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Abstract The role of cardiac ultrasound in evaluating and
treating patients with stem cell therapy is reviewed. A
number of ultrasound techniques can be used in the
evaluation, therapy delivery, and follow-up of patients
treated with stem cell therapy. These techniques include
evaluation of myocardial systolic and diastolic function,
perfusion, ischemia, viability, synchrony, and imaging
targeted to specific cell types.
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Introduction

Imaging serves a number of important roles in stem cell
therapy for cardiac disease. In particular, imaging can be
used to (1) define the presence and severity of phenotype to
be treated, (2) guide the delivery of therapy, (3) follow the
course of disease and evaluate the effects of therapy, (4)
provide labels and define mechanisms of therapy, (5)
evaluate survival and function of engrafted cells, and (6)
perhaps to facilitate the process of cell therapy. Further-
more, imaging has the potential to determine the engraft-
ment, survival, and local function of cell therapy and to

identify the mechanism of benefit. In addition, while the
ultimate goal of therapy is to decrease morbidity and
mortality, imaging can serve as a useful surrogate endpoint,
especially in preliminary trials.

An ideal imaging technique would provide three-
dimensional digital tomographic data, have high temporal
and spatial resolution, allow molecular imaging, and would
be inexpensive, portable, non-invasive, and not require
radiation. It would also provide data on cardiac structure
and function, coronary anatomy, coronary plaque composi-
tion, myocardial perfusion, and myocardial viability and
scar anatomy. In addition, molecular imaging may provide
data on appropriate cellular and intracellular targets.
Ultrasound, computed tomography (CT), nuclear imaging,
and magnetic resonance imaging (MRI) have all been
employed in stem cell therapy trials [1]. While no single
modality is ideal, each has different attributes and these
modalities often can provide complimentary information. In
this review, we discuss the specific roles of ultrasound in
stem cell therapy, its applications, and its limitations.

Transthoracic echocardiography is a well-established
technique, which can be done at the bedside, involves no
radiation, and is essentially harmless. While the image
quality can be variable and dependent on imaging windows,
diagnostic images can be obtained in the vast majority of
patients [2]. Although initial studies demonstrated that the
evaluation of left ventricular (LV) structure and function
was more reproducible with MRI [3], subsequent reports
have indicated that the use of contrast can overcome this
limitation [4]. Unlike MRI, the presence of a pacemaker or
defibrillator is not a contraindication and does not signif-
icantly affect image quality. Transesophageal echocardiog-
raphy is more invasive but can provide diagnostic images in
patients in whom transthoracic echocardiograms may be
suboptimal [5].
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Stem Cell Delivery

Imaging is frequently used to track the delivery of stem
cells to the target tissue. However, ultrasound has had a
limited role in tracking cell delivery, and this has thus far
been done with other modalities such as MRI and nuclear
imaging. Tracking stem cells usually involves targeted
imaging, usually aided by cell labeling, which must be done
in a non-toxic way. Thus far, no agents have been identified
to label cells for ultrasonic detection in humans.

One advantage of ultrasound is that it can be done in real
time at the time of injection. Transesophageal echocardi-
ography allows excellent real-time visualization of myocar-
dium and can be done at the time of cardiac catheterization.
This technique is often used during the closure of atrial
septal defects [6] and could be similarly used to visualize
myocardium at the time of stem cell injection. However,
thus far, this has not been significantly employed in stem
cell trials. In one recent pilot study, Bara et al. [7] used
CliniMACS nanoparticles (Miltenyi Biotec, Bergisch Gladbach,
Germany) to label CD133+ cells injected into porcine
myocardium. The ClinicMACS nanoparticles are iron
dextran beads, which are ferromagnetic, thus allowing cell
separation after labeling using magnetic selection. Trans-
esophageal echocardiography was used to image implanted
cells in vivo at the time of injection and in follow-up 8 weeks
later and demonstrated good visualization of the implanted
cells as regions of high signal.

Left Ventricular Function

Left ventricular size and function can be quantified by
measuring overall volumes, mass, and ejection fraction. In
addition, regional wall thickening and endocardial motion
can be qualitatively and quantitatively assessed. Quantita-
tive assessments of left ventricular volumes and function
are used in all stem cell trials. With ultrasound, left
ventricular volumes are typically quantified using biplane
measurements and the modified Simpson’s rule. This
method has been validated [8], but it is less reproducible
than MRI [3]. However, the use of left ventricular contrast
agents enhances endocardial definition (Fig. 1) and signif-
icantly improves the accuracy and reproducibility of
volumes by ultrasound [3, 9].

Left ventricular diastolic filling patterns are known to
have prognostic importance in patients with systolic
dysfunction [10]. Ultrasound is the primary tool used to
assess diastolic function and hence non-invasively estimate
left ventricular filling pressures. Doppler ultrasound meas-
urements allow assessment of mitral valve inflow and
pulmonary vein flow. In addition, using different filter
settings, ultrasound with Doppler can quantify myocardial

tissue movement. Ultrasound of the myocardium at the
mitral valve annulus, in combination with mitral valve
filling data, has been shown to correlate well with
pulmonary capillary wedge pressure [11].

Traditionally, while overall LV function is quantified by
calculation of the ejection fraction, non-invasive evaluation
of regional wall motion by echocardiography is often
qualitative. However, quantitative regional systolic function
is of interest, especially in assessing function at the sites
where therapy is delivered. Because myocardial movement
may be passive and occur due to local tethering or
myocardial translation, motion may not necessarily corre-
late with local myocardial function. Several new ultrasound
technologies have recently emerged that allow quantifica-
tion of regional systolic function by measuring strain and
strain rate as the change in segment length over time. Strain
measures local myocardial deformation, and strain rate is
the time-dependent change in strain. These quantities are
not affected by tethering and can be measured via
ultrasound using either tissue Doppler imaging (TDI) [12]
or speckle tracking [13].

TDI removes the high frequency, low amplitude signal
from blood using a low-pass filter, to measure myocardial
velocities. The strain rate is equal to the spatial velocity
gradient and thus can be obtained by measuring the
myocardial velocity using TDI at adjacent points and then
calculating the gradient [12]. The local strain, which is
equal to the time integral of the strain rate, can then be
calculated from the strain rate. In practice, the strain rate is
obtained by calculating the average velocity gradient over a
small area in which the segment of interest is parallel to the
ultrasound beam, as shown in Fig. 2. These techniques have
been successfully used to quantitatively measure regional
left ventricular function and have been validated in animals
[14] and humans [15].

TDI has the limitation that it can only measure velocities
along the ultrasound beam. Speckle-tracking uses natural
acoustic interference patterns to evaluate tissue movement
by tracking signal inhomogeneities within the image
through out the entire cardiac cycle [13, 16]. Such signal
inhomogeneities appear as scatter reflectors or speckles
within the myocardial wall. Because the technique is not
constrained by angle dependence, it allows for reconstruc-
tion of two-dimensional tissue dynamics in all directions
and calculation of regional longitudinal, radial and circum-
ferential strain and strain rates. This technique has been
validated using MRI and sonomicrometery as references
[17]. Figure 3 shows an example of speckle tracking to
evaluate regional function from the apical four-chamber
view in a patient with normal left ventricular function.

Real-time three-dimensional ultrasound is another
emerging technology, which permits quantification of
regional as well as global systolic function. This technique
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uses an ultrasound probe containing a matrix array of
elements [18] yielding a three-dimensional pyramid-shaped
volumetric data set. Three-dimensional echocardiography
has been successfully employed in the measurement of LV
function [19] and has been shown to be more reproducible
than two-dimensional ultrasound [20]. In addition, using
specialized post-processing software, regional ejection
fraction can be calculated for each segment [19, 21], as
shown in Fig. 4.

Left Ventricular Dyssynchrony

Left ventricular dyssynchrony has emerged as an important
therapeutic target for treatment in subsets of patients with
left ventricular systolic dysfunction. The optimal method of
assessing LV dyssynchrony remains uncertain, despite signif-
icant effort evaluating different modalities and measuring

techniques and algorithms. Several ultrasound algorithms
have shown promising results in multiple single-center trials
[22]. However, in a multicenter trial comparing different
ultrasound techniques and algorithms, none of the methods
tested had high sensitivity and specificity [23]. Nevertheless,
ultrasound remains the most common modality used to
evaluate dyssynchrony, and its assessment is a potentially
useful surrogate endpoint in stem cell trials. Notably, Chang
et. al. recently used ultrasound to show that stem cell therapy
after acute myocardial infarction resulted in improved LV
synchrony [24].

Perfusion Imaging

Although radionuclide methods are the standard technique
employed, contrast echocardiography can also be applied to
the imaging of myocardial perfusion. Data exist that

a
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Fig. 1 Example of myocardial
contrast (Definity, Bristol-Myers
Squibb Medical Imaging Inc.,
North Billerica, Massachusetts)
to improve endocardial defini-
tion. Apical four-chamber views
are shown at end-diastole (a, b)
and end-systole (c, d), without
(a, c) and with (b, d) contrast,
from a patient with a recent
myocardial infarction. The api-
cal septal hypokinesis (arrow) is
more apparent in the contrast-
enhanced images
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absolute myocardial blood flow can be determined using
continuous infusion of a microsphere solution and subse-
quent imaging following destructive ultrasound pulses [25,
26]. Reduced ultrasonic signal intensity (defect) by this
technique has been shown to be relatively sensitive and
specific for the detection of ischemia [27] and can quantify
infarct size and area at risk associated with ischemia [28].
In addition, contrast ultrasound assessment of perfusion has
been shown to have additional prognostic value in patients
undergoing stress testing [29]. Hence, this technique may

be of use in selecting patients for treatment and following
the effect of stem cell therapy upon myocardial perfusion.

Myocardial Viability

Evaluation of myocardial viability is important in deter-
mining patient prognoses, stratifying patients for stem cell
therapy, and choosing targets for therapy. Multiple modal-
ities have been used to evaluate viability including MRI,

Fig. 3 Example of two-
dimensional speckle tracking
(EchoPAC, GE Healthcare). The
left ventricular myocardium is
divided into six regions (upper
left). Speckle tracking is then
used to calculate regional longi-
tudinal strain, which is then
plotted vs. cardiac phase (right)
and displayed as color M-Mode
(lower left)

Fig. 2 Example of TDI
(EchoPAC, GE Healthcare) to
measure longitudinal strain. Two
regions of interest (ROI) are
placed on the two-dimensional
image acquired using color
Doppler imaging. The longitudi-
nal strain is plotted for the
corresponding septal (yellow ROI
and curve) and lateral (green
ROI and curve) segments
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single photon emission CT, positron emission tomography,
and ultrasound. Dobutamine ultrasound has been validated
in multiple studies and widely used as a tool for assessing
viability [30]. The classic manifestation of viability by
dobutamine stress testing is the “biphasic response”
whereby dyssyngeric myocardium shows enhanced con-
tractility at low doses and then clear deterioration as
ischemia appears at higher doses of the agent. Intravenous
contrast agents to improve endocardial visualization have
been shown to further improve the accuracy of viability
assessment by ultrasound [29]. Myocardial viability can
also be evaluated using contrast echocardiography to
determine the transmural extent of infarction, which has
been shown to agree with similar measurements by MRI
[31]. The presence of at least patchy opacification of an
infarcted region by contrast echo is indicative of microcir-
culatory integrity and thus viability, while the absence of
any opacification indicates non-viable myocardium.

Targeted Imaging

Targeted imaging remains a very active area of research
using different modalities to identify and image specific

tissue components. These techniques have the potential to
better identify appropriate myocardial regions for stem cell
therapy. While targeted imaging is not yet used clinically, it
has been shown to have great potential in a number of
animal studies. Targeted imaging can be done with contrast
ultrasound using microbubbles targeted to a number of
specific markers. For example, phosphatidylserine contain-
ing lipid microbubbles have been used to target leukocytes
and hence permit imaging of inflammation associated with
myocardial reperfusion injury [32]. In addition, Kaufmann
et. al. [33] have recently shown that ischemic myocardium
can be visualized using contrast echocardiography targeted
to P-selectin. It is possible that these techniques may be
extended to permit targeted delivery of stem cells.

Conclusion

In this paper, we have reviewed current cardiac ultrasound
technology, as it applies to treating patients with stem cell
therapy. For many of the applications discussed, ultrasound
is one of several different available modalities. Because it is
an established technology, is portable, essentially harmless,
and versatile, ultrasound remains an important part of the

Fig. 4 Example of three-
dimensional echocardiography
with post-processing (4D LV-
Analysis, TomTec Imaging Sys-
tems) to obtain regional wall
motion from a volumetric ultra-
sound data set. The upper images
show the calculated left ventricu-
lar volume superimposed on the
grey scale images. The volumes
of each of the 16 regions (map,
lower left) are plotted (lower
right) as a function of time
during the cardiac cycle
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imaging armamentarium used to evaluate and treat patients
with stem cell therapies.
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