Skip to main content
Log in

The Effect of Single and Double-wefted Styles on the In-plane Impact Behavior of Fabric Carbon-aramid/Epoxy Intralayer Hybrid Composite Laminates

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The characterization of in-plane impact properties of epoxy laminates reinforced with intralayer hybrid carbon/aramid fabrics was investigated. The effects of different fabrics, which had architectures of 2D and 3D form, on the impact performance was analyzed by drop-weight impact test. It revealed that different braiding styles had a significant influence on the impact properties. The anti-impact properties were enhanced due to aramid fibers into fabrics, in particular, the fabrics with 3D styles that aramid fibers as the Z-yarns. Laminates reinforced by 3D fabrics containing 25 % aramid fiber presented optimal anti-impact performance, and impact peak force and absorbed energy reached 4217 N and 26.71 J, increased by 135.5 % and 137.2 % relative to pure carbon fabric system, respectively. The results of damage morphologies showed that main damage modes, of fiber kinking, necking and fracture, improved the cushioning effect of laminates, which contributed to the enhancement of impact resistance capacity of composite laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Holmes, Reinf. Plast., 57, 24 (2013).

    Article  Google Scholar 

  2. B. Liu, Z. Liu, X. Wang, S. Long, and J. Yang, Polym. Test., 32, 724 (2013).

    Article  CAS  Google Scholar 

  3. N. Nistico, J. Ozbolt, and G. Polimanti, Compos. Part B., 90, 351 (2016).

    Article  CAS  Google Scholar 

  4. D. W. Y. Wong, L. Lin, P. T. McGrail, T. Peijs, and P. J. Hogg, Compos. Part A., 41, 759 (2010).

    Article  CAS  Google Scholar 

  5. S. T. Pinho, P. Robinson, and L. Iannucci, Compos. Sci. Technol., 66, 2069 (2006).

    Article  CAS  Google Scholar 

  6. J. Lee and C. Soutis, Compos. Sci. Technol., 68, 2359 (2008).

    Article  CAS  Google Scholar 

  7. A. Yudhanto, N. Watanabe, Y. Iwahori, and H. Hoshi, Compos. Sci. Technol., 86, 52 (2013).

    Article  CAS  Google Scholar 

  8. M. Bocciarelli, S. Gambarelli, N. Nistico, M. A. Pisani, and C. Poggi, Compos. Part B, 67, 9 (2014).

    Article  CAS  Google Scholar 

  9. R. D. Crouch, S. B. Clay, and C. Oskay, Compos. Part B., 48, 59 (2013).

    Article  CAS  Google Scholar 

  10. A. Yudhanto, N. Watanabe, Y. Iwahori, and H. Hoshi, Compos. Sci. Technol., 86, 52 (2013).

    Article  CAS  Google Scholar 

  11. H. Saghafi, S. R. Ghaffarian, D. Salimi-Majd, and H. A. Saghafi, Compos. Struct., 166, 49 (2017).

    Article  Google Scholar 

  12. V. H. Mahesh, C. A. Farhan, and J. Shaik, J. Compos. Mater., 41, 2195 (2007).

    Article  CAS  Google Scholar 

  13. H. Saghafi, T. Brugo, G. Minak, and A. Zucchelli, Procedia Eng., 88, 109 (2014).

    Article  Google Scholar 

  14. H. Saghafi, R. Palazzetti, A. Zucchelli, and G. Minak, Eng. Solid. Mech., 1, 85 (2013).

    Article  Google Scholar 

  15. P. Akangah, S. Lingaiah, and K. Shivakumar, Compos. Struc., 92, 1432 (2010).

    Article  Google Scholar 

  16. S. Kravchenko, O. Kravchenko, M. Wortmann, M. Pietrek, P. Horst, and R. B. Pipes, Compos. Part A., 54, 98 (2013).

    Article  CAS  Google Scholar 

  17. N. Naik, R. Ramsimha, H. Arya, S. Prabhu, and N. Shamarao, Compos. Part B., 32, 565 (2001).

    Article  Google Scholar 

  18. A. Enfedaque, J. M. Molina-Aldareguía, F. Gálvez, C. González, and J. Lorca, J. Compos. Mater., 44, 3051 (2010).

    Article  CAS  Google Scholar 

  19. A. Balaji, B. Karthikeyan, J. Swaminathan, and C. Sundar Raj, Fiber. Polym., 18, 1193 (2017).

    Article  CAS  Google Scholar 

  20. A. Balaji, B. Karthikeyan, J. Swaminathan, and C. Sundar Raj, Int. J. Polym. Anal. Ch., 18, 70 (2018).

    Article  Google Scholar 

  21. H. S. Ju, Compos. Part B, 79, 61 (2015).

    Article  CAS  Google Scholar 

  22. G. Pincheira, C. Canales, and C. Medina, P. I. Mech. Eng. L-J Mat., 10, 1177 (2015).

    Google Scholar 

  23. H. Sezgin and O. B. Berkalp, J. Ind. Text., 47, 283 (2016).

    Article  CAS  Google Scholar 

  24. S. A. Tekalur, K. Shivakumar, and A. Shukla, Compos. Part B., 39, 57 (2008).

    Article  CAS  Google Scholar 

  25. M. Kuwata and P. J. Hogg, Compos. Part A., 42, 1551 (2011).

    Article  CAS  Google Scholar 

  26. C. Ayranci and J. Carey, Compos. Struct., 85, 43 (2008).

    Article  Google Scholar 

  27. X. G. Yu and J. Z. Cui, Compos. Sci. Technol., 67, 471 (2007).

    Article  CAS  Google Scholar 

  28. V. Fiore, T. Scalici, F. Sarasini, J. Tirillo, and L. Calabrese, Compos. Part B, 116, 99 (2017).

    Article  CAS  Google Scholar 

  29. K. B. Aswani, K. M. Vijay, A. Suhail, and B. Naresh, Polym. Test., 61, 396 (2017).

    Article  CAS  Google Scholar 

  30. J. N. Baucom and M. A. Zikry, J. Compos. Mater., 37, 1651 (2003).

    Article  CAS  Google Scholar 

  31. B. Vieille, V. M. Casado, and C. Bouvet, Compos. Struct., 101, 9 (2013).

    Article  Google Scholar 

  32. R. Seltzer, C. González, R. Muñoz, J. LLorca, and T. Blanco-Varela, Compos. Part A., 45, 49 (2013).

    Article  CAS  Google Scholar 

  33. K. J. Kim, W. R. Yu, J. S. Lee, L. Gao, E. T. Thostenson, T. W. Chou, and J. H. Byun, Compos. Part A., 41, 1531 (2010).

    Article  CAS  Google Scholar 

  34. PJ. Liotier, V. Alain, and D. Christine, Compos. Part A., 41, 653 (2010).

    Article  CAS  Google Scholar 

  35. G. A. Schoeppner and S. Abrate, Compos. Part A., 31, 903 (2000).

    Article  Google Scholar 

  36. Y. Y. Li, B. Z. Sun, and B. H. Gu, Compos. Struct., 176, 43 (2017).

    Article  Google Scholar 

  37. O. Dorival, P. Navarro, S. Marguet, C. Petiot, M. Bermudez, D. Mesnagé, and J. F. Ferrero, Compos. Part B., 78, 244 (2015).

    Article  CAS  Google Scholar 

  38. H. Ullah, A. R. Harland, and V. V. Silberschmidt, Compos. Sci. Technol., 92, 55 (2014).

    Article  CAS  Google Scholar 

  39. H. Huang and M. W. Anthony, Compos. Sci. Technol., 69, 2338 (2009).

    Article  CAS  Google Scholar 

  40. M. Sangermano, M. Periolatto, V. Signore, and P. R. Spena, Prog. Org. Coat., 103, 152 (2017).

    Article  CAS  Google Scholar 

  41. J. P. Zhou, S. J. Jia, W. L. Fu, Z. L. Liu, and Z. Y. Tan, Mater. Lett., 176, 228 (2016).

    Article  CAS  Google Scholar 

  42. J. H. Lu and J. P. Youngblood, Compos. Part B., 82, 221 (2015).

    Article  CAS  Google Scholar 

  43. J. J. Xi, X. Y. Liu, Z. Q. Yu, and J. Sandw, Struct. Mater., 22, 1 (2018).

    Google Scholar 

  44. Y. Shi, T. Swait, and C. Soutis, Compos. Struct., 94, 2902 (2012).

    Article  Google Scholar 

  45. N. H. Nash, T. M. Young, P. T. McGrail, and W. F. Stanley, Mater. Des., 85, 582 (2015).

    Article  CAS  Google Scholar 

  46. C. Evci and M. Gulgec, Int. J. Impact. Eng., 43, 40 (2012).

    Article  Google Scholar 

  47. M. V. Hosur, M. Adbullah, and S. Jeelani, Compos. Struct., 67, 253 (2005).

    Article  Google Scholar 

  48. D. T. Zhang, Y. Sun, L. Chen, and N. Pan, Mater. Des., 50, 750 (2013).

    Article  CAS  Google Scholar 

  49. E. Sevkat, B. Liaw, F. Delale, and B. B. Raju, Compos. Part B., 41, 403 (2010).

    Article  CAS  Google Scholar 

  50. C. Thanomsilp and P. J. Hogg, Compos. Sci. Technol., 63, 467 (2003).

    Article  CAS  Google Scholar 

  51. S. Erdem, P. Prasad, H. Paul, and S. Costas, Compos. Part B., 91, 522 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Defense Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Yu, J. & Yu, Z. The Effect of Single and Double-wefted Styles on the In-plane Impact Behavior of Fabric Carbon-aramid/Epoxy Intralayer Hybrid Composite Laminates. Fibers Polym 20, 1301–1310 (2019). https://doi.org/10.1007/s12221-019-1008-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1008-0

Keywords

Navigation