Skip to main content
Log in

Influence of light conditions of a mixture of red and blue light sources on nitrogen and phosphorus removal in advanced wastewater treatment using Scenedesmus dimorphus

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effects of several light conditions (various light/dark cycles, light intensities, and light frequencies) of a mixture of intermittent red and blue light on nitrogen and phosphorus removal from wastewater using Scenedesmus dimorphus were evaluated. The nitrogen removal rates were almost the same (~ 10 mg/L/day) during light/dark cycles of 16:8, 20:4, and 24:0, and were two-fold higher than those observed during light/dark cycles of 12:12 and 8:16. The phosphorous removal rate also reached its highest value (~ 1.5 mg/L/day) during the light/dark cycles of 20:4 and 24:0. These results suggest that microalgae should be illuminated for at least 16 and 20 h for the efficient removal of nitrogen and phosphorous, respectively. Moreover, both the nitrogen and phosphorous removal rates were significantly enhanced when the light intensity was raised from 50 to 400 µmol/m2/sec. Increasing the light intensity above 400 µmol/m2/sec caused photo-inhibition, such that microalgae production decreased. Besides the light/dark cycle and light intensity, flashing frequency also controls the growth and nutrient removal rate of Scenedesmus dimorphus. It was found that the most appropriate flashing frequency was 2,500 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sancho, M. M., J. M. J. Castillo, and F. E. Yousfi (1999) Photoautotrophic consumption of phosphorus by Scenedesmus obliquus in a continuous culture. Influence of light intensity. Proc. Biochem. 34: 811–818.

    Google Scholar 

  2. Aslan, S. and I. K. Kapdan (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28: 64–70.

    Article  Google Scholar 

  3. Shi, J., B. Podola, and M. Melkonian (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: An experimental study. J. App. Phycol. 19: 417–423.

    Article  CAS  Google Scholar 

  4. Perez-Garcia, O., F. M. E. Escalante, L. E. de-Bashan, and Y. Bashan (2011) Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45: 11–36.

    Article  CAS  Google Scholar 

  5. Samorì, G., C. Samorì, F. Guerrini, and R. Pistocchi (2013) Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Res. 47: 791–801.

    Article  Google Scholar 

  6. Masojídek, J., M. Koblížek, and G. Torzillo (2003) Photosynthesis in microalgae. pp 20–39. In: A. Richmond (ed.). Handbook of microalgal culture: Biotechnology and applied phycology. Blackwell Publishing, Oxford, UK.

    Chapter  Google Scholar 

  7. Fontes, A. G., M. A. Vargas, J. Moreno, M. G. Guerrero, and M. Losada (1987) Factors affecting the production of biomass by a nitrogen-fixing blue-green alga in outdoor culture. Biomass 13: 33–43.

    Article  CAS  Google Scholar 

  8. Oswald, W. J. (1988) Microalgae and waste-water treatment. pp. 305–328. In: M. A. Borowitzka and L. J. Borowitzka (eds.). Micro-algal biotechnology. Cambridge University press, NY, USA.

    Google Scholar 

  9. Borowitzka, M. A. (1998) Limits to growth. pp. 203–226. In: Y. S. Wong, and N. F. Y. Tam (eds.) Wastewater treatment with algae. Springer Verlag, Berlin, Germany.

    Chapter  Google Scholar 

  10. Wood, B. J. B., P. H. K. Grimson, L. B. German, and M. Turner (1999) Photoheterotrophy in the production of phytoplankton organisms. J. Biotechnol. 70: 175–183.

    Article  CAS  Google Scholar 

  11. Raven, J. A. (1988) Limits to growth. pp. 331–356. In: M. A. Borowitzka and L. J. Borowitzka (eds.). Micro-algal biotechnology. Cambridge University press, NY, USA.

    Google Scholar 

  12. Benemann, J. R. (1979) Production of nitrogen fertilizer with nitrogen-fixing blue-green algae. Enz. Microb. Technol. 1: 83–90.

    Article  CAS  Google Scholar 

  13. Oliver, R. L. and G. G. Ganf (2000) Freshwater blooms. pp. 149–194. In: B. A. Whitton and M. Potts (eds.). The ecology of cyanobacteria: Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, Neitherland.

    Google Scholar 

  14. Chevalier, P., D. Proulx, P. Lessard, W. F. Vincent, and J. de la Noüe (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 12: 105–112.

    Article  CAS  Google Scholar 

  15. Kim, T. H., Y. Lee, S. H. Han, and S. J. Hwang (2013) The effects of wavelength and wavelength mixing ratios on microalgae production and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour. Technol. 130: 75–80.

    Article  CAS  Google Scholar 

  16. APHA-AWA-WEF (2005) Standard methods for the examination of water and wastewater. 21st ed. American Public Health Association, Washington, USA.

    Google Scholar 

  17. Eduardo, J. L., H. G. S. Carlos, M. C. F. L. Lucy, and T. F. Telma (2009) Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem. Eng. Proc. 48: 306–310.

    Article  Google Scholar 

  18. Lee, K. Y. and C. G. Lee (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol. Bioproc. Eng. 6: 194–199.

    Article  CAS  Google Scholar 

  19. Choudhury, N. K. and R. K. Behera (2001) Photoinhibition of photosynthesis: Role of carotenoids in photoprotection of chlroplast constituents. Photosynthetica 39: 481–488.

    Article  CAS  Google Scholar 

  20. Leverenz, J. W., S. Falk, C. M. Pilstrom, and G. Samuelsson (1990) The effect of photoinhibition the Photosynthetic lightresponse curve of green plant cells (Chlamydomonas reinhardtii). Planta 182: 161–168.

    Article  CAS  Google Scholar 

  21. Long, S. P., S. Humphiries, and G. P. Falkowski (1994) Photoinhibition of photosynthesis in nature. Annu. Re. Plant Physiol. Plant Mol. Biol. 45: 633–662.

    Article  CAS  Google Scholar 

  22. Falkowski P. G. (1981) Light-shade adaptation and assimilation number. J. Plankton Res. 3: 203–216.

    Article  CAS  Google Scholar 

  23. Masojídek J., G. Torzillo, M. Koblízek, J. Kopecký, P. Bernardini, A. Sacchi, and J. Komenda (1999) Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: Changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Planta 209:126–135.

    Article  Google Scholar 

  24. Murata, N., S. Takahashi, Y. Nishiyama, and S. I. Allakhverdiev (2007) Photoinhibition of photosystem II under environmental stress. BBA — Bioenergetics 1767: 414–421.

    Article  CAS  Google Scholar 

  25. Park, K. H. and C. G. Lee (2000) Optimization of Algae photobioreactor using flashing lights. Biotechnol. Bioproc. Eng. 5: 186–190.

    Article  CAS  Google Scholar 

  26. Yago, T., H. Arakawa, K. Fukui, B. Okubo, K. Akima, S. Takeichi, Y. Okumura, and T. Morinaga (2012) Effects of flashing light from light emitting diodes (LEDs) on growth of the microalgae Isochrysis galbana. Afr. J. Microbiol. Res. 6: 5896–5899.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Jin Hwang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Kim, TH., Han, T.H. et al. Influence of light conditions of a mixture of red and blue light sources on nitrogen and phosphorus removal in advanced wastewater treatment using Scenedesmus dimorphus . Biotechnol Bioproc E 20, 760–765 (2015). https://doi.org/10.1007/s12257-015-0066-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0066-4

Keywords

Navigation