multiparametric flow cytometric analysis of BM-MNC was
performed. In exception of higher monocyte percentages in

IHD patients, BM from subjects with and subjects without
IHD were comparable in cellular composition, including the
ratio of lymphoblasts versus CD117+ myeloblasts (p = 0.347)
or versus CD33+ myeloblasts (p = 0.347) present in the BM-
MNC pool (Supplementary Table 1).

Fig. 2 Functional assessment of BM-MNC of patients with IHD and HF.
a In vitro myeloid (GM-CFU numbers) and b erythroid (BFU-E
numbers) differentiation capacities of BM-MNC were decreased in
subjects with IHD (i.e., CAD and ICM group, n = 17 + 8) compared to
subjects without IHD (i.e., non-ischemic HF group and control subjects,

n = 7 + 11). c In HF patients, GM-CFU numbers decrease with decreasing
LVEF. d In IHD patients, migratory capacity of BM-MNC decreases with
increasing IHD complexity, i.e., Syntax score. *p < 0.05 (ANOVA). e For
the total cohort, age was negatively related with GM-CFU numbers and f
BFU-E numbers
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Numerical Analysis of Progenitor Cells in BM and PB

In the BM compartment, HPC and EPC numbers were com-
parable between the four groups (Table 2) and were not influ-
enced by the presence of IHD and/or HF (Table 3). The per-
centage of BM-MNC in early and late apoptosis was signifi-
cantly lower in subjects with IHD compared to subjects with-
out IHD (Table 3).

In PB, EPC numbers were significantly elevated in the
presence of IHD (p < 0.001; Fig. 3a), as well as in the presence
of HF (p = 0.042, Fig. 3a). Moreover, an inverse correlation
between circulating EPC numbers and LVEF was found in all
patients with HF (Fig. 3b).

The presence of HF also affected circulating HPC numbers
with higher numbers of HPC in subjects with HF compared to
subjects without HF (p = 0.010, Table 3 and Fig. 3c).

Early and late apoptotic BM-MNC percentages were more
prominent in subjects without IHD than with IHD (p = 0.051
and p = 0.037; Table 3). Yet, the degree of early and late

apoptosis of freshly isolated MNC both in BM and PB was
overall minimal (±<1 %).

Inflammatory and Angiogenic Cytokine Profile in BM
and PB

To explore the mechanisms responsible for the aforemen-
tioned functional and numerical differences, levels of inflam-
matory cytokines and pro-angiogenic growth factors were
studied in a subpopulation of 25 subjects.

In this entire subpopulation, levels of inflammatory cyto-
kines were lower in BM compared to PB (IFNγ, TNFα, and
IL-6), whereas levels of angiogenic growth factors (VEGF
and bFGF) were higher in BM compared to PB
(Supplementary Table 2).

The comparison between the four study groups is shown in
Table 4. Only IL-6 levels were significantly altered: pairwise
comparison showed a significant elevation of IL-6 in PB
(p = 0.015), as well as in BM (p = 0.013) in patients with

Fig. 3 Enumeration of circulating hematopoietic (HPC) and endothelial
(EPC) progenitor cells in patients with IHD and HF. a Circulating EPC
numbers were increased in subjects with IHD (i.e., CAD and ICM group,
n = 13 + 5) compared to subjects without IHD (i.e., non-ischemic HF
group and control subjects, n = 7 + 11). b Circulating EPC negatively

correlated with LVEF in patients with HF. c Circulating HPC numbers
were elevated in subjects with HF (ICM and non-ischemic HF group,
n = 5 + 7) compared to subjects without HF (CAD group and control
subjects, n = 13 + 11). *p < 0.05 (ANOVA)
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ICM compared to control subjects. The increases in IL-
6 levels in BM and PB in patients with non-ischemic
HF were not significant (PB IL-6, p = 0.059 and BM
IL-6, p = 0.113); however, both BM and PB IL-6 con-
centrations correlated negatively with LVEF (BM IL-6,
r = −0.556, p = 0.025; PB IL-6, r = −0.708, p = 0.002)
and 6-MWT (BM IL-6, r =
−0.886, p = 0.019; PB IL-6, r = −0.886, p = 0.019).
Moreover, TNFα and IFNγ levels in BM were in-
creased in patients with CAD compared to control sub-
jects, but this was not significant.

Neither IL-6, TNFα, IFNγ, nor VEGF and bFGF levels in
BM and PB correlated with any functional parameter or pro-
genitor cell number in the study population.

Cytokine Receptor Expression on BM-MNC

Expression of cytokine receptors (TNFR1 and 2, IFNGR1, IL-
6R) and receptors involved in the mobilization of BM-MNC
into the circulation (VEGFR2, CXCR4) were analyzed to
evaluate the sensitivity of the BM-MNC to the aforemen-
tioned cytokines and to gain more insight in the leading factor
for mobilization.

Expression levels of these receptors on BM-MNC did not
show any significant up- or downregulation between groups
and thus appeared to be unaffected by either the presence of
IHD and/or HF (Supplementary Table 3).

An increase in TNFα levels in BM was associated
with an upregulation of TNFR2 expression (BM, r =
0.536, p = 0.007) in the study population. In turn,
TNFR2 expression was negatively related to both GM-
CFU (r = −0.428, p = 0.015) and BFU-E (r = −0.629, p =
0.005) numbers. Moreover, the ratio of TNFR1 to

TNFR2 expression on BM-MNC, which gives an indi-
cation for cell survival (low ratio) or apoptosis (high
ratio), did not differ between groups. In patients with
HF, no increase in TNFα was observed, but a negative
correlation with LVEF and TNFR1 expression on BM-
MNC (r = −0.642, p = 0.010) was documented .
Circulating EPC numbers were correlated with CXCR4
expression on BM-MNC (r = 0.364, p = 0.034).

Discussion

The present study is the first to provide a comprehensive anal-
ysis of the numbers and function of BM-derived progenitor
cells in the setting of IHD and HF. Several interesting findings
emerge from this study:

1. Both myeloid and erythroid differentiation capacities
of BM-MNC are impaired in the presence of IHD.
Moreover, BM-MNC show attenuated migratory ca-
pacity with increasing complexity of angiographic
lesions.

2. We did not observe a depletion of progenitor cells in the
BM compartment, neither in IHD nor in HF. These data
suggest that the impairment of progenitor cells in the BM
in IHD is restricted to a functional limitation and not to
numerical values.

3. The decline in functionality of BM-MNC in IHD is not
driven by low-grade systemic inflammation.

4. EPC mobilization from the BM into the circulation in
IHD patients appears to involve CXCR4-mediated
signaling.

Table 4 Cytokine levels in BM and PB

CAD ICM Non-ischemic HF Control subjects P value

Bone marrow N = 6 N = 6 N = 5 N = 8

BM IFNγ (pg/ml) 4.39 (3.25–4.81) 3.75 (0.48–5.64) 4.25 (2.42–9.72) 1.07 (0.20–3.20) 0.065

BM TNFα (pg/ml) 1.94 (1.59–2.64) 1.61 (1.10–2.89) 1.80 (1.53–2.07) 1.29 (1.05–1.63) 0.185

BM IL-6 (pg/ml) 0.34 (0.05–0.65) 0.88 (0.52–1.53) 0.84 (0.16–1.40) 0.18 (0.05–0.48) 0.049

BM VEGF (pg/ml) 66.79 (48.28–91.17) 79.69 (60.98–228.84) 59.67 (27.02–97.54) 229.06 (70.85–282.83) 0.081

BM bFGF (pg/ml) 58.05 (48.32–304.51) 122.13 (97.53–181.18) 300.82 (137.74–548.76) 13676 (81.78–334.45) 0.141

Peripheral blood N = 6 N = 6 N = 5 N = 8

PB IFNγ (pg/ml) 4.35 (3.25–5.82) 4.70 (1.83–6.75) 4.97 (3.50–12.63) 4.34 (2.44–4.66) 0.509

PB TNFα (pg/ml) 2.22 (1.58–2.65) 2.03 (1.05–3.09) 2.04 (1.76–2.48) 1.74 (1.32–2.00) 0.733

PB IL-6 (pg/ml) 0.22 (0.05–0.59) 1.01 (0.59–1.97) 1.06 (0.53–1.25) 0.37 (0.11–0.51) 0.007

PB VEGF (pg/ml) 16.52 (14.76–66.51) 30.78 (10.47–132.84) 31.45 (17.96–80.66) 83.34 (23.59–101.65) 0.523

PB bFGF (pg/ml) 2.45 (2.22–5.39) 3.09 (1.59–4.74) 2.88 (2.83–4.39) 2.51 (0.77–19.16) 0.971

Abbreviations as in Tables 1 and 2. Data are expressed as median (IQR). P values for comparison between groups by Kruskal-Wallis

bFGF basic fibroblast growth factor, IFNγ interferon gamma, IL-6 interleukin 6, TNFα tumor necrosis factor alpha
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Functional Impairment of BM-Derived Progenitor Cells
in IHD

Several studies previously reported reduced in vitro GM-CFU
and BFU-E capacity of isolated BM-MNC in the setting of
ICM (LVEF < 45–40 %, NYHA II–IV) compared to healthy
subjects [11, 12, 14]. Liguori et al. also observed this func-
tional impairment in patients with CAD without the clinical
presence of HF (LVEF >45 %, NYHA I) [16]. In this study,
we confirmed the reduced myeloid/erythroid differentiation
capacity of BM-MNC in CAD but distinguished the effect
of IHD versus HF. Surprisingly, we identified only IHD, but
not HF, as an important determinant of BM-MNC differenti-
ation capacity. This finding is in line with the work of Kissel
et al. who observed lower GM-CFU numbers in ICM patients
(previous MI, LVEF 32 ± 11 %) but not in age-matched pa-
tients with dilated cardiomyopathy (LVEF 27 ± 9 %) [12].

Heeschen et al. also documented a reduced migratory re-
sponse towards SDF-1α and VEGF of BM-MNC in 18 pa-
tients with ICM (previous MI, LVEF 38 ± 11 %) [14]. In our
study, however, migratory capacity of BM-MNC was not in-
fluenced by the presence of IHD nor by HF. This discrepancy
could be explained by the differences in study population: the
ICM patients in the study of Heeschen et al. were 17 % dia-
betic and compared to significantly younger healthy subjects
[14]. Both diabetes and age are known influencing determi-
nants of the progenitor cell function (see infra) [24, 25].
Therefore, we assigned diabetes as exclusion criterion in our
study and corrected for the confounding age effect in our
analyses.

In the present study, we demonstrated a significant inverse
relation between the migratory capacity of BM-MNC and the
complexity of IHD, as assessed by the Syntax score. The
observation that severity of IHD is an important determinant
of progenitor cell function has been suggested earlier by
Bozdag-Turan et al.: CD34+/CD45+ and CD133+/CD45+
progenitor cells isolated from peripheral blood showed a re-
duced erythroid-myeloid differentiation capacity and migrato-
ry response towards VEGF/SDF-1α in patients with IHD,
which all decreased further with increasing number of dis-
eased coronary arteries [26].

In conclusion, this study extends previous observations and
shows that, in the setting of IHD, myeloid and erythroid dif-
ferentiation capacities of progenitor cells are already impaired
when still residing in the BM compartment. This impairment
in functionality worsens further with increasing complexity of
CAD but is not observed in non-ischemic HF. Our findings
identify IHD rather that the HF syndrome itself as primum
movens for the observed functional impairment of BM cells.
We acknowledge that these results do not support our initial
hypothesis: since HF is regarded as a multi-system disorder
that also accounts for several peripheral abnormalities such as
endothelial dysfunction, skeletal muscle changes, and

ventilatory inefficiency [27], we also anticipated an associated
BM dysfunction. Yet, our results suggest otherwise and are in
accordance with the findings from Kissel et al. [12] and
Liguori et al. [16], as discussed above. In this regard, our focus
in the quest to reveal the underlying mechanisms for this func-
tional BM deficit in this patient group should also shift to-
wards ischemia-induced pathways.

Increased EPC Recruitment into the Circulation in IHD

The fact that we did not observe a depletion of HPC and EPC
in the BM compartment, neither in IHD nor in HF, is in line
with the findings from Kissel et al. [12] and Heeschen et al.
[14], who did not find any differences in ICM compared to
healthy subjects either. However, while we used the ISHAGE
characterization (CD45dimCD34+SSClow) for HPC enumera-
tion in BM, both groups applied CD34+CD45+ BM-MNC as
HPC phenotype characterization and CD34+CD133+ BM-
MNC for immature HPC. This is in contrast with the findings
from Liguori et al. [16], who reported reduced HPC numbers
in the BM of patients with CAD.

Whereas we observed a functional impairment of BM-
derived progenitor cells in IHD, we also observed elevated
circulating EPC numbers in these patients. This finding im-
plies an active, possibly compensatory, recruitment of EPC
from the BM into the circulation in the setting of ischemia,
in order to obtain local neovascularization of ischemic tissue.
In our study, higher numbers of circulating EPC correlated
with higher CXCR4 expression on BM-MNC, suggesting that
EPC recruitment into the circulation is mediated, at least part-
ly, by SDF-1α.

In literature, conflicting results in circulating EPC numbers
in the setting of IHD and HF have been published. Vasa et al.
[28] showed a decrease in CD34+KDR+ cells in the circulation
of CAD patients (stable CAD, acute coronary syndrome, or
MI) compared to healthy subjects, while Valgimigli et al. [29]
demonstrated increased CD34+CD133+KDR+ numbers in PB
of patients with congestive HF (from different etiologies),
especially in the early phase of HF (NYHA I). These data
emphasize that not only the heterogeneity in EPC phenotypes
but also the differences in severity of HF can lead to variations
in study outcome.

Underlying Mechanisms for BM-Derived Progenitor Cell
Dysfunction in IHD

Multiple mechanisms could underlie the observed dysfunction
of BM-derived progenitor cells in IHD. Identification of these
targets could help to restore progenitor cell functions and im-
prove outcome after autologous stem cell therapy.

Since TNFα has been identified as a cell-extrinsic suppressor
of normal HPC activity in vivo [18], we explored increased
inflammation as a potential trigger of BM dysfunction.
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Interestingly, the inflammatory cytokine levels (TNFα, IFNγ,
and IL-6) were lower in BM compared to PB, suggesting that
BM can be regarded as a separate compartment and is protected
from systemic increases in circulating cytokines. As expected,
IL-6 levels were increased in both circulation andBMof patients
with ICM; however, these IL-6 elevations were not statistically
significant in patients with non-ischemic HF, which might be
attributed to a less depressed LVEF in this patient cohort.

Neither the levels of TNFα and IFNγ in the BM compart-
ment nor their systemic levels differed between groups. A pos-
sible hypothesis for the lack of these differences in inflammatory
markers could potentially be ascribed to the inherent immuno-
suppressive nature of the BM-derived progenitor cells. Not only
MSC but also early myeloid progenitor cells have recently been
identified as immunosuppressors by the induction of T cell pro-
liferation and regulatory T cell development in vitro [30]. The
underlyingmechanisms for these immunomodulatory properties
are not yet fully elucidated, butMSC-mediated immunosuppres-
sion appeared to be even induced by pro-inflammatory cyto-
kines through the role play of chemokines and NO, suggesting
a compensatory mechanism [31].

TNFR2 is known to act as life receptor stimulating prolif-
eration and cell survival, particularly in lymphocytes [32]. In
contrast, we documented a negative relation between TNFR2
and both myeloid and erythroid differentiation capacity of
BM-MNC. Yet, data by Schling et al. clearly demonstrate that
there is no general principle for the regulated expression of
TNFα and its receptors during the conversion of precursors
into a more mature cell phenotype [33]. In this regard, exper-
imental studies with primary cultures from WT and TNFR2
−/− mice have demonstrated accelerated differentiation from
bone marrow precursor cells into dendritic cells and osteo-
clasts [34, 35].

Based on these findings, as well as on the missing correla-
tions between the inflammatory markers and the progenitor cell
functionality in our study population, it is rather unlikely that
inflammation is a major underlying mechanism for the observed
BM dysfunction in IHD. In hematological disorders, immuno-
suppressive therapy has even been shown to beneficially affect
the BM function. For example, in patients with aplastic anemia,
immunosuppressive therapy with antithymocyte globulin and
cyclosporine A results in hematologic recovery of the BM, de-
spite the initial defect in progenitor cell numbers [36]. Hence, we
should not ignore the suppressing role of inflammation on the
progenitor cell function, but our data suggest that in the setting of
IHD other more determiningmechanisms are at play, whether or
not stimulated by inflammation.

Since the intrinsic cellular dysfunction in BM was not ob-
served in the setting of HF, future experiments could focus on
ischemia-related pathways as underlying mechanism for BM
dysfunction. For example, diabetes-induced microangiopathy
in BM is responsible for a reduced perfusion and nutrition, as
well as increased oxidative stress and reduced nitric oxide

bioavailability, thereby hampering the progenitor cell function
and HPC/EPC mobilization in ischemia models in vivo [37].
The suppressing effect of microvascular disease on BM func-
tion could be further extrapolated to IHD, although, the extent
of microvascular disease in the BM niche in IHD has to be
further explored.

Accelerated senescence of BM-derived progenitor cells could
also be a potential underlying mechanism since IHD has been
associated with telomere shortening of BM-MNC [38].

Implications for Autologous Stem Cell Therapy

Impaired progenitor cell function compromises the outcome of
autologous stem cell therapy. The TOPCARE-CHD study dem-
onstrated the clinical relevance of this impairment: administra-
tion of progenitor cells with a reduced function in vitro is inferior
to administration of BM-MNC with a preserved function on
patient survival and LVEF improvement [8]. A detailed analysis
performed by Cogle et al. on the stem cell product that was
administered in patients with acute and chronic IHD and left
ventricular dysfunction showed a decrement in LVEF with de-
creasing percentages of CD34+ of the administered BM-MNC
[13]. Based on our results, it appears that the poor outcome of
autologous stem cell therapy in IHD might be a consequence of
their reduced ability to differentiate.

In order to identify suitable therapeutic targets to improve
efficacy of autologous stem cell therapy, we should first col-
lect more insight in the underlying mechanisms of this ob-
served progenitor cell dysfunction in IHD patients.
Secondly, these specific pathways could be targeted to reverse
the functional outcome. In this regard, modulation of cellular
microRNA is particularly promising and proven successful in
augmenting the progenitor cell function bymeans of paracrine
activity, cell survival, and cardiomyogenic differentiation ca-
pacity, with direct beneficial impact on cardiac and/or vascular
regeneration [39].

Additional Determinants of the Progenitor Cell Function

Not only the presence of IHD but also specific demographic
characteristics of the study population are well-known rele-
vant determinants on the BM-derived progenitor cell function.

For example, evidence has been collected for age-
dependent deterioration of the proliferative capacity of BM-
derived progenitor cells and in general the hematopoietic com-
partment [24]. In healthy subjects and/or CAD patients, age
has been associated with impaired in vivo neovascularization,
in vitro migration, and myeloid differentiation capacity of
BM-MNC [14, 40]. This age effect was also observed in our
study population: a negative relation was found with both
GM-CFU and BFU-E numbers; however, this bias was limit-
ed since our study cohorts did not differ with respect to age.
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Additionally, in the regression model, analyses were adjusted
for age.

Moreover, also medication appears to have its influence on
the progenitor cell function and numbers. Statins have shown
to stimulate BM-derived EPC survival, differentiation and
function, as well as mobilization into the circulation [41]. In
addition, non-selective beta-blockers appear to increase HPC
growth and proliferation in the BM, although they play a
suppressing role on the HPC mobilization [42]. In contrast,
ACE inhibitors stimulate CD34+ cell recruitment into the cir-
culation and towards the place of injury [43].

Additionally, concomitant chronic kidney disease is a well-
known cause of anemia in HF patients and therefore assigned
as exclusion criterion in our study [44]. Also patients with
diabetes were withdrawn: type I and II diabetes have not only
been associated with a reduced number of EPC but also with a
reduced VEGF-/SDF-1α-induced migration capacity and pro-
liferation [24]. Moreover, in the setting of cardiovascular dis-
ease, the co-presence of diabetes impairs CD34+ mobilization
from the BM [25].

Limitations

Differences in BM-derived progenitor cell function between
various underlying etiologies for cardiovascular diseases were
evident in our study; yet, our results need to be further con-
firmed in larger trials.

Conclusions

The differentiation capacity of BM-derived progenitor cells is
reduced in patients with IHD, which may hamper the clinical
efficacy of autologous stem cell therapy. This functional im-
pairment worsens with increasing complexity of coronary le-
sions but is not observed in the setting of non-ischemic car-
diomyopathy. These findings suggest that IHD is an important
determinant of progenitor cell function in the BM compart-
ment. The observedmyelosuppression in IHD is not driven by
low-grade systemic inflammation, suggesting that other
mechanisms are at play. Future studies should aim to elucidate
the exact mechanisms for reduced BM-progenitor cell func-
tion in IHD in order to increase the success rate of BM cell
therapy in this patient population.
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