Skip to main content
Log in

Epigenetic variation in clonal stands of aspen

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Epigenetic mechanisms can affect ecologically important traits, even in the absence of genetic variation. Environmental factors can influence gene regulation through chemical modifications, such as DNA methylation, resulting in acclimation that can be transferred to subsequent cell generations both mitotically and meiotically. Clonal plants such as Populus tremuloides (aspen) show considerable promise as model species for the long-term in situ study of ecological epigenetics. The common replication of identical genotypes across heterogeneous environments permits within- and between-genotype comparisons while controlling for genetic makeup. With a long lifespan and limited natural selection resulting from sexual recombination, it is conceivable that epigenetic acclimation plays an important role in the long-term ecological success of aspen. This case study is the first in a series investigating the role of epigenetics in aspen ecology. We have established long-term permanent plots of aspen, identified (genotyped) clones and established the baseline epigenetic structure. Here we report the in situ epigenetic structure of two aspen stands. We find considerable epigenetic variation and significant differences within and among genotypes and sites, suggesting both genotype and environment influence the epigenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartos DL, Mueggier WF (1981) Early succession in aspen communities following tire in western Wyoming. J Range Managem 34:315–318

    Article  Google Scholar 

  • Bretfeld M, Franklin SB, Hubbard RM (2017) Initial evidence for simultaneous, bi-directional sap flow in roots of interconnected aspen ramets (Populus tremuloides). Folia Geobot this issue

  • Dayanandan S, Rajora O, Bawa K (1998) Isolation and characterization of microsatellites in trembling aspen (Populus tremuloides). Theor Appl Genet 96:950–956

    Article  CAS  Google Scholar 

  • DesRochers A, Lieffers V (2001) The coarse-root system of mature Populus tremuloides in declining stands in Alberta, Canada. J Veg Sci 12:355–360

    Article  Google Scholar 

  • Douhovnikoff V, Dodd RS (2015) Epigenetics: a potential mechanism for clonal plant success. Pl Ecol 216:227–233

    Article  Google Scholar 

  • Douhovnikoff V, Dodd RS (2003) Intra-clonal variation and a similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. Theor Appl Genet 106:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Edenius L, Ericsson G (2007) Aspen demographics in relation to spatial context and ungulate browsing: implications for conservation and forest management. Biol Conservation 135:293–301

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA Haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geng Y, Gao L, Yang J (2012) Epigenetic flexibility underlying phenotypic plasticity. Progr Bot 74:53–163

    Google Scholar 

  • Greco M, Chiappetta A, Bruno L, Bitoni MB (2012) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63:695–709

    Article  CAS  PubMed  Google Scholar 

  • Hanberry BB, Palik BJ, He HS (2013) Winning and losing tree species of reassembly in Minnesota’s mixed and broadleaf forests. PLOS ONE 8:e61709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Molec Ecol 20:1675–1688

    Article  CAS  Google Scholar 

  • Herrera CM, Medrano M, Bazaga P (2014) Variation in DNA methylation transmissibility genetic heterogeneity and fecundity-related traits in natural populations of the perennial herb Helleborus foetidus. Molec Ecol 23:1085–1095

    Article  CAS  Google Scholar 

  • Jelínková H, Tremblay F, DesRochers A (2009) Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae). Amer J Bot 96:1500–1505

    Article  Google Scholar 

  • Jelínková H, Tremblay F, DesRochers A (2012) Herbivore-simulated induction of defenses in clonal networks of trembling aspen (Populus tremuloides). Tree Physiol 32:1348–1356

    Article  PubMed  Google Scholar 

  • Kilvitis HJ, Alvarez M, Foust CM, Schrey AW, Robertson M, Richards CL (2014) Ecological epigenetics. Advances Exp Med Biol 781:191–210

    Article  Google Scholar 

  • Kouki J, Arnold K, Martikainen P (2004) Long-term persistence of aspen–a key host for many threatened species–is endangered in old-growth conservation areas in Finland. J Nat Conservation 12:41–52

    Article  Google Scholar 

  • Krebill RG (1972) Mortality of aspen on the Gros Ventre elk winter range. USDA Forest Service Research Paper INT 129, Ogden, Utah

  • Kuhn TJ, Safford HD, Jones BE, Tate KW (2011) Aspen (Populus tremuloides) stands and their contribution to plant diversity in a semiarid coniferous landscape. Pl Ecol 212:1451–1463

    Article  Google Scholar 

  • Latzel V, Allan E, Silveira AB, Colot V, Fischer M, Bossdorf O (2013) Epigenetic diversity increases the productivity and stability of plant populations. Nat Commun 4:1–7

    Article  Google Scholar 

  • Latzel V, Klimešová J (2010) Transgenerational plasticity in clonal plants. Evol Ecol 24:1537–1543

    Article  Google Scholar 

  • Little EL (1971) Atlas of United States trees: conifers and important hardwoods. U.S. Department of Agriculture, Forest Service

  • Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5:e10326

    Article  PubMed  PubMed Central  Google Scholar 

  • Meirmans PG, van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Molec Eco Notes 4:792–794

  • Mock KE, Richardson BA, Wolf PG (2013) Molecular tools and aspen management: a primer and prospectus. Forest Ecol Managem 299:6–13

    Article  Google Scholar 

  • Mock KE, Rowe CA, Hooten MB, Dewoody J, Hipkins VD (2008) Clonal dynamics in western North American aspen (Populus tremuloides). Molec Ecol 17:4827–4844

    Article  CAS  Google Scholar 

  • Myking T, Bohler F, Austrheim G, Solberg EJ (2011) Life history strategies of aspen (Populus tremula L.) and browsing effects: a literature review. Forestry 84:61–71

    Article  Google Scholar 

  • Packard FM (1942) Wildlife and aspen in Rocky Mountain National Park, Colorado. Ecology 23:478–482

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molec Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peltzer DA (2002) Does clonal integration improve competitive ability? A test using aspen (Populus tremuloides [Salicaceae]) invasion into prairie. Amer J Bot 89:494–499

    Article  Google Scholar 

  • Pérez-Figueroa A (2013) msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Molec Ecol Res 13:522–527

    Article  Google Scholar 

  • Rahman M, Dayanandan S, Rajora O (2000) Microsatellite DNA markers in Populus tremuloides. Genome 43:293–297

    Article  CAS  PubMed  Google Scholar 

  • Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Letters 15:1016–1025

    Article  Google Scholar 

  • Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. Curr Opin Pl Biol 14:204–209

    Article  CAS  Google Scholar 

  • Rogers PC, Eisenberg C, St. Clair SB (2013) Resilience in Quaking Aspen: Recent advances and future needs. Forest Ecol Managem 299:1–5

    Article  Google Scholar 

  • Romme WH, Turner MG, Tuskan GA, Reed RA (2005) Establishment, persistence, and growth of aspen (Populus tremuloides) Seedlings in Yellowstone National Park. Ecology 86:404–418

    Article  Google Scholar 

  • St. Clair SB, Guyon J, Donaldson J (2010) Quaking aspen’s current and future status in western North America: the role of succession, climate, biotic agents and its clonal nature. Progr Bot 71:371–400

    Google Scholar 

  • Sankey TT (2012) Decadal-scale aspen changes: evidence in remote sensing and tree ring data. Appl Veg Sci 15:84–98

    Article  Google Scholar 

  • Smulders M, van der Schoot J, Arens P, Vosman B (2001) Trinucleotide repeat microsatellite markers for black poplar (Populus nigra L.). Molec Ecol Notes 1:188–190

    Article  CAS  Google Scholar 

  • Swofford DL, (2002) PAUP: Phylogenetic Analysis Using Parsimony (and other methods), Ver. 4.0b10. Sinauer Associates, Sunderland, MA, USA

  • Tew RK, DeByle NV and Schultz JD (1969) Intraclonal root connections among quaking aspen trees. Ecology 50:920–921

    Article  Google Scholar 

  • Verhoeven KJF, V Preite (2013) Epigenetic variation in asexually reproducing organisms. Evolution 68:644–655

    Article  PubMed  Google Scholar 

  • Wu WQ, Yi MR, Wang XF, Ma LL, Jiang L, Li XW, Xiao HX et al. (2013) Genetic and epigenetic differentiation between natural Betula ermanii (Betulaceae) populations inhabiting contrasting habitats. Tree Genet Genomes 9:1321–1328

    Article  Google Scholar 

  • Yakovlev I, Fossdal CG, Skrøppa T, Olsen JE, Jahren AH, Johnsen Ø (2012) An adaptive epigenetic memory in conifers with important implications for seed production. Seed Sci Res 22:63–76

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Douhovnikoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, J., Franklin, S.B. & Douhovnikoff, V. Epigenetic variation in clonal stands of aspen . Folia Geobot 52, 443–449 (2017). https://doi.org/10.1007/s12224-017-9308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-017-9308-x

Keywords

Navigation