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Abstract We report the stability, accuracy, and develop-
ment history of a new left atrial pressure (LAP) sensing
system in ambulatory heart failure (HF) patients. A total of
84 patients with advanced HF underwent percutaneous
transseptal implantation of the pressure sensor. Quarterly
noninvasive calibration by modified Valsalva maneuver
was achieved in all patients, and 96.5% of calibration
sessions were successful with a reproducibility of
1.2 mmHg. Absolute sensor drift was maximal after
3 months at 4.7 mmHg (95% CI, 3.2–6.2 mmHg) and
remained stable through 48 months. LAP was highly
correlated with simultaneous pulmonary wedge pressure at
3 and 12 months (r=0.98, average difference of 0.8±
4.0 mmHg). Freedom from device failure was 95% (n=37)
at 2 years and 88% (n=12) at 4 years. Causes of failure

were identified and mitigated with 100% freedom from
device failure and less severe anomalies in the last 41
consecutive patients (p=0.005). Accurate and reliable LAP
measurement using a chronic implanted monitoring system
is safe and feasible in patients with advanced heart failure.

Keywords Heart failure . Hemodynamics . Implantable
devices

Introduction

Despite advances in diagnosis and treatment, advanced
heart failure (HF) is associated with high rates of
decompensation, hospitalization, and death [1]. Implanted
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cardiac filling pressure monitoring provides objective
and continuous information on hemodynamic status in
ambulatory HF patients that may facilitate the timeliness
of interventions and improve outcomes [2–4]. A new
permanently implanted left atrial pressure (LAP) moni-
toring system combined with a physician-directed patient
self-management therapeutic paradigm improved the
control of hemodynamics and reduced early clinical
events in a small observational clinical study [5, 6]. This
report describes the technical aspects of pressure sensor
performance particular to long-term placement in the left
atrium. Stability, accuracy, and causes of device mal-
function are detailed and the effectiveness of modifica-
tions in sensor design and use to mitigate these problems
are reported.

Methods

Implanted Sensor System

The implanted portion of the LAP monitoring system
(HeartPOD®, St Jude Medical, CRMD, Sylmar, CA)
consists of an implantable sensor lead (ISL) and coil
antenna (Fig. 1). The sensor module at the distal end of
the lead has a hermetic titanium encapsulated pressure
transducer that has four custom piezoresistive strain
gauges affixed to the inside of a titanium diaphragm
and integrated circuitry. The enclosure contains a helium/
argon atmosphere. The sensor module is affixed to the
atrial septum by proximal and distal folding nitinol
anchors. The ISL is implanted during a transseptal
catheterization performed from femoral or axillary/sub-
clavian venous access. The implantation procedure began
by performing a right heart catheterization with a Swan
Ganz catheter. Transesophageal or intracardiac echocar-

diographic guidance at the time of the procedure or up to
1 week prior was used to confirm the absence of left atrial
thrombus or atrial septal defect with more than a trace
amount of intracardiac shunting. Transseptal puncture
was performed using standard Brockenbrough needle/
dilator techniques or with an experimental system that
permitted left atrial cannulation from axillary venous
access. After placing a guidewire in the left atrium, the
patient was heparinized and an 11-F custom ISL delivery
sheath was advanced across the atrial septum. The left
atrial pressure was measured from the sheath and
correlated with simultaneous pulmonary artery wedge
pressure. The sensor was loaded into the delivery sheath
with its anchors folded. The ISL was advanced until the
sensor module exited the sheath in the left atrium. The
sheath and ISL were withdrawn as a unit until the anchors
engage the septum and were demonstrated to be secure.
After removing the delivery sheath, the proximal lead
connector was affixed to the antenna and placed in a
subcutaneous pocket. In later cases, the proximal lead
body was transferred from the femoral vein to axillary
vein using custom-designed catheters.

A handheld Patient Advisor Module or PAM® device
(Fig. 2) interrogates the sensor by placing the PAM in
proximity (<5 cm) over the pocket. The PAM powers the
sensor by 128 K-Hz radiofrequency induction and acquires
digitally encoded LAP and atrial electrogram waveforms
and core temperature from the sensor using reflective
impedance telemetry. The LAP waveform is recorded at
200 Hz for 15 s. The PAM is programmed with a series of
device constants that are used to convert raw digital sensor
output into pressure values in millimeters of mercury. These
constants are characterized for each sensor during manu-
facturing. The standard algorithm used to compute mean
LAP is the mean of all sampled time points in the
waveform. Segments of the waveform with excessive
changes induced by an arrhythmia, coughing, sneezing, or
breath holding are automatically rejected. If <5 s of
continuous valid waveform remains, the patient is
instructed to remeasure LAP. Alternative algorithms are
programmable if specific compensation is required. One of
these algorithms allows the alteration of the sensor’s gain
constants if scaling errors are later detected. Another
algorithm takes advantage of the relationship between
waveform amplitude and mean LAP and is thus indepen-
dent of sensor offset drift.

Study Design

HOMEOSTASIS was a prospective, multicenter, observa-
tional open-label registry comprising the first human use of
the LAP monitoring system for the management of chronic
severe heart failure. The trial was approved by the US Food

Fig. 1 Left Implantable left atrial pressure monitoring sensor lead and
antenna coil. Right Close-up of the sensor module that is implanted in
the atrial septum
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and Drug Administration (IDE G050018) and by the
institutional review boards associated with each center.
All subjects gave written informed consent. Details of the
study design, patient characteristics, and clinical safety and
effectiveness endpoints for the first 40 patients have been
published [5, 6]. These patients were studied in detail with
follow-up Swan-Ganz® right heart catheterization (RHC) at
3 and 12 months to assess sensor accuracy and stability.
Simultaneous pulmonary capillary wedge pressure (PCWP)
and LAP waveforms were recorded during four physiolog-
ical states: rest, Valsalva maneuver (VM), isometric stress
(3-min hand grip), and following nitroglycerin. Wedge
position was confirmed by a change in waveform between
balloon inflation and deflation.

Subsequently, an additional 44 patients were implanted.
The protocol in this phase differed in that the entry criteria
included chronic atrial fibrillation and new catheterization
methods were used to achieve implantation in the pectoral
region. Lessons learned during early use also drove the
implementation of a modified ISL anchoring system,

improved manufacturing quality testing, and expanded
implanter training. These changes were employed in the
last 41 consecutive patients (group 2). The mean follow-up
of all 84 patients was 25±19 (range 1–63)months.

Valsalva Calibration

Prior to study enrollment, all patients had to demon-
strate ability to perform a VM maintaining an airway
pressure ≥40 mmHg for 8 s. All sensors were initially
calibrated at implant to match catheter measurements.
Thereafter, a noninvasive VM-based calibration method
was used at scheduled clinic visits (2, 6, and 12 weeks
and then every 3 months). Patients forcefully exhaled
into a mouthpiece connected to the PAM’s reference
transducer (Fig. 2). Cardiac filling pressures and airway
pressure have been shown to equalize after 5 s of strain
[7]. Any inequality represents pressure transducer offset
error also known as drift. This error was used to
recalibrate the sensor. Individual VM attempts were
excluded according to prospectively established criteria:
(1) electronic noise caused by excessive motion of the
PAM’s external antenna with respect to the implanted
antenna coil; (2) LAP pulse pressure not diminished
by >50%, indicating the VM did not sufficiently raise
intrathoracic pressure; and (3) failure of the LAP to track
the airway pressure during strain, indicating that airway
pressure was not equivalent to intrathoracic pressure. A
minimum of three VMs were attempted for each calibra-
tion session, and the mean of the corrections was used to
calibrate the LAP sensor.

Statistical Analyses

The authors had full access to the data. Data are presented
as mean ± standard deviation or 95% confidence intervals
(CI) as indicated. Reproducibility of the VM offset
correction was quantified as pooled intra- and inter-patient
standard deviations. Pressure values were correlated using
Pearson’s correlation coefficient, and Bland–Altman plots
were used to assess differences between measurement
techniques. The paired differences between LAP and
PCWP were further characterized by a random effects
model, with patient as a random effect. Comparisons were
by t test. Technical device failure was defined as sensor
malfunction sufficient to preclude use for guiding HF
therapy. Device anomaly was defined as a sensor malfunc-
tion that was compensated for by alternative algorithms,
and the LAP data were used to guide therapy. The choice to
use LAP to guide HF therapy is determined by each site’s
principal investigator. Freedom from device failure and
anomalies were evaluated by the Kaplan–Meier product
limit method with comparisons by the log-rank test.

Fig. 2 Noninvasive calibration system and procedure. Top Patient
advisor module (PAM) with atmospheric pressure reference transducer
connected to the mouthpiece for airway pressure measurement during
Valsalva maneuver. PAM display allows the patient to view effort
during strain and subsequently displays Valsalva waveforms for
acceptance. Bottom Valsalva waveforms uncalibrated and calibrated:
LAP (green), airway pressure (yellow), differential pressure (white),
measurement period (between red lines), offset drift (blue line)
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Results

Calibration, Drift, Accuracy

LAP sensors were successfully implanted in all 40 (100%)
initial subjects. There were 1,813 VMs attempted during
511 calibration sessions (3.5±1.1 VMs attempted per
session). The large majority of VMs (87.1%) were accepted
for analysis. Rejected attempts included: 0.2% for excessive
noise, 1.8% for failure to reduce the LAP pulse pressure,
and 10.9% for tracking failure. All patients performed
acceptable VMs and most patients (83%) performed
successful VM on ≥75% of attempts. Nine patients had 18
calibration sessions (3.5% of sessions) where no VM
attempts were acceptable. Sensor offset was maintained at
previously stable values, and no additional right heart
catheterizations were required specifically to calibrate an
implant. Reproducibility of the pooled offset standard
deviation from VM calibration sessions within patients
ranged from 0.6 to 2.2 mmHg, and the pooled offset
standard deviation from all patients and sessions was
1.2 mmHg.

Figure 3 quantifies pressure sensor drift over 48 months
of follow-up. Mean drift compared to initial baseline at
implant was low, never exceeding 1.3 mmHg at any of the

quarterly measurement points. Absolute drift peaked after
3 months at 4.7 mmHg (95% CI, 3.2–6.2 mmHg) and
remained stable through 48 months. Drift rate was highest
during the first 2 weeks after implantation and then
progressively declined by more than 80% after 6 months
(p=0.004) and remained minimal and stable thereafter.

As shown in Fig. 4, the morphology of the LAP
waveform showed characteristic changes with increasing
LAP. In particular, the amplitude of the v-wave increased in
concert with elevations in mean LAP. This relationship was
seen in all patients with a normally functioning sensor and
remained stable over the time course of the implant. In
contrast, this characteristic increase in v-wave amplitude
was not evident when waveform abnormalities were
present. In patients with normal waveforms, the standard
PAM algorithm (waveform mean) was compared to the
traditional method of assessing the end-expiratory mean
value between the peak of the a-wave and the beginning of
the v-wave. If the patient was in atrial fibrillation, the end-
expiratory 150-ms segment prior to onset of the v-wave
was used instead. These methods were found to be highly
correlated across patients with normally functioning sensors
(r>0.99, difference=–0.4±1.4 mmHg), across a wide range
of pressures (1–61 mmHg), heart rates (up to 150 bpm)
during atrial fibrillation, and respiratory variation (up to
30 mmHg).

Figure 5 compares LAP and PCWP in 32 of 40 patients
with normal waveforms surviving long enough to have 3-
or 12-month RHCs. The relationships were highly linear
and the errors in estimating PCWP were small and did not
show any trends.

Figure 6 examines the six patients that developed LAP
waveform artifacts characterized as device anomalies. These
artifacts were suspected by the investigators noting changes
in waveform morphology and confirmed by marked differ-
ences (>5 mmHg) between the standard PAM algorithm and
the traditional end-expiratory method. There was reduced
agreement with PCWP, except for readings during a VM
when filling pressures were >40 mmHg. PCWP was over-
estimated when v-waves were augmented and underesti-
mated when v-waves were inverted. An automated
compensatory algorithm based on the traditional algorithm
modified as a fixed duration time window adjustable with
respect to the R-wave of the left atrial electrogram
significantly improved the correlation (p<0.001).

Figure 7 and Table 1 compare LAP with PCWP as a
function of physiological state, pooled for all surviving
patients and time points. LAP values were calculated by the
standard PAM algorithm when waveforms were normal and
by the modified traditional algorithm when artifacts were
present. The two measures were highly correlated over a
wide range of PCWP (0–98 mmHg), and differences
between the methods were small (within ±5 mmHg in
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Fig. 3 Graphs showing mean drift, absolute drift, and drift rate as a
function of time after implantation. Error bars=95% confidence
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80% of measurements). Measurement agreement was not
altered by applying a mixed effects model to account for
random effects of variation in the number of measurements
between patients (0.8±4.0 mmHg). When Valsalva compar-
isons were excluded, the range of filling pressures was still
broad (0–53 mmHg) and the agreement between LAP and
PCWP remained excellent (r=0.92; difference=1.1±
3.9 mmHg).

Device Failures, Waveform Anomalies, and Mitigating
Actions

LAP sensors were successfully implanted in 82 of 84
(97.6%) subjects. During the first 4 years, six sensors met
the criteria for device failure. One sensor had progressive

rapid drift developing after 26 months and two sensors had
communication failures. Three sensors developed wave-
form artifacts that could not be sufficiently compensated for
with alternative pressure measurement algorithms available
in the PAM at that time. Freedom from device failure was
95% at 2 years and 88% at 4 years. There were 37 and only
12 non-failing devices available for review at 24 and
48 months, respectively. Three patients had a second ISL
placed without difficulty, and in one of these patients, the
non-working implant was extracted.

Less severe device anomalies not requiring sensor
replacement were seen in eight patients. Two developed
progressive rapid drift after 5 and 23 months, but were
correctable either by repeat VM calibrations and the
alternative offset-independent PAM algorithm. Six patients

LAP 7.7 mmHg

LAP 16.7 mmHg

LAP 31.6 mmHg

LAP 44.1 mmHg

v
a

va

va

v

a

Fig. 4 LAP waveform from a
single patient over a 10-day
period. LAP values calculated
from the mean of all points
(horizontal lines). A-waves and
v-waves confirmed from
simultaneous electrograms
(not shown)
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developed waveform artifacts that were satisfactorily
compensated for by the alternative algorithms.

There were no instances of device failure or anomaly
associated with clinical worsening. Figure 8 shows freedom
from device failure or anomaly based on the type of
abnormality observed and the effect of corrective actions.
Excessive drift or device communication malfunctions were
distributed throughout the follow-up period. The majority
of devices (eight of nine) that developed waveform artifacts
did so within the first 4 months after implantation.

The causes of progressive rapid drift and communication
failures were determined and mitigated by improved quality
testing during manufacturing. Animal testing and postmor-
tem examinations determined that waveform artifacts were
caused by excessive neoendocardial formation over the
sensor diaphragm. Sensors tilted more than 45° from
orthogonal to the atrial septum tended to develop enhanced
a-waves and/or inverted v-waves at higher filling pressures
(n=6). In three of these cases, devices were implanted
through patent foremen ovale (PFO) tunnels witnessed by

blunt crossing during transseptal catheterization. These
artifacts were associated with very thick tissue adherent to
one side of the sensor diaphragm. In three cases with v-
wave augmentation, sensors were more orthogonal and
were symmetrically covered with thick tissue overgrowth.
When the sensor diaphragm was covered by tissue, its
motion reflects changes in atrial wall tension in addition to
fluctuations in left atrial fluid pressure. Traditional end-
expiratory measurement of LAP was reliable in the
presence of waveform artifacts, possibly because these
measurements were constrained to time points when wall
tension was minimal. To mitigate waveform artifacts,
implanting physicians have been trained to avoid placing
devices via PFOs and a modified sensor anchoring system
(Fig. 9) was implemented. The design change advances the
pressure sensing diaphragm by an additional 1.5 mm into
the left atrium with the intention of minimizing tissue
thickness over the sensor and decoupling it from contrac-
tion and stretching movements of the atrial wall. The effect
of these changes and improved manufacturing controls are
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of both pressure measurements
at 3 and 12 months after
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normal (artifact-free) waveforms
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measureable. The last 41 implants (group 2) have been free
of artifacts, rapid progressive drift, and communication
failures (log-rank p=0.005).

Discussion

Sustained elevations of LAP have long been recognized to
be the proximate cause of cardiogenic pulmonary conges-
tion because LAP is the dominant hemodynamic force
causing intravascular fluid transudation into the pulmonary
interstitium [8]. The potential clinical utility of permanently
implanting pressure sensors for guiding heart failure
therapy by controlling LAP has been demonstrated in
several studies using early generation devices [2–6]. To be
clinically acceptable, these devices will need to demonstrate
sufficient safety and effectiveness in well-designed ran-
domized trials. In addition, success also requires that these
devices meet rigorous technical standards for diagnostic
accuracy, stability, long-term functioning, and reliability
[9]. Despite the promise of implantable hemodynamic
monitoring, clinical trials have been halted precisely
because of technical issues affecting device reliability [10,

11]. Moreover, addressing these issues requires a systematic
effort to understand and correct the causes of sensor
anomalies. This is the first report to chronicle the
translational research particular to the evolutionary devel-
opment of an implantable sensor that directly measures left
atrial pressure.

Noninvasive Sensor Calibration

We previously showed in patients with existing heart failure
that during phase II of a properly performed VM, all
cardiac filling pressures equalize with airway pressure [7].
Put another way, the effective pressure gradient between the
left atrium and the thorax is eliminated during VM. We
postulated that deviations from this equality can be used to
recalibrate sensor offset drift. The current study prospec-
tively applied this observation as a new automated method
to directly measure drift and recalibrate permanently
implanted intracardiac pressure sensors.

VM calibration is advantageous because it is completely
noninvasive and sensor drift can be accurately measured as
frequently as required. VM calibration was well tolerated
and together with assessment of LAP trends and waveforms
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generally required <15 min. VM calibration sessions were
highly successful (96.5%) at yielding acceptable data and
repeat VMs were highly reproducible with a pooled
standard deviation of 1.2 mmHg.

Studies using other types of implanted pressure sensors
have quantified mean sensor drift only at times of routine
follow-up RHC [12, 13]. These studies may have missed
early drift during the sensor healing period. The commonly
used method of reporting drift as an arithmetic mean
minimizes true changes because drift tends to be isotropic,
having no preferential direction. When we quantified
absolute changes from baseline, it was apparent that there
were frequent small changes (around 5 mmHg) in sensor
calibration during the first 6 months after implant and
thereafter the drift became minimal out to 48 months. Drift
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Table 1 Simultaneous pressures from study device and Swan–Ganz
catheter

n LAP PCWP Difference

3 months (35 subjects)

Nitroglycerin 69 10.7±6.1 10.5±6.9 0.2±4.2

Rest 101 16.0±7.1 15.7±8.6 0.3±4.0

Isometric exercise 70 24.6±10.6 23.5±10.6 1.1±4.4

Valsalva 82 51.0±17.4 50.9±16.8 0.1±4.3

Overall 322 25.6±19.1 25.2±19.3 0.4±4.2

12 months (30 subjects)

Nitroglycerin 71 10.0±4.8 8.2±5.6 1.7±3.3

Rest 94 16.6±8.0 15.0±8.5 1.6±3.0

Isometric exercise 58 25.2±11.3 23.0±10.1 2.1±4.2

Valsalva 85 53.4±17.4 53.3±18.4 0.1±4.2

Overall 308 26.9±20.6 25.6±21.4 1.3±3.8
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Fig. 7 Scatter and Bland–Altman plots comparing all simultaneous
LAP and Swan–Ganz PCWP measurements at 3 and 12 months as a
function of physiological state. LAP was calculated by the standard
PAM algorithm in patients with normal waveforms and by the
modified traditional algorithm in patients with waveform artifacts
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that occurs early and then stabilizes is consistent with the
time course of neoendocardial tissue coverage of the sensor.
Also, the VM method successfully kept marginally func-
tioning sensors sufficiently calibrated for long-term clinical
use.

Comparative Hemodynamics

In this study, comparisons of LAP with PCWP generally
showed a high degree of concordance. Although differences
between LAP and PCWP >5 mmHg were seen in 20% of
readings, the cause of any given discordance was not
ascertained, nor did these differences prevent LAP meas-
urements from successfully guiding therapy [5, 6]. One half
of the discordant readings were concentrated in eight
subjects where the intra-patient disagreement was entirely
positive or entirely negative. These systematic errors likely
result from miscalibration of the Swan Ganz catheter, the
implanted LAP sensor, or both measurement systems. RHC
measurements may be offset if the catheter/transducer

system is incorrectly “zeroed” or if the transducer height
is not set to the level of the left atrium. Systematic
measurement differences could also represent true physio-
logical variances that have been documented particularly in
patients with mitral valve disease or increased pulmonary
vascular resistance [14, 15]. In the remaining patients, the
errors were of similar propensity in either direction,
suggesting more random variation. These errors may have
been related to well-known variations in PCWP readings
associated with under- or over-wedging of the balloon
catheter or west zone effects [16]. The forementioned
vagaries notwithstanding the comparison of LAP measured
by a permanently implanted sensor, periodically calibrated
using the VM method, were as accurate and reproducible as
any comparison of simultaneously measured LAP and
PCWP pressures obtained during cardiac catheterization
studies [14, 15, 17–19].

Implanted sensors that measure surrogates for LAP
including pulmonary artery diastolic pressure (PAD), or
estimate PAD from the right ventricular pressure tracing,
may be limited by measurement errors that may be
amplified in the presence of LV dysfunction and increased
pulmonary vascular resistance [20, 21]. Megalski et al. [12]
reported that right ventricular pressure sensor estimates of
PA diastolic pressure were correlated with simultaneous
Swan–Ganz measurements of PA diastolic pressure (R=
0.84, difference≈2±7 mmHg). Verdejo et al. [13] reported
similar agreement between PA diastolic pressures measured
by a wireless PA sensor compared with catheter pressures
(R = 0.69, difference = −1.6±6.8 mmHg). Neither study
made comparisons with direct LAP or PCWP where
additional errors would have been expected.

This first human experience with an implanted left atrial
pressure sensor uncovered several technical issues affecting
long-term implanted sensor performance. Suboptimal sen-
sor performance was documented during early cases and
was classifiable by type and severity. Intrinsic sensor
malfunction included rapid progressive drift which was
tracked down to hermetic leaks, and communication failure
was caused by a physical defect in the internal electronic
circuitry. Extrinsic causes of device abnormality were
related to device positioning and healing with neoendocar-
dial tissue coverage of the sensor. The more severe
abnormalities precluded the clinical use of the device, and
for less severe issues, compensatory actions were success-
fully implemented. Ideally, sensor failure and the need for
individualized compensation should be rare.

Similar to coronary stenting, coverage of the bare metal
sensor module with proliferating neoendocardium is desir-
able to prevent thrombus formation, but too much prolif-
eration results in degraded sensor performance with
waveform artifacts. Improvements to the sensor system
design, manufacturing controls, and implantation techni-

Original anchoring system

Modified anchoring system

septal wall

neoendocardium

right atrium

Left atrium

diaphragm

Fig. 9 Mechanism of waveform artifacts. Top Drawing showing
original anchoring system used in group 1. When the sensor is
angulated 45° from orthogonal to the atrial septum, the diaphragm
develops asymmetrical neoendocardial overgrowth such that stretch-
ing of the atrial wall during filling pulls the diaphragm outward,
creating an inverted v-wave. Bottom Modified anchor system used in
group 2 implants. Increased protrusion of the diaphragm discourages
thick tissue overgrowth and decouples the sensor diaphragm from the
atrial wall, preventing waveform artifacts
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ques were associated with the elimination of waveform
artifacts and other causes of failure during limited follow-
up in small numbers of patients. More and longer
experience will be required to determine if these changes
will successfully minimize failures and anomalies to
clinically acceptable levels. More extensive experience is
also required to detect if other less frequent but important
device-related issues exist. These feasibility data, along
with the implementation of the lessons learned now,
warrant proceeding with adequately powered multicenter
controlled randomized trials to evaluate the safety and
effectiveness of this device-based heart failure therapeutic
strategy.

Limitations

The current report is limited to a description of sensor
performance over a median follow-up of 14 months.
However, stable sensor performance was demonstrated for
early devices out to 62 months at the time of reporting. The
sensor measures direct left atrial pressure; however,
comparison with invasive direct LAP measurements as a
control was not feasible during follow-up and PCWP was
used as a validated and reliable estimate of LAP.

Conclusions

In this small, observational first human experience, direct left
atrial pressure monitoring with a novel implantable device
was feasible and durable over a 4-year period. Noninvasive
device calibration was achievable, reproducible, and seems to
be important during the first year after implantation. High-
fidelity LAP measurements were accurate and closely
predicted PCWP over a 12-month period and were sufficiently
reliable for clinical use, including daily hemodynamic
assessment in ambulatory patients with severe HF. Iterations
in sensor design and use mitigated early causes of reduced
reliability.
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Sinai Medical Center, Los Angeles, CA—N Eigler, S Kar, R
Makkar, PK Shah, R Siegel, J Whiting; Christchurch
Hospital, Christchurch, New Zealand—I Crozier, J Lainch-
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