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Abstract
We introduce the notion of symplectic flatness for connections and fibre bundles over
symplectic manifolds. Given an A∞-algebra, we present a flatness condition that
enables the twisting of the differential complex associated with the A∞-algebra. The
symplectic flatness condition arises from twisting the A∞-algebra of differential forms
constructed by Tsai, Tseng and Yau. When the symplectic manifold is equipped with
a compatible metric, the symplectic flat connections represent a special subclass of
Yang–Mills connections.We further study the cohomologies of the twisted differential
complex and give a simple vanishing theorem for them.
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1 Introduction

For a vector bundle E over a smooth manifold M of dimension d, we can study
differential forms �∗(M, E) taking values in the fibre space of E . For these forms,
we can write a de Rham-type complex for �∗(M, E):

0 �0(M, E)
dA

�1(M, E)
dA

. . .
dA

�d (M, E)
dA

0

(1.1)
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where locally dA = d + A and A ∈ �1(M,End E) is the connection acting on E .
The above complex is only a differential complex if the curvature of the connection,
F = (dA)2 = d A+ A∧ A = 0. This is the well-known fact that the de Rham complex
can be twisted by a flat bundle, i.e. a bundle E that allows for a connection whose
curvature vanishes.

Now suppose M is a complex manifold of dimension d = 2n and E is a complex
vector bundle over M . On complex manifolds, the differential forms can be decom-
posed into (p, q) components, that is

�k(M, E) =
⊕

k=p+q

Ap,q(M, E),

and the exterior derivative decomposes into the Dolbeault operators, d = ∂ + ∂̄ . The
decompositions of forms and exterior derivative allow us to consider a more refined
complex, the Dolbeault complex, which can be twisted as well:

0 A0,0(M, E)
∂̄A A0,1(M, E)

∂̄A
. . .

∂̄A A0,n(M, E)
∂̄A

0

(1.2)

where locally ∂̄A = ∂̄ + A0,1 and A0,1 is the (0, 1) component of the connection form
A. That the above complex is actually a differential complex imposes the condition

(
∂̄A

)2 = (∂̄ + A0,1)2 = ∂̄A0,1 + A0,1 ∧ A0,1 = F0,2 = 0. (1.3)

Notice that this is a weakening of the smooth flatness condition F = 0 in that (1.3)
requires only that the F0,2 component of the curvature vanishes. But a complex vector
bundle with a connection such that F0,2 = 0 is well known to be equivalent to the
bundle E having the structure of a holomorphic vector bundle. And so in the complex
case, complex flat bundles which can twist theDolbeault complex are just holomorphic
vector bundles.

Flat bundles and holomorphic vector bundles are basic and important objects on
smooth and complexmanifolds, respectively. In this paper, we are interested in explor-
ing special vector bundles on symplectic manifolds. Specifically, we ask a simple
question: is there a symplectic flatness condition for a vector bundle E over a sym-
plectic manifold, (M2n, ω)?

We can answer this question by proceeding in a similar way as in the smooth
and complex cases described above. Let us first recall that on a symplectic manifold,
(M2n, ω), the differential forms can be expressed in a polynomial expansion in powers
of ω. This decomposition of forms is commonly called the Lefschetz decomposition
and given by

�k(M) =
⊕

k=2r+s

ωr ∧ Ps(M),
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where Ps(M) for s = 0, 1, . . . , n, denotes the space of primitive forms, i.e. forms that
we can not extract anω from them.More precisely, a formβ ∈ Ps(M) if there does not
exist an ξ ∈ �s−2(M) such that β = ω∧ξ . And besides forms, the exterior derivative,
like in the complex case, also has a decomposition into two linear differential operators
(∂+, ∂−) dependent on the symplectic structure [7]

d = ∂+ + ω ∧ ∂− (1.4)

and with desirable properties: (∂+)2 = (∂−)2 = 0 and ω ∧ ∂+∂− = −ω ∧ ∂−∂+.
Together, they lead to a differential complex that is elliptic (see [7] and references
therein)

0 P0(M)
∂+

P1(M)
∂+

. . .
∂+

Pn−1(M)
∂+

Pn(M)

−∂+∂−

0 P0(M)
−∂−

P1(M)
−∂−

. . .
−∂−

Pn−1(M)
−∂−

Pn(M)
−∂−

(1.5)

Hence, we can try to extend this complex to one acting on P∗(M, E), the space of
primitive forms with values in E and also twist the operators (∂+, ∂−, ∂+∂−) with a
connection form as in (1.1) and (1.2). However, the peculiar definitions of the differ-
entials in (1.5) raise immediate issues. In particular, note that both ∂− : Ps → Ps−1

and ∂+∂− : Pn → Pn do not increase the degree of the form by one. Can we simply
twist these operators in the primitive complex above by a connection one-form?

The twisting procedure in the symplectic case turns out to be a bit more subtle.
Nevertheless, twisting the primitive complex can still be achieved because the complex
has an A∞-algebra structure [6].Wewill show in this paper, that given any A∞-module
structure of differential forms taking values in E , there is a natural twisting of the
differentials of the complex by a connection one-form. The new twisted differentials,
however, do not represent a deformation of the A∞-module and hence does not lead
to a new A∞-module structure.

Our result in the symplectic case is the following. We can write down a twisted
primitive complex of forms taking values in E , if the connection one-form on E
satisfies the following symplectic flatness condition:

Definition 1.1 For (M2n, ω) a symplecticmanifold, letπ : E → M be a vector bundle
with a connection, dA the corresponding covariant derivative and F the curvature two-
form. We call the connection symplectically flat if

F = �ω

dA� = d� + [A,�] = 0,
(1.6)

where � ∈ �0(M,End E). If such a connection exists on E , we say E is a symplec-
tically flat bundle.
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Table 1 A comparison of smooth, complex and symplectic flat bundles

Smooth M Complex (M2n , J ) Symplectic (M2n , ω)

Forms �k �k = ⊕Ap,q �k = ⊕ ωr ∧ Ps

Differential d d = ∂ + ∂̄ d = ∂+ + ω ∧ ∂−
Flatness condition F = 0 F0,2 = 0 F = �ω, dA� = 0

Special local frame A = 0 A0,1 = 0 A = �λ , � = const., dλ = ω

Remark 1.2 For a principal bundle P over (M2n, ω), we say P is symplectically flat
if there exists a connection form on P whose curvature satisfies (1.6).

Though written as two equations, condition (1.6) for symplectically flat is effectively
just a single equation in all 2n dimensions. For when n = 1, the first equation,
F = �ω , is trivial and gives no condition. On the other hand, when n ≥ 2, the
second equation, dA� = 0 , becomes unnecessary as it is implied by the first equation
of (1.6) and the Bianchi identity.

To arrive at the symplectic flatness condition, we shall begin in Sect. 2 by reviewing
the A∞-algebra structure of the primitive cochain complex of Tsai, Tseng and Yau [6].
We will present a general procedure to twist the differential complex associated with
any A∞-algebra. This general procedure gives the flatness conditions for de Rham,
Dolbeault and the primitive symplectic complex and results in the twisted primitive
complex given in (2.15).

With the symplectic flatness condition established, it is helpful to have examples
of symplectic flat bundles and understand some of their properties. We will do this in
Sect. 3. Indeed, we will show that symplectically flat connections are a special type of
Yang–Mills connections in the presence of a compatible metric on (M2n, ω). Also, as
shown in Table 1, one can choose special local frames such that the local connection
form takes the form A = �λ, where � is a constant matrix and dλ = ω. We also
point out an interesting relationship: when ω is an integral class and we can define a
circle bundle X over M whose Euler class is given by ω, (i.e. the prequantum circle
bundle of M), the symplectic flat bundle lifts to a flat bundle on X .

Finally, having twisted the primitive elliptic complex, we analyse the resulting
cohomologies on P∗(M, E) in Sect. 4. We will calculate these twisted primitive
cohomologies on R

2n and also prove a simple vanishing theorem for the twisted
cohomologies when � is invertible.

In this paper, we will mainly focus on symplectically flat vector bundles. An exten-
sive discussion of symplectically flat principal bundles including their classification
will be given in a companion work [8].

This paper is written for a special issue of the Journal of Geometric Analysis in
honour of Peter Li. We are fortunate to have had the opportunity to interact closely
with Peter Li through our affiliations with the UC Irvine Geometry/Topology group
which Peter Li shaped and built-up over twenty plus years as a leading, senior faculty
at UC Irvine. Peter Li has without fail been supportive and generous with kind advice
to us. We are grateful to him for his strong encouragement in our research work.
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2 Twisting the Differential Complex of an A∞-algebra

On symplecticmanifolds, Tsai–Tseng–Yau [6] showed that the primitive cochain com-
plex in (1.5) can be extended to an A∞-algebra. (More precisely, it is a commutative
A3 algebra.) We will first describe this algebra below. For ease, we will call this alge-
bra of differential forms on symplectic manifolds the TTY algebra. We then proceed
to give a heuristic description of how to twist the differential of the primitive TTY
algebra. Going further, we show in generality how the differential of any A∞-module
can be twisted. The twisted differential of the TTY algebra is just a special case of
this general A∞-module twisting.

2.1 Preliminaries: TTY Algebra

We mostly follow the notations of [6].
Asmentioned, differential formson a symplecticmanifold (M2n, ω)has aLefschetz

decomposition. Any ηk ∈ �k(M) can be expressed as a polynomial in ω:

ηk = βk + ω ∧ βk−2 + . . . + ωp ∧ βk−2p + . . . (2.1)

where {βk, βk−2, . . . , βk−2p, . . .} are all primitive forms in P∗(M) and are determined
uniquely by ηk and ω. The non-degeneracy of ω also allows us to define the following
three operators on differential forms [6]:

1. L p: When p = k ≥ 0, Lk = ωk∧. When p = −k < 0, L−k removes k powers
of ω from a form. For example, acting on the Lefschetz component ωr ∧ βs for
βs ∈ Ps , L−k(ωr ∧ βs) = ωr−k ∧ βs if k ≤ r < n − s + 1. When k > r , then
L−k(ωr ∧ βs) = 0.

2. ∗r : For α ∈ �k , ∗r α = Ln−kα.
3. �p: By Lefschetz decomposition, every η ∈ �k can be uniquely written as β +

ωp+1 ∧ γ , where β = βk + ω ∧ βk−2 + . . . + ωp ∧ βk−2p in the decomposition
of (2.1). Then, �pη = β.

The third operator, �p, is a projection operator and defines the space of p-filtered
forms: F p�k(M) = �p

[
�k(M)

]
for 0 ≤ p ≤ n. Note that the Lefschetz decompo-

sition of p-filtered forms has at most terms of order ωp.
For each p = 0, . . . , n, there is a TTY algebra consisting of forms in F p�∗(M). In

this paper, we are mainly concerned with the p = 0 filtered case F0�∗(M) = P∗(M)

which consist of just primitive forms. To simplify notation, we will write � = �0,
i.e. the projection onto the primitive component of the Lefschetz decomposition.

The TTY algebra is an A∞-algebra . Let us recall the definition of an A∞-algebra
(for a reference, see [3]).

Definition 2.1 An A∞-algebra is a Z-graded vector space A = ⊕
k∈ZAk endowed

with graded linear maps

mk : A⊗k → A, k ≥ 1

of degree 2 − k satisfying
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∑

r+s+t=k

(−1)r+stmr+t+1(1⊗r ⊗ ms ⊗ 1⊗t ) = 0. (2.2)

The first three relations of (2.2) are the following:

m1m1 = 0 (2.3)

m1m2 = m2(m1 ⊗ 1 + 1 ⊗ m1) (2.4)

m2(1 ⊗ m2 − m2 ⊗ 1) = m1m3 + m3(m1 ⊗ 1 ⊗ 1 + 1 ⊗ m1 ⊗ 1 + 1 ⊗ 1 ⊗ m1).

(2.5)

By the third relation, if m3 = 0, then m2, which acts as a product, is associative.
An A∞-algebra with only {m1,m2} non-zero is simply a differential graded algebra
(DGA). The TTY algebra is, however, generally non-associative withm3 �= 0, butmk

for k ≥ 4 = 0 can be set to zero. Hence, it can be more precisely called an A3 algebra.
We now define the TTY-algebra (F ,m1,m2,m3) on primitive forms F0�∗(M) =

P∗(M). First, the elements of the primitive TTY-algebra are those of the differential
complex (1.5). The grading follows that of the complex and to help distinguish the
two sets of primitive forms, we use the ± subscript

F =
{
P0+, P1+, . . . , Pn+, Pn−, . . . , P1−, P0−

}
(2.6)

where for k = 0, 1, . . . , n, Pk+ = Pk have grading k, and Pk− = Pk have grading
2n+1−k. As for themk maps, the first map,m1, is just the differential of the complex
(1.5).

The m1 map.

m1β =

⎧
⎪⎨

⎪⎩

∂+β, for β ∈ Pk+, k < n,

−∂+∂−β, for β ∈ Pn+,

−∂−β, for β ∈ Pk−.

(2.7)

The m2 map is the product operation and is dependent on the pair of primitive spaces
that it acts on. At times, we will denote it by the product symbol and write m2(β, γ )

as β × γ . This × operation is graded commutative.
The m2 map.

1. For β ∈ P j
+, γ ∈ Pk+, set

β × γ = �(β ∧ γ ) + � ∗r [−dL−1(β ∧ γ ) + (∂−β) ∧ γ + (−1) jβ ∧ (∂−γ )].

Note that when j + k ≤ n, the second term is trivial, and when j + k > n, the first
term is trivial.

2. For β ∈ P j
+, γ ∈ Pk−, set

β × γ = (−1) j ∗r [β ∧ (∗rγ )].
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3. For β ∈ P j
−, γ ∈ Pk+, set

β × γ = ∗r [(∗rβ) ∧ γ ].

4. For β ∈ P j
−, γ ∈ Pk−, set

β × γ = 0.

The m3 maps measures the non-associativity of the product ×. The non-associativity
only arises when all three forms in the input come from P∗+.

The m3 map.

1. For β ∈ Pi+, γ ∈ P j
+, σ ∈ Pk+ and i + j + k ≥ n + 2, we set

m3(β, γ, σ ) = � ∗r [β ∧ L−1(γ ∧ σ) − L−1(β ∧ γ ) ∧ σ ].

2. For all other cases, we set m3(β, γ, σ ) = 0.

Finally, mk = 0 for k ≥ 4.

2.2 Twisting the Differential of the Primitive TTY Algebra

We now give a heuristic description of the twisting of the primitive elliptic complex
(1.5). Let E be a vector bundle and consider �∗(M, E) and P∗(M, E), the space
of differential forms and primitive forms, respectively, taking values in E . We start
with the relation of (∂+, ∂−) with d in (1.4). In particular, acting on primitive forms,
∂+ = � d and ∂− = L−1d. Now, we can decompose the twisted exterior derivative
into two components when acting on primitive forms β ∈ Ps(M, E). Locally with
dA = d + A∧ , we can write

dAβ = (d + A∧) β = (∂+ + ω ∧ ∂−) β + (A ∧ β)

= � [(d + A∧) β] + ω ∧ L−1 [(d + A∧) β]

= �(dA β) + ω ∧ L−1(dA β)

where we have noted in the second line that a primitive form wedge a one-form has a
Lefschetz decomposition into two terms and in the third line, that the decomposition is
independent of the choice of local frames. This allows us to define the global twisted
operators:

∂+A = � dA : Pi (M, E) → Pi+1(M, E)

∂−A = L−1dA : Pi (M, E) → Pi−1(M, E)

such that

dA = ∂+A + ω ∧ ∂−A acting on Pk(M, E) (2.8)
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which gives a twisted version of (1.4). Locally, we have the expressions

∂+A βi = � [(d + A∧) βi ] , ∂−A βi = L−1 [(d + A∧) βi ] . (2.9)

Now we can express the action of (dA)2 on a primitive form in two ways. First,
note that the commutator

[dA, ω] = [d + A, ω] = 0. (2.10)

Therefore, we have

(dA)2β = dA (∂+A β + ω ∧ ∂−A β)

= ∂+A ∂+A β + ω ∧ ∂−A ∂+A β + ω ∧ dA∂−A β

= ∂+A ∂+A β + ω ∧ (∂−A ∂+A + ∂+A ∂−A ) β + ω2 ∧ ∂−A ∂−A β (2.11)

Alternatively, we can also write

(dA)2β = F ∧ β

= (F0 + ω �) ∧ β

= F0 ∧ β + ω ∧ �β (2.12)

where in the second line, we have Lefschetz decomposed the curvature F = F0+ω �

with F0 = � F ∈ P2(M,End E) and� ∈ �0(M,End E). If F0 = 0, then comparing
(2.11) with (2.12) and matching the Lefschetz components, we find

(∂+A)2 = (∂−A)2 = 0, (2.13)

ω (∂+A ∂−A + ∂−A ∂+A ) = ω �. (2.14)

This suggests the following twisted primitive complex

0 P0(M, E)
∂+A

P1(M, E)
∂+A

. . .
∂+A

Pn−1(M, E)
∂+A

Pn(M, E)

−∂+A ∂−A +�

0 P0(M, E)
−∂−A

P1(M, E)
−∂−A

. . .
−∂−A

Pn−1(M, E)
−∂−A

Pn (M, E)
−∂−A

(2.15)

This is a differential complex if F satisfies the symplectically flat condition of F = �ω

(i.e. F0 = 0) and dA� = 0 given in Definition 1.6. In particular, we write out the
composition of the differential operators in the middle of the complex:

(−∂+A ∂−A + �) ∂+A βn−1 = [
∂+A (∂+A ∂−A − �) + �∂+A

]
βn−1

= [−�∂+A + ∂+A �
]
βn−1

= �
[
(−�(d + A) + (d + A)�) βn−1

]
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= �
[
(d� + [A,�]) βn−1

] = �
[
(dA�) ∧ βn−1

]

∂−A (−∂+A ∂−A + �) βn = (∂+A ∂−A − �) ∂−A βn + ∂−A (�βn)

= (−�∂−A + ∂−A �)βn

= −�L−1(d + A)βn + L−1(d + A)(�βn)

= L−1 (d� + [A,�]) βn = L−1 ((dA�) ∧ βn)

which both vanish since dA� = d� + [A,�] = 0 .
In the next subsection, we will give a more systematic description of how to obtain

the twisted differentials. We will show how all A∞-algebras can be twisted and that
the symplectic flat condition needed above matches exactly the required condition for
general twisting.

2.3 Twisting the Differential of an A∞-module

We are interested to twist the primitive elliptic complex (1.5) in a similar manner to
how the de Rham complex is twisted in (1.1). Prior to twisting, the untwisted de Rham
complex together with the wedge product gives the de Rham DGA: (�∗(M),m1 =
d,m2 = ∧). In the presence of a vector bundle E with fibre V , twisting the complex
consists of locally tensoring by V , i.e. �∗(U ) ⊗ V and modifying the differential
m1 = d tom′

1 = d + A : �k(U )⊗V → �k+1 ⊗V . In order that the twisted complex
remains a differential complex, we obtain the condition

m′
1 ◦ m′

1 = (d + A)(d + A) = d A + A ∧ A = F = 0.

Let usmake twoobservations. First,modifyingm1 → m′
1 does not result in a newDGA

consisting of (�∗(M)⊗V ,m′
1 = d + A,m′

2). Indeed, we have not and do not need to
define a new product m′

2 on �∗(M) ⊗ V . So twisting the de Rham complex does not
represent a deformation preserving the DGA structure. Second, without modifying the
maps (m1,m2), we can tensor the de RhamDGAbymatrices: (�∗(U )⊗End V ,m1 =
d,m2 = ∧). This is still a DGA with

m2(η1 ⊗ e1, η ⊗ e2) = m2(η1, η2) ⊗ (e1 · e2)

Note that in the context of this tensored de Rham DGA, the flatness condition can be
written simply in terms of the deformed m′

1 map:

F = d A + A ∧ A = m1(A) + m2(A, A) = m′
1(A) = 0.

Now to twist the primitive elliptic complex, we first observe that any A∞-algebra
also has a natural tensor product with matrices. Let � be an A∞-algebra. We twist
A = � ⊗ End V where V , a vector space, is the fibre of E . mk acting on �⊗k can be

123
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extended to mk acting on A⊗k where

mk(a1 ⊗ e1, . . . , ak ⊗ ek) = mk(a1, . . . , ak) ⊗ (e1 ◦ · · · ◦ ek).

Elements of the complex are vector valued. They are elements ofB = �⊗V which
to be precise is an A∞-module over A. (See for example [3] for the definition of an
A∞ module.) The mk acting on B is given by

mk(a1 ⊗ e1, . . . , ak−1 ⊗ ek−1, ak ⊗ v) = mk(a1, . . . , ak) ⊗ (e1 ◦ · · · ◦ ek−1)v.

The above twisting for differential graded algebras can be generalized to twist any
A∞-module B. In [2], Gibson described the case for A3-algebra (i.e. mk = 0 for all
k ≥ 4) and showed that m′

1(−) = m1 + m2(A,−) − m3(A, A,−) squares to zero
when m′

1(A) = 0. Here, we give the general statement for any A∞-module B.

Definition 2.2 Let {A,mk} be an A∞-algebra, B an A∞-module over A and A an
element of A of grading one. We define the operator m′

1 as

m′
1(B) = m1(B) + m2(A, B) − m3(A, A, B) − m4(A, A, A, B) + . . .

=
∑

δkmk(A
⊗(k−1) ⊗ B)

where

δk = (−1)
(k−1)(k−2)

2 =
{
1, k = 4m + 1 or 4m + 2,

−1, k = 4m + 3 or 4m.

Here, we use the notationm′
1 since it is obtained by twistingm1, butm′

1 is generally
not the differential of an A∞-module. Asmentioned above, we do not needmorphisms
m′

k for k ≥ 2 as we are not aiming to obtain a deformed A∞-structure. The theorem
below will give a sufficient condition that ensures that m′

1 ◦ m′
1 = 0.

Theorem 2.3 m′
1 ◦ m′

1 = 0 if m′
1(A) = 0.

We first note a simple relation for the δk’s.

Lemma 2.4 For any r ≥ 0, s ≥ 1, we have

δr+1δs = (−1)r(s−1)δr+s .

Proof Observe that δr+1δs = (−1)
r(r−1)+(s−1)(s−2)

2 and the power

r(r − 1) + (s − 1)(s − 2)

2
= (r + s − 1)(r + s − 2)

2
− r(s − 1).

��
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Proof of Theorem 2.3. For any B ∈ B,

m′
1
2B =

∑

i, j≥1

δiδ jmi (A
⊗(i−1) ⊗ m j (A

⊗( j−1) ⊗ B)).

Let r = i − 1 and s = j . Then r ≥ 0, s ≥ 1 and the sum can be written as

∞∑

k=1

∑

r+s=k

δ(r+1)δsmr+1[A⊗r ⊗ ms(A
⊗(s−1) ⊗ B)].

Rewrite every term as

δ(r+1)δsmr+1[A⊗r ⊗ ms(A
⊗(s−1) ⊗ B)] = (−1)rsδr+1δsmr+1(1

⊗r ⊗ ms)

(A⊗(r+s−1) ⊗ B)

= (−1)rδkmr+1(1
⊗r ⊗ ms)(A

⊗(k−1) ⊗ B)

By the definition of an A∞-algebra, we have

∑

r+s=k
r≥0,s≥1

(−1)rmr+1(1
⊗r ⊗ ms) +

∑

r+s+t=k
r≥0,s,t≥1

(−1)r+stmr+t+1(1
⊗r ⊗ ms ⊗ 1⊗t ) = 0.

So m′
1
2B can be described as

m′
1
2B = −

∞∑

k=1

∑

r+s+t=k
r≥0,s,t≥1

(−1)r+stδkmr+t+1(1
⊗r ⊗ ms ⊗ 1⊗t )(A⊗(k−1) ⊗ B)

=
∑

r≥0,s,t≥1

(−1)r+s(r+t)+1δr+s+tmr+t+1(A
⊗r ⊗ ms(A

⊗s) ⊗ A⊗(t−1) ⊗ B)

Since δr+t+1δs = (−1)(r+t)(s+1)δr+s+t , we have (−1)r+s(r+t)+1δr+s+t =
(−1)t+1δr+t+1δs . When we take the sum over s first, we get

m′
1
2B =

∑

r≥0,t≥1

(−1)t+1δr+t+1mr+t+1

⎛

⎝A⊗r ⊗
∑

s≥1

δsms(A
⊗s) ⊗ A⊗(t−1) ⊗ B

⎞

⎠ .

By assumption
∑

s≥1 δsms(A⊗s) = m′
1A = 0. Thus, m′

1
2B = 0.

The above prescription for A∞ twistingmotivated by twisting the de RhamDGAgives
the standard twisting for the Dolbeault complex and the primitive TTY-algebra.

Example 2.5 (Twisted Dolbeault complex) Let E be a vector bundle over a complex
manifold M . Given a local trivialization over U ⊂ M , the (0, 1) part of a connec-
tion acting on �0,∗(U , E) can be represented as ∂̄ + A0,1 with A ∈ �1(U ,End E).
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m′
1(A

0,1) = ∂A0,1 + A0,1 ∧ A0,1 = 0 over any U if and only if F0,2 = 0, i.e. this
connection is holomorphically flat.

Example 2.6 (Twisted primitive TTY-algebra) Let E be a vector bundle over a sym-
plectic manifold (M2n, ω). Given a local trivialization overU ⊂ M , a connection can
be represented locally as d + A where A ∈ �1(U ,End E) = P1(U ,End E). The
primitive complex P∗(U , E) is an A∞-module over the TTY-algebra P∗(U ,End E).
Hence, we can define the operator m′

1 as in Definition 2.2 and is explicitly given by

m′
1β =

⎧
⎪⎨

⎪⎩

∂+A β for β ∈ Pk+(U , E), k < n,

(−∂+A ∂−A + �)β for β ∈ Pn+(U , E),

−∂−A β for β ∈ Pk−(U , E).

(2.16)

In details for the β ∈ Pn+(U , E) case, we have

m′
1β = m1(β) + m2(A, β) − m3(A, A, β)

= −∂+∂−βn + �
[
−dL−1(A ∧ βn) + ∂−A ∧ βn − A ∧ ∂−βn

]

− �
[
A ∧ L−1(A ∧ βn) − L−1(A ∧ A)βn

]

= −∂+A ∂−A βn + � L−1(d A + A ∧ A)βn = −∂+A ∂−A βn + �βn .

Furthermore,

m′
1(A) =

{
�(d A + A ∧ A) for n ≥ 2

−dL−1(d A + A ∧ A) + A ∧ L−1(d A + A ∧ A) − L−1(d A + A ∧ A) ∧ A for n = 1

Therefore, m′
1(A) = 0 if and only if the curvature has no primitive component, i.e.

F = �ω and also d� + [A,�] = 0, having noted that L−1F = �. The second
equation means that � is covariantly constant which implies the global condition
dA� = 0 .

Remark 2.7 For the higher p-filtered TTY algebra (i.e. p > 0), if we define m′
1 as in

Definition 2.2, then m′
1(A) = 0 is just the the usual flat connection condition.

3 Examples and Properties of Symplectically Flat Bundles

We first give some simple examples of symplectically flat bundles.

Example 3.1 When the principal bundle P is rank 1, the condition of symplectically
flat becomes F = d A = cω for some constant c. Specifically, a circle bundle whose
Euler class is cω would be symplectically flat.
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Example 3.2 A projectively flat bundle has curvature

F = cω I

where c is a constant and I is the identity map over the fibre. Hence, projectively flat
bundles are symplectically flat.

Example 3.3 When dim M = 2, the symplectically flat condition is exactly identical
to satisfying the Yang–Mills equations in the presence of a compatible metric. More
generally, for dim M ≥ 2, a symplectically flat connection is always a critical point
of the Yang–Mills functional with respect to a compatible metric

∫

M
tr (F ∧ ∗F).

Using the relation ∗ω = 1
(n−1)! ωn−1, it is straightforward to see that a symplectically

flat curvature satisfies the Yang–Mills equation

d∗
AF = − ∗ dA ∗ (�ω) = − 1

(n − 1)! ∗
(
(dA�)ωn−1

)
= 0.

Hence, symplectically flat connections are a special subset of Yang–Mills solutions.

Example 3.4 When the symplectic manifold has dimension dim M = 4, a symplec-
tically flat connection satisfies the self-dual condition with respect to a compatible
metric

F = ∗F .

Clearly here, the symplectically flat condition F = �ω is a stronger condition than
the self-dual condition.

Below we give some properties of symplectically flat bundles.

Proposition 3.5 Suppose there is a symplectically flat connection onamanifold M with
curvature F = �ω. Locally, there exists a trivialization such that � is represented
as a constant matrix, and the covariant derivative can be written as d + �λ for some
local 1-form λ satisfying dλ = ω.

The proof of the theorem is based on the following lemma (see for example, [4]
Proposition 5.8):

Lemma 3.6 Locally, if d + Ã is a flat covariant derivative, then Ã = g−1dg for some
matrix valued function g.

Proof of Proposition 3.5. First choose local sections {s1, . . . , sr } forming a frame of
�(U , E), where r is the rank of vector bundle E . Then dA can be written as d+ A, and
� can be represented by a matrix �s with respect to this frame. Take λ ∈ �1(U ) such
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that dλ = ω. Since d+A is a symplectically flat covariant derivative, a straightforward
calculation shows that

d(A − �sλ) + (A − �sλ) ∧ (A − �sλ) = 0.

i.e. d + A − �sλ is a local flat covariant derivative.
By Lemma 3.6 there exists some invertible g such that

A − �sλ = g−1dg.

Thus,

gAg−1 + gdg−1 = g�sg
−1λ.

Then we have

[gAg−1 + gdg−1, g�sg
−1] = g�2

s g
−1λ − g�2

s g
−1λ = 0.

On the other hand,

d(g�sg
−1) + [gAg−1 + gdg−1, g�sg

−1] = g(d�s + [A,�s])g−1 = 0.

Therefore, d(g�sg−1) = 0, i.e. g�sg−1 is a constant. Let

[s′
1 . . . s′

r ] = [s1 . . . sr ]g−1

be another local frame. Then � will be represented by g�sg−1 with respect to this
new frame. And the local covariant derivative becomes

d + gAg−1 + gdg−1 = d + g�sg
−1λ.

��
As an application of Proposition 3.5, suppose (M, ω) is a Kähler manifold and

its Levi-Civita connection is symplectically flat. Then the Ricci curvature Ric(u, v)

satisfies

Ric(u, v) = i trCF(u, v) = 1

2
ω(u, v)(tr J� + i tr�).

By Theorem 3.5 around every point in M , we can find some g such that g�g−1 is a
constant. That implies that tr� = tr g�g−1 is a constant. For the same reason, tr J�

is also a constant. Therefore, the Ricci tensor r(u, v) has the following property:

r(u, v) = Ric(−Ju, v) = cω(−Ju, v) = c g(u, v),

where c = 1
2 (tr J� + i tr�). In other words, we have

123



Symplectic Flatness and Twisted Primitive Cohomology Page 15 of 26   282 

Proposition 3.7 If the Levi-Civita connection of a Kähler manifold is symplectically
flat, then the manifold is Kähler–Einstein.

Symplectically flat bundles also have a simple alternative description. When ω is
integral, it induces a flat connection on the prequantum circle bundle, i.e. the circle
bundle over M with Euler class given by ω.

To show this, we recall a result of Tanaka-Tseng [5] that the primitive TTY algebra
is A∞-quasi-isomorphic to the cone algebra C∗(M) = �∗(M) ⊕ θ �∗(M) where
dθ = ω. Furthermore, when ω is integral and we can consider a circle bundle X over
M whose Euler class is ω, then the de Rham DGA of the circle bundle �∗(X) is
quasi-isomorphic to both the C∗(M) algebra and the primitive TTY algebra.

We can extend these quasi-isomorphism relations between algebras to include
symplectically flat connections. Let E be a vector bundle over M with a connec-
tion, and dA the corresponding covariant derivative. On the twisted cone algebra
C∗(M, E) = �∗(M, E) ⊕ θ �∗(M, E) with dθ = ω, we define the operator

DC = dA − θ �.

Proposition 3.8 The above connection is symplectically flat if and only if D2
C = 0.

Proof Write dA = d + A locally, then DC = d + A − θ�.

D2
C = d(A − θ�) + (A − θ�) ∧ (A − θ�) = 0

⇐⇒ (d A + A ∧ A − �ω) + θ(d� + [A,�]) = 0

⇐⇒
{
F = d A + A ∧ A = �ω

dA� = d� + [A,�] = 0

��
Corollary 3.9 Suppose ω ∈ �2(M) is an integral closed 2-form on a manifold M, and
π : X → M be the circle bundle whose Euler class is ω. If E is a symplectically flat
bundle over M, then π∗E is a flat bundle over X.

4 Calculation of Twisted Cohomology

In this section, we consider a vector bundle E over a symplectic manifold (M, ω)with
a symplectically flat connection whose curvature F = �ω. The twisted primitive
elliptic complex (2.15) gives the following cohomologies:

PHk+(M, E) = ker ∂+A

im ∂+A
PHn+(M, E) = ker(∂+A ∂−A − �)

im ∂+A

PHk−(M, E) = ker ∂−A

im ∂−A
PHn−(M, E) = ker ∂−A

im(∂+A ∂−A − �)

where k = 0, . . . , n − 1. To simplify notation below, we use m′
1 as defined in (2.16)

to denote the differentials {∂+A ,−(∂+A ∂−A − �),−∂−A } in the complex (2.15).
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By (2.14), we obtain a condition on the elements of the PH∗(M, E) cohomology.

Lemma 4.1 Let β ∈ PH∗(M, E). Then �β is trivial in PH∗(M, E) cohomology
class. Specifically, for βk ∈ Pk+(M, E) and 0 ≤ k ≤ n,

�βk = ∂+A ∂−A βk, (4.1)

and for β̄k ∈ Pk−(M, E),

�β̄k =
{

∂−A ∂+A β̄k, 0 ≤ k < n

(−∂+A ∂−A + �)βk, k = n
(4.2)

Proof For k < n, note that (2.14) simplifies to just ∂+A ∂−A + ∂−A ∂+A = �

as ω is an injective map when acting on forms of degree less than n. Using this,
(4.1) and (4.2) then follow immediately after imposing m′

1(βk) = ∂+A βk = 0 or
m′

1(β̄k) = −∂−A β̄k = 0. When k = n, (4.1) is just m′
1(βn) = 0 and (4.2) is also

trivial since m′
1(β̄n) = −∂−A β̄n = 0. ��

Theorem 4.2 If � is invertible, then PH∗(M, E) = 0.

Proof Let �−1 be the inverse of �. We note that dA� = 0 implies dA�−1 = 0 since

0 = dA
(
��−1

)
= d��−1 + � d�−1 + [A,�] �−1 + � [A,�−1] = � dA�−1.

Therefore, for arbitrary α ∈ �∗(M, E), we have that

(d + A)(�−1α) = �−1(d + A)α

It follows that both ∂+A and ∂−A also commutewith�−1. So for anyβ ∈ PH∗±(M, E),
if m′

1β = 0, then m′
1(�

−1β) = �−1m′
1β = 0. By Lemma 4.1, β = �(�−1β) must

be m′
1-exact. ��

Corollary 4.3 When rank E = 1 and E is non-flat, then PH∗(M, E) = 0.

The above Theorem 4.2 is a vanishing statement for PH∗(M, E) of which� plays
a central role.

4.1 Local Cohomologies

For arbitrary x ∈ M , we have a neighbourhood U of x isomorphic to R
2n such that

E |U � U × V . There exist λ ∈ �1(U ) such that dλ = ω. According the proof of
Proposition 3.5, we can find a frame {ei } on E |U such that Aei = �λei and� ∈ End V
is a constant. Locally, we have A = �λ and we obtain the following result regarding
the twisted primitive cohomologies:
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Theorem 4.4

PHk+(U , E) =

⎧
⎪⎨

⎪⎩

ker�, k = 0

λ coker�, k = 1

0, k ≥ 2

PHk−(U , E) = 0.

Here, ker� and coker� are subspaces of V and can be represented by constant
sections.

We will make use for the proof of the theorem the local Poincare’ lemmas for the
{∂+, ∂+∂−, ∂−} operators in [7]. Before giving the proof, let us first write down some
expressions that are m1-closed, where m1 refers to the the untwisted differentials of
(2.7), instead of m′

1-closed. Below, we will often use the simpler product notation ×
to denote the m2 map as described in Sec. 2.1.

Lemma 4.5 Let βk ∈ Pk+ such that m′
1(βk) = 0 and β̄k ∈ Pk− such that m′

1(β̄k) = 0.
Then for a symplectically flat connection of the form A = �λ where � is a constant,

∂+ (βk − λ × ∂−A βk) = 0, k = 0, 1, . . . , n − 1,

−∂+∂− (βn − λ × ∂−A βn) = 0,

−∂−
(
β̄k + λ × ∂+A β̄k

) = 0, k = 0, 1, . . . , n − 1.

Proof For βk ∈ Pk+ and m′
1(βk) = 0, (4.1) implies �βk = (∂+ + �λ×)∂−A βk , or

equivalently,

�(βk − λ × ∂−A βk) = ∂+∂−A βk . (4.3)

By direct computation, we will show βk − λ × ∂−A βk is m1-closed. When k < n, we
have

∂+ (βk − λ × ∂−A βk) = ∂+βk + λ × ∂+∂−A βk

= ∂+βk + �λ × (βk − λ × ∂−A βk)

= ∂+A βk = 0

having used Leibniz rule in the first line and noting that λ × (λ × ∂−A βk) = (λ ×
λ) × ∂−A βk = 0. When k = n, we have

−∂+∂− (βn − λ × ∂−A βn) = −∂+∂−βn + λ × ∂+∂−A βn

= −∂+∂−βn + �λ × βn − �λ × (λ × ∂−A βn)

= m1(βn) + m2(�λ, βn) − m3(�λ,�λ, βn)

= −(∂+∂−)Aβn = 0
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which follows from the relation

�λ × (λ × ∂−A βn) = (�λ × λ) × ∂−A βn + m3(�λ, λ, ∂+∂−A βn)

= m3(�λ,�λ, βn − λ × ∂−A βn) = m3(�λ,�λ, βn)

since

m3(�λ,�λ,m2(λ, ∂−A βn)) = m2(�λ,m3(�λ, λ, ∂−A βn)) = 0,

having used the following A∞ relation involving m4 (with m4 = 0 for the TTY
algebra):

m2(m3 ⊗ 1) + m2(1 ⊗ m3) − m3(m2 ⊗ 1⊗2) + m3(1 ⊗ m2 ⊗ 1) − m3(1⊗2 ⊗ m2)

= m1m4 − m4

(
m1 ⊗ 1⊗3 + 1 ⊗ m1 ⊗ 1⊗2 + 1⊗2 ⊗ m1 ⊗ 1 + 1⊗3 ⊗ m1

)
= 0.

For β̄k ∈ Pk− with k �= n and m1(β̄k) = 0, (4.2) implies �β̄k = (∂− − �λ×)∂+A β̄k ,
or equivalently,

�
(
β̄k + λ × ∂+A β̄k

) = ∂−∂+A β̄k . (4.4)

Similar to above, it then follows

∂−
(
β̄k + λ × ∂+A β̄k

) = ∂−β̄k − λ × ∂−∂+A β̄k

= ∂−β̄k − �λ × β̄k − �λ × (λ × ∂+A β̄k) = ∂−A β̄k = 0

having noted that λ × (λ × ∂+A β̄k) = (λ × λ) × ∂+A β̄k = 0. ��
We now give a proof of Theorem 4.4.

Proof of Theorem 4.4 The proof of the theorem is divided into five cases.
Case 1 PH0+(U , E). Let β0 ∈ PH0+(U , E). By (4.1), we have�β0 = 0 and hence,

β0 ∈ ker�. Imposing ∂+A β0 = 0, we find

0 = ∂+A β0 = (d + �λ)β0 = dβ0. (4.5)

Therefore, β0 must be constant and an element of ker�.
Case 2 PH1+(U , E). Let β1 ∈ PH1+(U , E). By (4.1), �β1 = (d + �λ)∂−A β1

which we can write as

�(β1 − λ ∂−A β1) = d ∂−A β1. (4.6)

We can show that (β1 − λ ∂−A β1) is d-closed:

d(β1 − λ ∂−A β1) = dβ1 − ω ∂−A β1 + λ ∧ d ∂−A β1

= dβ1 − ω ∂−A β1 + �λ ∧ (β1 − λ ∂−A β1)
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= ∂+A β1 = 0

By Poincaré Lemma, there exists ξ0 ∈ P0+ such that

β1 − λ ∂−A β1 = dξ0. (4.7)

Together with (4.6), this implies

∂−A β1 = �ξ0 + σ0 (4.8)

where σ0 is a constant matrix. Substituting (4.8) into (4.7) gives

β1 = dξ0 + λ(�ξ0 + σ0) = ∂+A ξ0 + λ σ0.

But if σ0 ∈ im�, then there exists some constant σ̃0 such that λ σ0 = (d + �λ)σ̃0.
Therefore, σ0 ∈ coker � if β1 = λ σ0 represents a non-trivial class.

Case 3 PHk+(U , E) for k = 2, . . . , n. Let βk ∈ PHk+(U , E) for k = 2, . . . , n. By
Lemma 4.5 and local Poincaré lemmas for ∂+ and ∂+∂− operators [7], there exists a
ξk−1 ∈ Pk−1+ such that

βk − λ × ∂−A βk = ∂+ξk−1. (4.9)

Inserting this into (4.3) then implies

∂−A βk = �ξk−1 + ∂+σk−2 (4.10)

for some σk−2 ∈ Pk−2+ . Together, (4.9)–(4.10) give us

βk = ∂+ξk−1 + �λ × ξk−1 + λ × ∂+σk−2

= ∂+A ξk−1 − ∂+A (λ × σk−2) + �λ × (λ × σk−2)

= ∂+A (ξk−1 − λ × σk−2)

after noting that λ × (λ × σk−2) = (λ × λ) × σk−2 = 0.
Case 4 PHk−(U , E) for k = 0, 1, . . . , n − 1. Let β̄k ∈ PHk+(U , E) for k =

0, 1, . . . , n − 1. By Lemma 4.5 and the local Poincaré lemmas for ∂− operator [7],
there exists a ξ̄k+1 ∈ Pk+1− such that

β̄k + λ × ∂+A β̄k = ∂−ξ̄k+1. (4.11)

Inserting this into (4.4) then implies

∂+A β̄k =
{

�ξ̄k+1 + ∂−σ̄k+2 k = 0, 1, . . . , n − 2

�ξ̄k+1 + ∂+∂−σn k = n − 1
(4.12)
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for some σ̄k+2 ∈ Pk+2− and σn ∈ Pn+. For k < n − 1, (4.11)–(4.12) imply

β̄k = ∂−ξ̄k+1 − �λ × ξ̄k+1 − λ × ∂−σ̄k+2

= ∂−A ξ̄k+1 + ∂−A (λ × σ̄k+2) + �λ × (λ × σ̄k+2)

= ∂−A (ξ̄k+1 + λ × σ̄k+2)

since λ × (λ × σ̄k+2) = (λ × λ) × σ̄k+2 = 0. Similarly, when k = n − 1, we obtain

β̄k = ∂−ξ̄n − �λ × ξ̄n − λ × ∂+∂−σn

= ∂−A ξ̄n + ∂−A (λ × σn) + �λ × (λ × σn)

= ∂−A (ξ̄n + λ × σn)

having noted that λ × (λ × σn) = (λ × λ) × σn + m3(λ, λ,−∂+∂−σn)=0.
Case5 PHn−(U , E). Let β̄n ∈ PHn−(U , E).Hence, 0 = ∂−A β̄n = ∂−β̄n−�λ×β̄n ,

or equivalently,

∂−β̄n = �λ × β̄n (4.13)

Further, by Leibniz rule, we find that λ × β̄n is ∂−-closed.

∂−(λ × β̄n) = −λ × ∂−β̄n = −λ × (�λ × β̄n) = 0.

Since λ × β̄n ∈ Pn−1− is ∂−-closed, local Poincaré lemma implies there exists an
ξ̄n ∈ Pn− such that

λ × β̄n = ∂−ξ̄n . (4.14)

Together with (4.13), this implies

β̄n = �ξ̄n + ∂+∂−σn (4.15)

for some σn ∈ Pn+. Now let ξn ∈ Pn+ be the same n-form as ξ̄n , i.e. ξn = ξ̄n as primitive
form. We will show that in fact β̄n = m′

1(ξn − λ × ∂−σn) = (−∂+A ∂−A + �)(ξn −
λ×∂−σn)with (ξn −λ×∂−σn) ∈ Pn+. To do so, we write λ×∂−σn = �(λ∧∂−σn) =
λ ∧ ∂−σn − ωL−1(λ ∧ ∂−σn).

(−∂+A ∂−A + �)(ξn − λ × ∂−σn)

=
[
−(d + �λ∧)L−1(d + �λ∧) + �

] [
ξn − (λ ∧ ∂−σn − ωL−1(λ ∧ ∂−σn))

]

=
[
−(d + �λ∧)L−1(d + �λ∧) + �

]
(ξn − λ ∧ ∂−σn)

+
[
−(d + �λ∧)L−1(d + �λ∧) + �

]
ωL−1(λ ∧ ∂−σn)
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Note first that the second term vanishes.

[−(d + �λ∧)L−1(d + �λ∧) + �]ωL−1(λ ∧ ∂−σn)

= −(d + �λ∧)L−1ω(d + �λ∧)L−1(λ ∧ ∂−σn) + �ωL−1(λ ∧ ∂−σn)

= −(d + �λ∧)2L−1(λ ∧ ∂−σn) + �ωL−1(λ ∧ ∂−σn) = 0

And the first term gives the desired result.

[
−(d + �λ∧)L−1(d + �λ∧) + �

]
(ξn − λ ∧ ∂−σn)

= −(d + �λ∧)
[
∂−ξn + L−1(�λ ∧ ξn) + L−1(−ω ∧ ∂−σn + λ ∧ ∂+∂−σn)

]

+ �ξn − �λ ∧ ∂−σn

= −(d + �λ∧)(−∂−σn) + �ξ̄n − �λ ∧ ∂−σn

= �ξ̄n + ∂+∂−σn = β̄n

where to obtain the third line, we noted ξn = ξ̄n as forms and applied the relations in
(4.14) and (4.15).

4.2 Global Cohomologies and Relation to the Twisted Cone Complex

Tanaka-Tseng in [6] gave a homotopy equivalence between the cochain complex of
P∗(M) and the cone complex of C∗(M) = �∗(M)⊕ θ �∗(M). For differential forms
taking values in E , a symplectically flat vector bundle over a symplectic manifold
(M, ω), we will construct here a similar relation.

Primitive forms with values in E , denoted by P∗(M, E), form a twisted cochain
complex with differentialm′

1 as in (2.15). Similar to (2.6), we useF∗(M, E) to denote
this complex, i.e.

F j (M, E) =
{
P j

+(M, E), 0 ≤ j ≤ n,

P2n+1− j
− (M, E), n + 1 ≤ j ≤ 2n + 1.

For the cone, the differential forms with values in E

C j (M, E) = � j (M, E) ⊕ θ � j−1(M, E) (4.16)

also form a twisted cochain complex, with differential DC = dA − θ�. Recall from
Proposition 3.8 that D2

C = 0 as long as dA is symplectically flat.
It is useful to decompose each C j (M, E) into primitive components. Specifically,

let k ≤ n. For αk ∈ Ck(M, E), (4.16) implies the following decomposition

αk = ηk + θ ηk−1

= βk + ω ∧ βk−2 + · · · + θ (βk−1 + ω ∧ βk−3 + . . .) . (4.17)
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For α2n+1−k ∈ C2n+1−k(M, E), noting that C2n+1−k(M, E) = �2n+1−k(M, E) +
θ
( ∗r �k(M, E)

)
, we have the following

α2n+1−k = η2n+1−k + θ η2n−k

= ωn−k+1 ∧ (βk−1 + ω ∧ βk−3 + . . .) + θ ωn−k ∧ (βk + ω ∧ βk−2 + . . .) .

(4.18)

Throughout this subsection, all βi ∈ Pi (M, E) are primitive forms with values in E .
These primitive forms can be acted upon by dA.

We now define two maps.

Definition 4.6 In terms of the decompositions (4.17)–(4.18), we define the map f :
C j (M, E) → F j (M, E)

f (α j ) =
{

β j 0 ≤ j ≤ n

− (βk + ∂+A βk−1) n + 1 ≤ j ≤ 2n + 1, k = 2n + 1 − j

and g : F j (M, E) → C j (M, E)

g(β j ) =
{

β j − θ ∂−A β j 0 ≤ j ≤ n

−θ ωn−k ∧ βk n + 1 ≤ j ≤ 2n + 1, k = 2n + 1 − j

In the next two lemmas, we will show that both f and g are chain maps.

Lemma 4.7 The map f is a chain map, i.e the following graph commutes for all
0 ≤ j ≤ 2n.

C j DC

f

C j+1

f

F j
m′
1 F j+1

Proof Case 1 j < n. For α j ∈ C j , we have f (α j ) = β j and m′
1 ◦ f (α j ) = ∂+A β j .

On the other hand,

DC(α j ) = (dA)η j + ω ∧ η j−1 − θ
[
(dA)η j−1 + �η j

]

Therefore, f ◦ DC(α j ) = �(dA)β j = m′
1 ◦ f (α j ).

Case 2 j = n. For αn ∈ Cn , we have f (αn) = βn and

m′
1 ◦ f (α j ) = (−∂+A ∂−A + �) βn .

On the other hand,

DC(αn) = (dA)ηn + ω ∧ ηn−1 − θ
[
(dA)ηn−1 + �ηn

]
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=
[
ω ∧ (∂−A βn + ∂+A βn−2 + βn−1) + O(ω2)

]

− θ
[
(∂+A βn−1 + �βn) + O(ω)

]

Hence,

f ◦ DC(αn) = ∂+A βn−1 + �βn − ∂+A (∂−A βn + ∂+A βn−2 + βn−1)

= (−∂+A ∂−A + �) βn

Therefore, m′
1 ◦ f (αn) = f ◦ DC(αn).

Case 3 j > n. For α2n+1−k ∈ C j , with k = 2n + 1 − j , we have f (α2n+1−k) =
−βk − ∂+A βk−1, and

m′
1 ◦ f (α2n+1−k) = ∂−A βk + ∂−A ∂+A βk−1 = ∂−A βk − ∂+A ∂−A βk−1 + �βk−1.

having used (2.14). On the other hand,

DC(α2n+1−k) = ωn−k+2 [
(∂−A βk−1 + ∂+A βk−2 + βk−2) + O(ω)

]

− θ ωn−k+1 [
(∂−A βk + ∂+A βk−2 + �βk−1) + O(ω)

]

f ◦ DC(α2n+1−k) = (∂−A βk + ∂+A βk−2 + �βk−1)

− ∂+A (∂−A βk−1 + ∂+A βk−2 + βk−2)

= ∂−A βk + �βk−1 − ∂+A ∂−A βk−1

proving m′
1 ◦ f (α2n+1−k) = f ◦ DC(α2n+1−k). ��

Lemma 4.8 The map g is a chain map, i.e the following graph commutes for all
0 ≤ j ≤ 2n.

C j DC C j+1

F j
m′
1

g

F j+1

g

Proof Case 1 j < n. For β j ∈ F j , g(β j ) = β j − θ∂−A β j , and

DC ◦ g(β j ) = (dA)β j − ω ∧ ∂−A β j + θ
[
(dA)∂−A β j − �β j

]

= ∂+A β j + θ
[
∂+A ∂−A β j − �β j

]
. (4.19)

On the other hand, m′
1(β j ) = ∂+A β j and

g ◦ m′
1(β j ) = ∂+A β j − θ∂−A ∂+A β j = ∂+A β j + θ

[
(dA)∂−A β j − �β j

]

using (2.14). Therefore, DC ◦ g(β j ) = g ◦ m′
1(β j ).
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Case 2 j = n. For βn ∈ Fn , we have from (4.19) that

DC ◦ g(βn) = θ
[
∂+A ∂−βn − �βn

]

having noted that ∂+A βn = 0. On the other hand, m′
1(βn) = −∂+A ∂−A βn + �βn

and we find g ◦ m′
1(βn) = θ

[
∂+A ∂−βn − �βn

] = DC ◦ g(βn).
Case 3 j > n. For βk ∈ Pk−(M, E) = F j where k = 2n + 1 − j , we have g(βk) =
−θ ωn−k ∧ βk and

DC ◦ g(βk) = −ωn−k+1 ∧ βk + θ ωn−k ∧ (dA)βk = θ ωn−k+1 ∧ ∂−A βk .

where we have used the primitive property that ωn−s+1 ∧ βs = 0 for βs ∈ Ps . On
the other hand, m′

1(βk) = −∂−A βk and we find g ◦ m′
1(βk) = θ ωn−k+1 ∧ ∂−A βk =

DC ◦ g(βk). ��
With f and g being chain maps, we now proceed to relate the cohomologies asso-

ciated with F∗ and C∗. Define the operator G : C j → C j−1

G(η j + θ η j−1) = η j−1 + θL−1η j ,

for any η j ∈ � j (M, E) and η j−1 ∈ � j−1(M, E). We have the following the result.

Lemma 4.9 The maps f , g and G are related as follows:

f g = idF , idC − g f − � = DCG + GDC .

Proof That f g = idF follows immediately from the definitions of the maps in Defi-
nition 4.6. For the second relation, we consider first the left-hand side. We have from
the definitions

g f (α j ) =
{

β j − θ ∂−A β j 0 ≤ j ≤ n

θ ωn−k ∧ (
βk + ∂+A βk1

)
n + 1 ≤ j ≤ 2n + 1, k = 2n + 1 − j

and therefore,

(idC − g f − �)(α j ) =
{

α j − �α j − β j + θ ∂−A β j 0 ≤ j ≤ n

α j − �α j − θ ωn−k ∧ (βk + ∂+A βk−1) n + 1 ≤ j ≤ 2n + 1, k = 2n + 1 − j

As for the right-hand side, we have for all j

Gα j = η j−1 + θ L−1η j

DCGα j = (dA)η j−1 + ω ∧ L−1η j − θ
[
(dA)(L−1η j ) + �η j−1

]

DCα j = (dA)η j + ω ∧ η j−1 − θ
[
(dA)η j−1 + �η j

]

GDCα j = −(dA)η j−1 − �η j + θ
[
L−1(dA)η j + L−1(ω ∧ η j−1)

]
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which implies

(DCG + GDC)α j = ω ∧ L−1η j − �α j

+ θ
[
L−1(dA)η j − (dA)L−1η j + L−1(ω ∧ η j−1)

]
(4.20)

When j ≤ n, this implies using the form decomposition in (4.17) and the properties
of (dA) in (2.8) and (2.10) that

(DCG + GDC)α j = (
η j − β j

) − �α j + θ
[
∂−A β j + η j−1

]

= (α j − β j ) − �α j + θ ∂−A β j = (idC − g f − �)(α j ).

And when j > n, with k = 2n + 1 − j so that α j = η2n+1−k + θ η2n−k , (4.20)
together with the form decomposition in (4.18) implies

(DCG + GDC)α j = η j − �α j + θ
[
−ωn−k ∧ ∂+A βk−1 + (η j−1 − ωn−k ∧ βk)

]

= α j − �α j − θ
[
ωn−k ∧ (∂+A βk−1 + βk)

]
= (idC − g f − �)(α j ).

��
Lemma 4.10 For arbitrary α ∈ C, if α is DC-closed, then �α is DC-exact.

Proof Suppose α ∈ C j , we can set α = η j + θη j−1 where η j , η j−1 ∈ �∗(M, E).
Since α is DC-closed,

0 = DCα = (dAη j + ωη j−1) − θ(�η j + dAη j−1).

So dAη j−1 = −�η j . Then we have

DC(−η j−1) = −dAη j−1 + θ�η j−1 = �(η j + θη j−1).

��
Now let f ∗ and g∗ be the induced maps between H∗

C (M, E) and PH∗(M, E).
Then, from Lemmas 4.9 and 4.10, we have

f ∗g∗ = id on PH∗(M, E),

g∗ f ∗ = id on H∗
C (M, E),

which imply the following theorem.

Theorem 4.11 There is an isomorphism between the twisted cohomologies:

PH∗(M, E) ∼= H∗
C (M, E).

From the local cohomologies of PH∗(U , E) in Theorem 4.4, we have the corollary:
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Corollary 4.12 In a local coordinate chart U, there exists some λ ∈ �1(U ) such that
dλ = ω. The local cohomology

H j
C (U , E) =

⎧
⎪⎨

⎪⎩

ker�, j = 0

(λ − θ) coker �, j = 1

0, j ≥ 2

And finally, with Theorem 4.2 which states the triviality of PH∗(M, E) when � is
invertible, we also have the following:

Corollary 4.13 When � is invertible, H∗
C (M, E) = 0.
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