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Abstract
We provide an effective estimate on the Betti numbers of the loop space of a compact
manifold which admits a finite Grauert tube. It implies the polynomial estimate in
Chen (arXiv:2101.04368, 2021) after taking the radius of the tube to infinity.
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1 Introduction

For a compact Riemannian manifold (M, g), we say that it admits a Grauert tube of
radius R if there exists a canonical complex structure on the disc bundle of radius R. It
is denoted byT RM . The R is called the radius. Such a complex structurewhich is called
the adapted complex structure (cf. Theorem A of [13]) is uniquely determined by the
Riemannian structure of (M, g) and makes M a totally real embedded submanifold.
The concept arises in the study of the homogenous complexMonge–Ampère equation
[2, 12] and the complexification of a real analytic manifold [5]. Please refer to [9] and
reference therein for more detailed descriptions of its development. Its existence is not
automatic. In fact it was proved by Lempert (cf. Theorem 1.5 of [8]) that the existence
of a Grauert tube implies that g must be a real analytic metric. Hence it does put some
constraint on the metric g besides requiring that M is real analytic. Conversely for a
compact real analytic manifold M and a real analytic metric there always exists a real
R0 > 0 such that T R0M is a Grauert tube. Namely there exists a canonical adapted
complex structure on the disc bundle T R0M . The precise definition of the adapted
complex structure requires introducing additional notions which we defer to the next
section. The main result of this note is
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Theorem 1.1 Let (M, g) be a simply connected compact Riemannian manifold which
admits a Grauert tube of radius R. Given any coefficient field F, and a positive integer
k, then there exists a constant C > 0, which is independent of F and k, such that

k−1∑

i=0

dim Hi (�(M),F) ≤ ωn−1

Vol(M)

∫ Ck

0

(
sinh( π

2Rσ)
π
2R

)n−1

dσ. (1.1)

Here �(M) denotes the space of continuous loops, ωk is the volume of the k-
dimensional unit sphere Sk .

Taking R → ∞, one can recover the polynomial (in terms of k) estimate of Chen [3]
in the case when M admits a global Grauert tube.

Corollary 1.2 Let (M, g) be a compact Riemannian manifold which admits a global
Grauert tube. Then

k−1∑

i=0

dim Hi (�(M),F) ≤ Vol(Bn(1))

Vol(M)
(Ck)n . (1.2)

It follows that M is rational elliptic, by the result of Félix and Halperin (cf. page
110 of [10]), and Proposition 5.6 of [10]. This provides a positive answer to a special
case of a conjecture of Bott (which asserts that any simply connected close manifold
with nonnegative sectional curvature must be rationally elliptic, in view of the result
of Lempert–Szöke below, since the existence of a global Grauert tube implies the
nonnegativity of the sectional curvature).

Theorem 1.3 (Lempert–Szöke) Let (M, g) be a simply connected compact Rieman-
nian manifold which admits a Grauert tube of radius R. Then the sectional curvature

of (M, g) is bounded from below by − π2

4R2 . In particular, if R = ∞, (M, g) has
nonnegative sectional curvature.

For a fixed point p ∈ M let D(p, R) denote the set of vectors in the tangent space
TpM satisfying |v| < R. Namely D(p, R) = {v ∈ TpM | |v| < R. Let n(p, R, x) be
the number of the pre-images of x ∈ M in the tangent space TpM under the expo-
nential map at p which are inside D(p, R). Namely n(p, R, x) = #{v ∈ TpM | |v| <

R, expp(v) = x}. A result of Gromov, via the Morse theory on the energy functional
defined on the space of pathes, asserts the following useful estimate on a compact
simply connected manifold M (cf. [10], Theorem 5.10, formula (5.3) and the estimate
above it on page 124, and Remark 5.28) for a regular value x of the exponential map
expp : TpM → M

k−1∑

i=0

dim Hi (�(M),F) ≤ n(p,Ck, x).
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Note that the right hand side is finite away from ameasure zero set. HereC is a constant
independent of F and k. Hence

k−1∑

i=0

dim Hi (�(M),F) ≤ 1

Vol(M)

∫

M
n(p,Ck, x) dμ(x). (1.3)

On the other hand, the area formula for Lipschitzmaps (cf. [4], Theorem 1 of Ch3.3)
implies that

∫

M
n(p, T , x) dμ(x) =

∫ T

0

∫

Sn−1
Jac(expp)|(σ,θ) dθ dσ (1.4)

provided that T ≥ Diam(M). Here (σ, θ) is the polar coordinate of TpM , and Sn−1 is
the unit sphere in TpM . It is well known that Jac(expp)|(σ,θ) can be computed via the
square root of the determinant of the gram matrix of the n − 1 normal Jacobi fields
J1(σ ), · · · , Jn−1(σ ) along a geodesic γ (σ ) with γ̇ (0) = θ , such that Ji (0) = 0,
J̇i (0) = ei , for 1 ≤ i ≤ n − 1. Here after adding en = γ̇ (0) = θ (assuming that γ is
parametrized by the arc-length), {ei }1≤i≤n forms an orthonormal frame of TpM . We
denote also their parallel transport as {ei }. Combining them we have

∫

M
n(p, T , x) dμ(x) =

∫ T

0

∫

Sn−1

√
det(〈Ji (σ ), J j (σ )〉)1≤i, j≤n−1 dθ dσ. (1.5)

Note that if we let Jn(σ ) = σen(σ ), the right hand side remains the same if we replace
the (n−1)×(n−1)matrixwith the n×nmatrix (〈Ji , J j 〉)1≤i, j≤n and then compensate
with a factor of 1

σ
since 〈Ji , Jn〉 = 0 for 1 ≤ j ≤ n − 1 and |Jn|2 = σ 2.

Note that the volume comparison fails beyond the first conjugate locus, hence could
not be applied directly otherwise the conjecture of Bott would have been known many
years ago. Here we show that it can be estimated under the additional structure of
the Grauert tube via the analytic continuation. One would naturally conjecture that
Theorem 1.1 (or the estimate on det(〈Ji (σ ), J j (σ )〉)1≤i, j≤n−1) holds for a closed

manifold with a sectional curvature lower bound − π2

4R2 , but without any assumption
on the existence of the Grauert tube (in particular no real analyticity assumption on
the metric).

2 Proof of the Theorem

The proof utilizes the framework developed, and results obtained, in the important
paper of Lempert and Szöke [9]. Below we need some results from that paper after
some basics on geodesic flows on which one can find more detailed coverage in some
excellent books e.g. [7, 10, 11].

The idea is to use the existence of a holomorphically immersed strip SR = {z =
σ +√−1τ ∈ C | 0 < τ < R}, whose closure passes p, to estimate the right hand side
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of (1.5) via a Fatou Lemma (for positive harmonic functions) by adapting the con-
siderations of [9] to prove the estimate (1.1). We include some introductory materials
(mostly from [7, 9, 11]) for the convenience of the readers.

Let τM : T M → M denote the bundle projection T M → M . Recall that for any
u = (xi , ξ i ) ∈ T M , with p = τM (u) and (x1, · · · , xn) being a local chart near p, u =
ξ i ∂

∂xi
, and the tangent η = (xi , ξ i , Xi , ηi ) ∈ TuT M (for a curve u(t) = (xi (t), ξ i (t)),

Xi = d
dt x

i (t), ηi = d
dt ξ

i (t)), the tangent map DτM : T T M → T M can be expressed
as DτM |u(η) = (xi , Xi ). We also abbreviate DτM as (τM )∗. The kernel of (τM )∗ is
called the vertical subspace of TuT M (denoted by Vu). We may identify the vertical
tangent at u, given locally as (xi , ξ i , 0, ηi ), with (xi , ηi ), an element in the tangent
space TpM . Such identification map is denoted as ιu .

The connection map K : T T M → T M is defined as follows. For u = (xi , ξ i ),
given any X ∈ TpM define the horizonal lift of X = (xi , Xi ) (namely X = Xi ∂

∂xi
)

as (xi , ξ i , Xi ,−
i
jkξ

j Xk). One can check that the lift is so defined that it is

(xi , ξ i , Xi ,
dξ i

dt (0)), the derivative of the vector ξ(t) with ξ(0) = u along a curve

c(t) with c(0) = p, c′(0) = X , 1 such that D
dt ξ(t) = 0. Here D(·)

dt denotes the
covariant derivative with respect to the Levi-Civita connection. Namely it is the local
derivative of the parallel vector extension along the direction given by X . Clearly the
definition does not depend on the choice of c(t). For η = (xi , ξ i , Xi , ηi ) ∈ TuT M
with u = (xi , ξ i ), K (η) is defined as (xi , ηi + 
i

jkξ
j Xk). Clearly if η is a horizontal

lift of X , K (η) = 0. One can also check readily that if ξ(t) ∈ T M is a vector field
along α(t) with ξ(0) = ξ and ξ ′(0) = η and α(t) ∈ M with α(0) = p, α′(0) = X
(noting that α(t) can be taken to be τM (ξ(t))), K (η) = Dξ(t)

dt |t=0 (see also the propo-
sition below). The kernel of K at u is called the horizontal subspace Hu . Clearly
Vu ∩ Hu = {0} and TuT M = Vu ⊕ Hu by the dimension counting. The following (cf.
Proposition 4.1 of Ch II [11]) is well known.

Proposition 2.1 For y ∈ TpM and X a smooth vector field (which is viewed as a map
M → T M), K (DX(y)) = ∇y X.

From the above discussion it is clear that the map ju : TuM → TpM × TpM ,
defined by ju(η) = ((τM )∗(η), K (η)) for η ∈ TuT M is a linear isomorphism.

Let φσ : T M → T M be the geodesic flow defined as φσ (v) = γ̇ (σ ), with
γ̇ (0) = v, p = π(v), γ (0) = p. In terms of the local coordinate expression above,
locally v = (xi0, X

i ) with p = (x10 , · · · , xn0 ). Then φσ (v) = (γ i (σ ), γ̇ i (σ )) with γ i

being the i-th coordinate of γ and γ i (0) = xi0, γ̇
i (0) = Xi . For the real line R one

can identifyCwith TR via the identification of σ +√−1τ with τ ∂
∂σ

. For any smooth
map f : M1 → M2 between two manifolds, let f∗ : T M1 → T M2 be the associated
differential map which sends (x, X(x)) → ( f (x), d f |x (X(x))). By the definition,
γ∗(σ1 + √−1τ1) = (γ (σ1),

d
ds |s=0γ (σ1 + τ1s)) = (γ (σ1), τ1γ̇ (σ1)). Abusing the

notation we have that γ∗(σ1 + √−1 · 0) = γ (σ1), namely we write (γ (σ1), 0) simply
as γ (σ1). As γ runs among all geodesics, γ∗ : TR\R → T M \M defines a foliation,

1 Here (̇ ) denotes the derivative with respect to the parameter for geodesics and ( )′ denotes the derivative
for other parameters.
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which is called the Riemann foliation. The uniqueness of the geodesic with a given
initial point and a velocity vector implies that it is indeed a foliation.

The adapted holomorphic structure can be defined as follows (cf. [13]).

Definition 2.2 Let (M, g) be a complete Riemannian manifold. For given R, a smooth
complex structure on the manifold T RM will be called an adapted holomorphic
structure if for any geodesic γ : R → M , the map γ∗ : γ −1∗ (T RM) → T RM is
holomorphic. When such adapted holomorphic structure exists the disc bundle T RM
is called the Grauert tube of radius R.

Given the adopted holomorphic structure, an important object is the so-called paral-
lel vector field (perhaps amore suitable name is the generalized Jacobi field) associated
with γ∗. It is defined as the variational vector field of (γt )∗ for a family of geodesics
γt : R → M , namely is defined as ξ = D

dt |t=0((γt )∗). Given a geodesic γ (σ ) with
γ ′(0) = u, and η ∈ Tγ∗(τ1

√−1)T M = Tτ1γ̇ (0)T M for τ1 �= 0, it is not hard to see that

there exists a generalized Jacobi field (parallel vector field) ξ such that ξ(
√−1τ1) = η.

(Since γ is not parametrized by the arc length it is sufficient to consider τ1 = 1.) In fact
if η ∈ TuT M , let z(t) be a path in T M such that z(0) = γ̇ (0) = u, z′(0) = η

τ1
. Now

let γt (σ ) be the geodesic with initial condition z(t), namely γt (σ ) = τM (φσ (z(t))). It
is easy to see that ξ(σ + √−1τ) = D

dt |t=0(γt )∗ is a parallel field satisfying that
ξ(

√−1τ1) = η. In deed, d
dt |t=0(τ1φ0(z(t))) = τ1z′(0) = η. The parallel vec-

tor field generalizes the concept of the Jacobi field, since by the way it is defined
ξ(σ ) = ξ(σ + 0 · √−1) = d

dt |t=0(γt (σ ), (0 · γ̇t (σ )) = d
dt |t=0γt (σ ) (in the last equa-

tion we omit the second component since it is zero), which is the variational vector
field of a family of geodesics, hence a Jacobi field. Namely J (σ ) = ξ |R(σ ) is a Jacobi
field. The Jacobi field is defined along the image of a geodesic γ , the generalized
Jacobi field (parallel vector field) is defined along the image of γ∗, namely a leave of
the Riemann foliation.

In the above if we choose τ1 = 1, τM (φσ (z(t))) is a family of geodesic γt (σ ). Hence
Ju(0) = d

dt |t=0τM (z(t)) = dτM (η). Sinceφ0(z(t)) = z(t) is a path in T M , which cov-

ers α(t) = τM (z(t)), we have that K (η) = Dz(t)
dt |t=0. On the other hand

DJu(σ )
dσ |σ=0 =

D
∂σ

D
∂t (γt (σ ))|(0,0) = D

∂t
D
∂σ

(τM (φσ (z(t)))|(0,0) = D
∂t |t=0(γ̇t (0)) = Dz(t)

dt |t=0. Hence

K (η) = DJu
dσ

(0) (cf. Lemma 4.3 of Ch 2 of [11]). The discussion works similarly for
any τ1 > 0. The holomorphicity of (γt )∗ for a family of geodesics implies that the
holomorphic component (namely the (1, 0)-part) of the variational vector field, the
generalized Jacobi field (parallel vector field), is holomorphic by calculations with
respect to the holomorphic coordinates (cf. Proposition 5.1 of [9]).

Now for an orthonormal frame {v j }nj=1 as the abovewe choose ξ j and η j at u ∈ T M
such that dτM (ξ j ) = v j and K (ξ j ) = 0 and dτM (η j ) = 0, K (η j ) = v j and then
extend them as above into 2n parallel vector fields along a Riemann foliation γ∗(σ +√−1τ). By Lemma 5.1 of [9], the holomorphic parts, ξ1,0j and η

1,0
j are holomorphic

over the domain where γ∗ is holomorphic. In the case that γ (σ ) is parametrized by
the arc-length, they are holomorphic on the strip SR = {σ + √−1τ | 0 < τ < R} if
T RM is a Grauert tube with the adapted holomorphic structure. Here we may choose
τ1 small such that u ∈ T R

p M in the construction given in the previous two paragraphs.
The following proposition summarizes the main construction of [9].
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Proposition 2.3 Let � = (ξ1, · · · , ξn) and H = (η1, · · · , ηn) and �1,0 and H1,0 be
the holomorphic components. Then

(i) The 2n-vectors {ξ j , J (ξ j )}nj=1 are linearly independent on the strip SR and

{ξ1,0j } are linearly independent over C on the strip (here J is the almost com-

plex structure of the tube and ξ
1,0
j = 1

2 (ξ j + √−1Jξ j )); The 2n-vectors
η1, · · · , ηn, ξ1, · · · , ξn are linearly independent; Their restrictions toR are Jacobi
fields J1(σ ), · · · , Jn(σ ), Jn+1(σ ), · · · , J2n(σ ) satisfying that for 1 ≤ j ≤ n,
J j (σ )|σ=0 = η j |R(0) = 0, D

dσ J j (σ )|σ=0 = D
dσ η j |R(σ )|σ=0 = v j and

Jn+ j (σ )|σ=0 = ξ j |R(0) = v j ,
D
dσ Jn+ j (σ )|σ=0 = D

dσ ξ j |R(σ )|σ=0 = 0;
(ii) There exist a holomorphic matrix f on the strip SR, which, after being extended

to R, may have poles on a discrete subset of R, such that H1,0(z) = �1,0(z) f (z)
with z = σ + √−1τ ∈ SR;

(iii) Im( f ) is symmetric and positive definite for σ + √−1τ with τ > 0; On R, f is
real and H = � f over the set where f is finite.

(iv) f |R is symmetric over where it is finite, f is holomorphic near 0, and f (0) = 0
and f ′(0) = id.

Proof The results were mainly proved in Sect. 6 of [9] by exploiting the Käh-
ler/symplectic structure on T RM . By the way in which ξ j and η j are constructed
it is clear that they are linearly independent at u ∈ T M due to that ju is an isomor-
phism. Then their extensions are linearly independent (over R) due to the property
of the geodesic flow φσ , in particular, it is an isomorphism between tangent spaces
of the domain and target points (cf. Propositions 1.90 and 1.92 of [1]). The linear
independence of {ξ1,0} over C needs to use the Kähler form on T RM , which was
proved in Proposition 6.4 of [9]. The positivity of Im f is proved in Lemma 6.7 of [9].
The holomorphicity of f near 0 is due to the fact that {ξ j (σ )} are linearly independent
for σ small. The equations satisfied by f (0) and f ′(0) are easy consequences of the
constructions of {ξ j } and {η j }. ��

Applying the arguments/proofs in [9] we also have the following result.

Proposition 2.4 Under the assumption that M admits a Grauert tube of radius R we
have the following results.

(i) The 2n-vectors {η j , J (η j )}nj=1 are linearly independent on the strip SR and {η1,0j }
are linearly independent over C on the strip;

(ii) There exist a holomorphic matrix f̃ on the strip SR, which, after being extended
to R, may have poles on a discrete subset of R, such that �1,0(z) = H1,0(z) f̃ (z)
with z = σ + √−1τ ∈ SR; f̃ = f −1, hence symmetric over the points where f̃
is finite;

(iii) Im( f̃ ) is symmetric and negative definite for σ + √−1τ with τ > 0; On R, f̃ is
real and � = H f̃ , provided that f̃ is finite; And f̃ has a pole at z = 0 and is
finite for σ �= 0 small. Moreover f̃ extends toR\ S with S being the set {σ j }∪ {0}
where {γ (σ j )} is the set of the conjugate points with respect to γ (0) = p.

Proof First by Proposition 6.6 and the proof of Proposition 6.4 in [9] we have that
{η1,0j (z)} are linearly independent for τ > 0. Hence there exists a matrix valued
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holomorphic function f̃ such that �1,0(z) = H1,0(z) f̃ (z). Namely f (z) is invertible
with f̃ = f −1 for τ > 0. Hence f̃ and Im f̃ are symmetric. This proves (i) and (ii).

By the exactly same argument as that of Proposition 6.8 of [9], Im f̃ is invertible
for τ > 0. Now we consider the expansion of f̃ near 0:

f̃ (
√−1τ) =

(
f (0) + f ′(0)(

√−1τ) + O(τ 2)
)−1 =

(
(
√−1τ(id+O(τ )

)−1

= −√−1

τ
id+O(1).

This implies that Im(− f̃ ) is positive definite at z = √−1τ with τ small. The analyt-
icity of f̃ and the fact that Im f̃ is invertible for τ > 0 imply that Im(− f̃ ) is positive
definite for z ∈ SR . This proves the first part of (iii).

Since on R, f is real and � = H f̃ over the points where f̃ is finite. Hence f̃ does
not have a pole, except possibly at σ j , where γ (σ j ) is conjugate to p along γ from the
construction of ξ j (σ ) and η j (σ ). Since {η j |R(σ )} are zero at σ = 0, and are linearly
independent for σ small, and being linearly independent for σ if γ (σ ) is not conjugate
to p along γ , the last part of (iii) holds. ��

Note that both f (z) and − f̃ (z) are valued in the Siegel upper-half space of degree
n. The following result provides the key ingredient for estimating the Jacobian of the
exponential map.

Proposition 2.5 For all σ ∈ R, except a discrete subset,

�tr H′ −(�tr)′ H = id; −( f̃ tr)′ Htr H = id, �tr� f ′ = id . (2.1)

Here we identify the �(σ) and H(σ ) with their matrices representation, with respect
to a orthonormal frame {ei } obtained by parallel transplanting {ei }, a frame at p,
along γ (σ ).

Proof First observe that for a holomorphic F(z) with z = σ + √−1τ defined on SR ,
if F = U + √−1V , with U being the real part and V being the imaginary part, the
Cauchy–Riemann equation implies that Fz = Uσ +√−1Vσ . In the case that F |R is real
we have that Fz = Uσ = Fσ . Namely by abusing the notation we denote by F ′ both
the complex derivative and the d

dσ
when F has a finite extension near a point σ0 ∈ R.

With the above consideration�σ = 2�(�
1,0
z ) = 2�(H1,0

z f̃ +H1,0 f̃z) onSR and over
the domain where f̃ has a holomorphic extension. Restrict to R \ S, where f̃ is finite,
we have that the right hand side equals to Hσ f̃ + H f̃σ since f̃ is real valued there.
Namely�σ = Hσ f̃ +H f̃σ holds onR\S, which we abbreviate as�′ = H′ f̃ +H f̃ ′.
The second identity follows from the first by plugging (�tr)′ = ( f̃ tr)′ Htr + f̃ tr(Htr)′
into the first equation, and noting that Htr H′ −(Htr)′ H = 0 by Proposition 6.10 of [9]
(the argument below also provides a simple proof).

The first identity follows from that (i) d
dσ

(�tr H′ −(�tr)′ H) = 0, which is a con-
sequence of the Jacobi equation; and (ii)

(
�tr H′ −(�tr)′ H

)
(0) = id . This argument

also provides a simple proof of Proposition 6.10 of [9].
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The last identity was proved in the proof of Proposition 6.11 of [9] for σ small. To
see that it holds onR\ S′ with S′ being the set of the poles of f we can apply the same
argument as above. Namely plug (H)′ = �′ f + � f ′, which holds on R \ S′, into the
first identity, and note that �tr�′ − (�tr)′� = 0 on R, we have the last identity for all
σ ∈ R \ S′. ��

By a calculation similar to the one in the proof of Proposition 7.1 of [9], the Jacobi
curvature Rγ (v) = R(v, γ̇ )γ̇ ) has the expression in terms of the Schwarz derivative
of f̃ over the σ ∈ R \ S, with S being the set of the pole of f̃ (which contains {σ j }
with {γ (σ j )} being the conjugate points of γ (0) = p along γ ):

Rγ = 1

2
H

(
f̃ ′′′( f̃ ′)−1 − 3

2
( f̃ ′′( f̃ ′)−1)2

)
H−1 . (2.2)

The result can also be derived from the invariance of the Schwarz derivative under the
projective transformation and Proposition 7.1 of [9]. Namely if we denote the Schwarz
derivative of f as { f }, { f̃ } = f̃ { f } f̃ −1. Recall that for any nonsingular family of
matrices A(σ ), the Cartan matrix C(A) is defined as A′A−1. The Schwarz derivative
{ f } can be expressed as C2( f ′) − 1

2 (C( f ′))2.

Corollary 2.6 Away from a discrete subset S ⊂ R,

(〈J j (σ ), Jk(σ )〉) = f (σ )( f ′(σ ))−1 f (σ ).

In particular

det(〈J j (σ ), Jk(σ )〉) = 1

det(− d
dσ

( f −1(σ )))
. (2.3)

The conjugate points of p = γ (0) are at γ (σ j ) with σ j being the poles of det( f̃ ′).

Proof The result, namely the first equation in the corollary, follows from Proposition

2.5, since it implies that Htr H =
(
− f̃ ′

)−1
and (〈J j (σ ), Jk(σ )〉) is nothing but the

matrix representation of Htr H. The set S can be chosen to be the union of poles of
f̃ and zeros of det(−( f̃ tr)′). The Eq. (2.3) follows by taking the determinant on both
sides.

The main equation also follows from a less direct argument (cf. [3]) as follows. If
γ (σ0) is not a conjugate point, H(σ0) is non-degenerate. Hence f̃ (σ0) = f −1(σ0) is
finite. The Morse index theorem implies that away from a discrete S, f̃ (σ ) = f −1(σ )

is analytic. Let {e j } be the standard orthonormal basis of Rn . Then

〈J j (σ ), Jk(σ )〉 = 〈H(σ )e j ,H(σ )ek〉
= 〈�(σ) f (σ )e j , �(σ) f (σ )ek〉
= 〈�(σ) f (σ )e j , �(σ) f (σ )ek〉
= 〈 f (σ )(�(σ))tr�(σ) f (σ )e j , ek〉.
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This shows that (〈J j , Jk〉) = f (σ )(�(σ))tr�(σ) f (σ ). By Proposition 2.5,
(�(σ))tr�(σ) = ( f ′(σ ))−1 for σ ∈ R \ S. Putting them together we have the claim.

��
This reduces the estimate of the right hand side of (1.5) to the estimate of the integral
of the quantity in the right side of (2.3), which has a holomorphic extension on the
strip SR . We also note that f̃ ′ is always invertible on R \ S, given that H has a finite
extension on R.

The following Fatou type lemmaplays a crucial role in both [9] (in provingTheorem
1.3) and [3], whose proof is reduced to a representation formula for positive harmonic
functions on C+ (cf. Theorem 3.1.8 of [6]).

Proposition 2.7 Let F(ζ ) be a n×n matrix valued holomorphic function on the upper
half plane C+ = {ζ | Im ζ > 0} that has a holomorphic extension R except a discrete
set which are the poles of the analytic continuation of F. Then there exists a n × n
symmetric matrix of Borel measures μ = (μ jk) defined on R such that

(i) suppμ jk contains only a discrete set;

(ii)
∫ ∞
−∞

|dμ jk(t)|
1+t2

< ∞;
(iii) μ is positive definite in the sense that 〈μ(w),w〉 is a positive measure if w ∈ R

n;
(iv) ∂

∂ζ
(F(ζ )) = A+ 1

π

∫ ∞
−∞

dμ(t)
(ζ−t)2

, for ζ ∈ C
+. Here A is symmetric positive semidef-

inite matrix.

Proof Please see Proposition 7.4 of [9]. The trick is to define uξ = Im〈Fξ, ξ 〉 for
any ξ ∈ R

n and apply the result (Riesz-Herglotz representation theorem, cf. Theorem
3.1.8 of [6]) for nonnegative harmonic functions. This gives a measure μξ which is a
quadratic form of ξ , hence a symmetric matrix of measures which is nonnegative in
the sense of (iii). Part (ii) is obtained by the conformal transformation from the unit
disc to the upper half plane. The part (i) is due to that the measure μξ is the weak limit
of uξ . One obtains an expression for ∂

∂ζ
(F(ζ )) by expressing the derivative in terms

of the derivative of imaginary part of F (as in the proof of Proposition 2.5). Part (iv)
also follows from [6], Exercise 3.1.6, which asserts that

F(ζ ) = Aζ + B + 1

π

∫ ∞

−∞

( −1

ζ − t
− t

1 + t2

)
dμ(t),

by taking derivative on both sides. Here B is a constant matrix. ��
Now let F(ζ ) = − f̃ ( R

π
log ζ ) = − f −1( R

π
log ζ ). For ζ ∈ C

+, z = R
π
log ζ is

inside the strip SR . Hence F(ζ ) is defined on C
+. By Proposition 2.4, F(ζ ) satisfies

the assumptions of Proposition 2.7.
Applying Proposition 2.7 to F(ζ )we have the associated matrix of Borel measures

(μ jk). Note that f̃ (σ ) only have discrete poles on R at {σ1, σ2, · · · }. As f (0) = 0,
0 is a pole of f̃ (σ ). Hence F(ζ ) has a pole at ζ = 1. Since f̃ (σ ) has only discrete
poles, μ has support at discrete points {t1, t2, · · · }

F ′(t) = A + 1

π

∑

j

μ(t j )

(t − t j )2
, for t ∈ R \ {t1, t2, · · · }. (2.4)
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Here A is a semidefinite positive constant matrix. Note F ′(t) = (− f −1)′
( R

π
log t

) R
π t

with σ = R
π
log t . We shall show that

1

det(− d
dσ

( f̃ (σ )))
≤

(
R2

π2

)n (
e

σπ
R + e− σπ

R − 2
)n

. (2.5)

Theorem 1.1 then follows by a simple calculation.
Since the measure μ is the weak limit of Im Fdt with ζ = t +√−1s (cf. Theorem

3.1.8 of [6]), calculations similar to [3] show that

μ(1) = lim
δ→0

μ((1 − δ, 1 + δ)) = lim
δ→0

lim
s→0

∫ 1+δ

1−δ

Im(− f −1(
R

π
log(t + √−1s))) dt

= lim
δ→0

lim
s→0

∫ 1+δ

1−δ

− Im

(
f (0) + f ′(0) R

π
(t + √−1s − 1) + O(|t + √−1s − 1|2)

)−1

dt

= π

R
lim
δ→0

lim
s→0

∫ 1+δ

1−δ

− Im

(
1

t + √−1s − 1
id

)
+ O(1) dt

= π

R
lim
δ→0

lim
s→0

∫ 1+δ

1−δ

s

(t − 1)2 + s2
id dt = π2

R
id .

This, together with (2.4) and the positivity of the measure μ, implies that

(− f̃ )′(σ )
R

π t
≥ π

R

id

(t − 1)2
.

Taking determinant on the both sides and noting t = e
πσ
R , (2.5) follows from Propo-

sition 2.5 and calculations.
Finally to get the estimate in Theorem 1.1 one simply observes that when restricted

to R, f jn = 0, for 1 ≤ j < n, and fnn = σ , and applies the above argument to the
up-left (n − 1) × (n − 1) sub-matrix of f .
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