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Abstract We investigate the existence of wandering Fatou components for polyno-
mial skew-products in two complex variables. In 2004, the non-existence of wandering
domains near a super-attracting invariant fiber was shown in Lilov (Fatou theory in
two dimensions, PhD thesis, University of Michigan, 2004). In 2014, it was shown in
Astorg et al. (Ann Math, arXiv:1411.1188 [math.DS], 2014) that wandering domains
can exist near a parabolic invariant fiber. In Peters and Vivas (Math Z, arXiv:1408.0498,
2014), the geometrically attracting case was studied, and we continue this study
here. We prove the non-existence of wandering domains for subhyperbolic attract-
ing skew-products; this class contains the maps studied in Peters and Vivas (Math Z,
arXiv:1408.0498, 2014). Using expansion properties on the Julia set in the invariant
fiber, we prove bounds on the rate of escape of critical orbits in almost all fibers. Our
main tool in describing these critical orbits is a possibly singular linearization map of
unstable manifolds.
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1 Introduction

Sullivan’s No Wandering Domains Theorem [10] states that every Fatou component of
a rational function f : Ĉ → Ĉ is either periodic or pre-periodic. It was recently shown
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in [1] by Astorg et al. and the first author that Sullivan’s theorem does not hold for
polynomial maps in C

2. The maps constructed in [1] are polynomial skew-products
of the form

(z, w) �→ (
f (z, w), g(w)

)
,

where f (z, w) = p(z) + q(w) and both polynomials p and g have a parabolic fixed
point at the origin. The wandering Fatou components are contained in the parabolic
basin of g.

In the current project, we investigate whether polynomial skew-products can also
have wandering domains in the basin of an attracting fixed point of g. Throughout
the paper, we will assume that the first coordinate function f of the skew-product has
the form f (z, w) = zd + ad−1(w)zd−1 + · · · + a0(w). Recall that in the paper on
polynomial skew-products by Jonsson [4], a polynomial skew-product is assumed to
extend holomorphically to P

2. We do not make this stronger assumption here. We will
prove the following.

Theorem 1 Let F : (z, w) �→ ( f (z, w), g(w)) be a polynomial skew-product and
assume that 0 = g(0) is an attracting fixed point with corresponding basin Bg.
Further assume that the polynomial p(z) = f (z, 0) is subhyperbolic. Then F has
no wandering Fatou components contained in C × Bg.

The notion of subhyperbolicity will be discussed later in this introduction. Due to
the skew-product form of the polynomial map F , we may identify a Fatou component
U of g with the open subset (C ×U ) ⊂ C

2. For example, we may refer to C × Bg as
the attracting basin of the polynomial g.

Using this terminology, we note that any Fatou component of a skew-product F
must be contained in a Fatou component of the polynomial g. Hence if F has a
wandering Fatou component, then by Sullivan’s Theorem F must have a wandering
Fatou component that is contained in a periodic Fatou component of g. This periodic
component must be either attracting, parabolic or a Siegel disk. As mentioned before,
the existence of wandering domains in parabolic basins of g was shown in [1]. In [7],
Lilov showed that there can be no wandering Fatou components in a super-attracting
basin of g. In this work, we will focus on the geometrically attracting case.

Without loss of generality, we may assume that 0 = g(0) is an attracting fixed
point. Note that if we can rule out the existence of wandering domains in a small
neighborhood of {w = 0}, then it follows that there are no wandering domains in the
entire basin of attraction of 0. When working in a small neighborhood of {w = 0},
we can change coordinates so that g(w) = λw, with 0 < |λ| < 1. A consequence is
that the coefficients a0, . . . ad−1 of f are generally no longer polynomials, but only
depend holomorphically on w. This will not be an issue for us, and in fact our results
hold for g holomorphic as well. For simplicity of notation, we will continue to assume
that F(z, w) = ( f (z, w), λw) is a polynomial skew-product.

The geometrically attracting case was recently studied by Vivas and the first author
in [8]. In order to state results from that paper, let us first recall in greater detail what
Lilov proved for the super-attracting case. Lilov first showed that every 1-dimensional
Fatou component of p(·) = f (·, 0) is contained in a Fatou component of F , which
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86 H. Peters, I. M. Smit

we will refer to as a bulging Fatou component of p (by slight abuse of language).
Then, Lilov showed that the forward orbit of any nearby horizontal disk must intersect
a bulging Fatou component of p. By horizontal disk, we mean a disk contained in a
fiber {w = w0}, and by nearby we mean that w0 is contained in the basin of {w = 0}.
The non-existence of wandering Fatou components in a super-attracting basin of g
follows immediately.

The bulging of Fatou components holds in the geometrically attracting case as
well. However, in [8], explicit attracting polynomial skew-products were constructed
for which there are nearby horizontal disks whose forward orbits avoid the bulging
Fatou components of p. What we show in the current work is that in most fibers such
disks cannot exist.

Proposition 2 Consider a skew-product

F(z, w) = (
f (z, w), λw

)

satisfying the conditions of Theorem 1, with 0 < |λ| < 1. Then there is a set E ⊂ C

of full Lebesgue measure, such that for every w0 ∈ E the forward orbit of every disk
in the fiber {w = w0} must intersect a bulging Fatou component of p.

In particular the set E is dense, so Theorem 1 follows immediately. Another stronger
corollary is that the only Fatou components of F are the bulging Fatou components
of p. This follows immediately from the fact that the topological degree of F equals
the degree of p, and hence the only Fatou components that can be mapped onto the
bulging Fatou components of p are those bulging Fatou components.

The skew-products constructed in [8] are of the form

F(z, w) = (
p(z) + q(w), λw

)
,

where p has only a single critical point which lies in the Julia set and is pre-periodic.
Hence the maps from [8] satisfy the conditions in Theorem 1.

Let us emphasize here that the proof of Sullivan’s No Wandering Domains Theorem
relies in an essential way on the Mapping Theorem for quasiconformal maps. There
is no known analogue for the Mapping theorem that can be used to prove the non-
existence of wandering domains in higher dimensions. In light of the construction
of wandering domains in [1], it seems unlikely that this line of argument can be
used even for polynomial skew-products. For general one-dimensional polynomial or
rational functions, there is no alternative for the use of quasiconformal deformations
to prove the non-existence of wandering domains.

However, under additional assumptions on the post-critical set, there do exist alter-
native proofs. The easiest class is given by the hyperbolic polynomials, for which the
forward orbits of all critical points stay bounded away from the Julia set. In this case,
a sufficiently large iterate of the map is expanding on the Julia set, which immedi-
ately implies the non-existence of wandering Fatou components. It was pointed out
by Lilov [7] that an attracting or super-attracting skew-product acting hyperbolically
on the invariant fiber has no wandering Fatou components. In this article, we consider
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skew-products satisfying a weaker assumption, namely that the polynomial acting on
the invariant fiber is subhyperbolic.

In the subhyperbolic case, sometimes referred to as Misiurewicz, the polynomial
is assumed to have no parabolic periodic points, and the critical points that lie on the
Julia set are pre-periodic. In fact, these assumptions can be taken as the definition of
subhyperbolicity, an alternative definition being that the polynomial is expanding with
respect to a so-called admissible metric.

Let us recall a classical argument due to Fatou to show that a subhyperbolic poly-
nomial p does not have wandering Fatou components. Imagine that it does, and let
K be a compact subset of such a wandering Fatou component. Then for some subse-
quence (n j ) the sets f n j (K ) must converge to a point x ∈ Jp that does not lie in the
post-critical set. Let U be a disk centered at x that does not intersect the post-critical
set. Then on U all inverse branches of every iterate pn are conformal, and necessarily
map U inside the disk of radius R, the escape radius. It follows that as the Poincaré
diameter of f n j (K ) in U converges to 0, the Poincaré diameter of K in D0(R) must
also converge to 0, which gives a contradiction.

We will follow the same line of argument in this paper, the main difference being
that instead of having no critical points enter the diskU , we obtain sub-linear estimates
on the degree of the inverse branches. This will turn out to be sufficient to conclude
the non-existence of wandering domains.

The outline of the proof of Proposition 2 is discussed in the next section. The details
are covered in Sects. 3–7. In Sect. 4, we discuss the proof under stronger assumptions,
close to the assumptions used in [8], in which case a much shorter argument is obtained.

2 Outline and Background

Throughout the rest of this paper, we work with a map

F(z, w) = (
f (z, w), λw

)
,

where |λ| < 1, f (z, w) = zd + ad−1(w)zd−1 + · · · + a0(w) and p(z) = f (z, 0). We
will write Fn for the nth iterate of F , and we will use the convenient notation

Fn(z, w) = (
Fn

1 (z, w), Fn
2 (z, w)

)
.

We assume that the polynomial p is subhyperbolic. A consequence is that the Fatou
set consists of a finite collection of attracting basins, and that the orbit of each critical
point in the Fatou set converges to one of the attracting cycles. Every critical point in
Jp is eventually mapped onto a repelling periodic point. Passing to some iterate of F
and p, we may assume that all our critical points in Jp are not just pre-periodic, but
will eventually be mapped onto repelling fixed points.

A subhyperbolic polynomial is in particular also semi-hyperbolic. Recall that a
polynomial p is called semi-hyperbolic if the Julia set does not contain parabolic
periodic points or recurrent critical points. It is an interesting question whether the
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88 H. Peters, I. M. Smit

methods introduced in this article can be used to prove Theorem 1 under the more
general assumption that p is semi-hyperbolic.

The main idea in the proof of Proposition 2 is that the fibers {w = w0} in E
are chosen such that the critical points in the fibers {w = λnw0} escape a given
neighborhood of the Julia set sufficiently fast under iterations of F . To be more precise,
fix R > 0 large enough such that

|z| > R implies that |p(z)| > 2|z|.

For each attracting periodic point y of p, fix an open neighborhood Wy of its orbit
such that p(Wy) ⊂ Wy . Define

W0 = {|z| > R} ∪
⋃

y

Wy,

where we take the union over all attracting periodic points y ∈ C.
Since p has only finitely many attracting periodic orbits, we can find ε > 0 such

that the set

W := W0 × D(0, ε) ⊆ C
2

satisfies F(W ) ⊆ W . Fix a constant M such that |DF | ≤ M on D(0, R+1)×D(0, ε).
Define the sets Um = p−m(W0) and write Vm for their complements. By slight

abuse of notation we consider these as subsets of Cz = C × {0} ⊂ C
2 as well. Notice

that

Fp =
⋃

m∈N
Um .

By definition, points in Um must escape to W0 in at most m steps. An elementary
computation shows that a similar statement holds for points sufficiently close to Um :

Lemma 3 There exist C1 > 0 such that for all m ∈ N the following holds:

If d
(
(z, w),Um

)
< C1M

−m, then Fm+1(z, w) ∈ W.

Since p is subhyperbolic, it is also semi-hyperbolic. These polynomials were stud-
ied by Carleson et al. [2]. In Sect. 5, we will use their estimates to prove the following:
Proposition 10. The area of the sets Vm decreases exponentially with m.

We note that this estimate does not hold for general polynomials; for example, it
does not hold for polynomials with a parabolic periodic point. As the exponential
decay of these areas will play a crucial role in our proof, it is clear that one should not
expect our proof to work for polynomials p that are not semi-hyperbolic.

Let U ⊆ C be any neighborhood of the post-critical set of p. Using Proposition 10,
we will be able to choose fibers {w = w0} for which all critical points in the fibers
{w = λnw0} escape to W , with bounds on the number of steps it takes for the orbit of
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Attracting Skew-Products 89

such a critical point to leave U × C and land in W . As a consequence we will obtain
the following:
Proposition 15. There exists a set E ⊂ C, of full measure in some neighborhood
of the origin, with the following property: For all w ∈ E there exists a constant
C2 = C2(w,U ) such that for all n ∈ N we have

#

{
z : ∂Fn

1

∂z
(z, w) = 0 and Fn

1 (z, w) /∈ W0 ∪U

}
≤ C2

√
n.

Recall that each critical point x ∈ Jp of p is eventually mapped to a repelling
fixed point xr , with multiplier μ where |μ| > 1. The main tool for controlling the
orbits of the critical points of the polynomial skew-product is a linearization map of
the unstable manifold of this repelling fixed point, given by a map Φ : C → C that
satisfies Φ(μt) = pk ◦ Φ(t) for some k ∈ N. The construction of these linearization
maps will be discussed in Sect. 3.

The bound on the number of critical points provided by Proposition 15 gives us
degree estimates for some proper holomorphic maps between hyperbolic Riemann
surfaces, which in turn can be used to obtain area-estimates, using the following
proposition, which will be proved in Sect. 7.
Proposition 28. There exists a uniform constant C3 > 0 such that the following
holds: Let f : D → D be a proper holomorphic map of degree d, and let R ⊆ D

have Poincaré area A. If d · A1/2d < 1/8, then the Poincaré area of f −1(R) will be
at most C3d3A1/d .

With these ingredients we are ready to prove our main results.

Proof of Proposition 2 Let E be as in Proposition 15, and suppose for the purpose of
a contradiction that a fiber {w = w0}, where w0 ∈ E , does contain a disk D whose
forward orbit avoids the bulging Fatou components of p. Then the restriction of Fn

to D is bounded and hence a normal family. Therefore, there exists a subsequence
Fn j such that Fn j |D converges, uniformly on compact subsets of D, to a holomorphic
map to Jp. As Jp has no interior, Fn j (D) must in fact converge to a point ζ ∈ Jp.
After shrinking D if necessary, we may assume that the convergence of Fn j (D) to ζ

is uniform.
In particular, as F(W ) ⊆ W , we know that Fn(D) will never intersect W . It

therefore follows from Lemma 3 that whenever |λnw0| < C1M−m , we have Fn
1 (D) ⊆

Vm . By Proposition 10, we know that Area(Vm) decreases exponentially. Hence there
exist constants C > 1, and γ < 1 such that

Area(Fn(D)) ≤ Cγ n . (1)

By our assumption that the critical points in Jp are all eventually mapped onto
repelling fixed points, we may assume that ζ does not lie in the post-critical set.
So choose our open neighborhood U ⊆ Cz of the post-critical set in such a way
that ζ /∈ U , and let r > 0 be such that D(ζ, r) ∩ (U ∪ W0) = ∅. Let J1 ∈ N

be such that F
n j
1 (D) ⊆ D(ζ, r

2 ) for all j ≥ J1. Define Oj to be the connected
component of (Fn j )−1 (D(ζ, r) × {λn jw0}) that contains D. Then we have D ⊆

123



90 H. Peters, I. M. Smit

Oj ⊆ D(0, R) × {w0}, and we can regard F
n j
1 : Oj → D(ζ, r) as a one-dimensional

proper holomorphic map.
Proposition 15 tells us that this map has at most d j = C2

√
n j critical points. We

are now in position to apply Proposition 28. Set R j = F
n j
1 (D), with Poincaré area

A j = AreaD(ζ,r)(R j ) with respect to D(ζ, r). As j ≥ J1, we have R j ⊆ D(ζ, r
2 ).

Hence we can estimate A j using our result on the Euclidean area of R j as found in
Eq. (1): A j < C ′γ n j for some uniform constant C ′. Then

d j A
1/2d j
j < C2

√
n j

(
C ′γ n j

)1/2C2
√
n j < C2(C

′)1/2C2
√
n j

√
n jγ

√
n j /2C2 .

Since γ < 1, this expression converges to zero as j increases. Therefore, we can find

J2 > J1 such that d j A
1/2d j
j < 1/8 for all j > J2.

In this setting, Proposition 28 implies that

AreaD(0,R)(D) ≤ AreaOj (D) ≤ C3d
3
j A

1/d j
j < C3C

3
2n

3/2
j

(
C ′γ n j

)1/C2
√
n j .

However, this last expression will also tend to zero as j increases, which gives a
contradiction. ��

For the rest of this paper, our goal is to prove Propositions 10, 15, and 28. First,
we define the linearization map Φ that is used to describe the behavior of the critical
points in the Julia set. In Sect. 4, we prove our results for the special class of maps
studied by Vivas and the first author in [8]. In this setting, the proof is much shorter,
and we will give a more precise description of the post-critical orbits.

In Sect. 5, we get back to the general case and prove Proposition 10. This esti-
mate will be used to prove Proposition 15 in the next section. And finally, we prove
Proposition 28 in Sect. 7.

3 Linearization Maps

In this section, we construct the linearization map Φ that will later help us track
the orbits of the critical points of F . As F(z, w) = ( f (z, w), λw) with f (z, w) =
zd + ad−1(w)zd−1 + · · · + a0(w), the critical points of F are those points where
∂ f (z,w)

∂z = 0.
In a small neighborhood {|w| < ε} of the {w = 0}-fiber, these critical points will

form finitely many, possibly singular, varieties K1, . . . , Kq , each of which intersects
{w = 0} in a single point. Let K be such a variety, with intersection (x0, 0) with
{w = 0}. If x0 ∈ Jp, then x0 must be eventually mapped to a repelling fixed point
xr = pr (x0) of p, which is a saddle point for F . The variety Fr (K ) will pass through
this saddle point. The linearization results in this section will help us study the orbits
originating on these varieties.

Let G : (C2, 0) → (C2, 0) be a holomorphic germ, and assume that 0 is a saddle
fixed point. Without loss of generality, we may assume that the stable direction is
(0, 1) and the unstable direction is (1, 0), so that G is of the form
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Attracting Skew-Products 91

G : (z, w) �→ (μz + h.o.t., λw + h.o.t.),

with |μ| > 1 and |λ| < 1. After changing coordinates, we may assume that, possibly
on a smaller neighborhood of the origin, the stable and unstable manifolds are equal
to respectively Cw = {0} × C and Cz = C × {0}.

Let V be an irreducible analytic variety through the origin. We can locally write V
as

V = {(γ1(t), γ2(t))},

where

γ1(t) = atk + h.o.t. and γ2(t) = btl + h.o.t..

Remark 4 When γ1 = 0, the variety V coincides with the stable variety {z = 0} of
G. In this case, (Gn(γ (t)))n∈N will converge to the origin along the line {z = 0},
uniformly on compact subsets.

When γ1 �= 0, the order k of the parametrization is well defined. We will prove the
following proposition:

Proposition 5 The maps Φn defined by

Φn(t) = Gkn(γ1(μ
−nt), γ2(μ

−nt))

converge uniformly on compact subsets of C to a holomorphic map

Φ : C → Cz

of local order k that satisfies the functional equation Gk ◦ Φ(t) = Φ(μt). This
convergence is exponentially fast on compact subsets.

Proof Let us start with the case where γ2 = 0, as it is more straightforward. We use
the following variation on Koenigs’ theorem.

Lemma 6 Let

g(z) = μk z + h.o.t.

and

h(t) = atk + h.o.t.

be holomorphic functions defined in a neighborhood of the origin, with k ≥ 1, a �= 0
and |μ| > 1. Then the sequence of maps

ϕn(t) = gn ◦ h(μ−nt)

converges uniformly and exponentially fast on compact subsets of C.
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92 H. Peters, I. M. Smit

Proof Using Koenigs’ theorem we can write

g(z) = ψ−1(μk · ψ(z)),

for a germ ψ of the form

ψ(z) = z + h.o.t.

Hence gn(z) = ψ−1(μknψ(z)), and

gn ◦ h(μ−nt) = ψ−1
(
μknψ ◦ h(μ−nt)

)
.

Writing

ψ ◦ h(t) = atk + tk+1 · η(t),

we obtain

μk(n+1)ψ ◦ h(μ−(n+1)t) − μknψ ◦ h(μ−nt) = μ−ntk+1
[
μ−1η(μ−(n+1)t) − η(μ−nt)

]
.

The statement follows. ��
We continue the proof of Proposition 5. Use the notation

Gk(z, w) =
(
Gk

1(z, w),Gk
2(z, w)

)

for the components of the kth iterate of G. Since G leaves both axes invariant, we can
write

Gk
1(z, w) = μk z + z · f1(z, w) and Gk

2(z, w) = λkw + w · f2(z, w),

where f1(0, 0) = f2(0, 0) = 0.
By our assumption that γ2 = 0, it follows that Φn(t) = (

gn(γ1(μ
−nt)), 0

)
for all

n ∈ N, where g(·) = Gk
1(·, 0). By Lemma 6 the sequence gn(γ1(μ

−nt)) converges
uniformly and exponentially fast on compact subsets of C.

Now that we have dealt with the cases where γ1 = 0 or γ2 = 0, we tackle the general
case. Write γ1(t) = atk + tk+1γ̃1(t) with a �= 0, and likewise γ2(t) = btl + t l+1γ̃2(t)
with b �= 0.

Define

Φn(ζ, ξ) = Gkn (γ1(μ
−nζ ), γ2(μ

−nξ)
)
,

as a function of two distinct variables. Our goal is to show that for ζ, ξ small we have
Φn(ζ, ξ) = Φn−1(ζ

′, ξ ′), where ζ ′ ∼ ζ and |ξ ′| � |ξ |.
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Attracting Skew-Products 93

We start with the trivial equation

Φn(ζ, ξ) = Gk(n−1) ◦ Gk (γ1(μ
−nζ ), γ2(μ

−nξ)
)
.

To unravel this, note that for ζ, ξ ∈ D(0, ε) with ε sufficiently small (independent of
n), we have

Gk
1

(
γ1(μ

−nζ ), γ2(μ
−nξ)

)

= aμ−k(n−1)ζ k + μ−k(n−1)−nζ k+1γ̃1(μ
−nζ )

+ γ1(μ
−nζ ) f1

(
γ1(μ

−nζ ), γ2(μ
−nξ)

)

= a(μ−(n−1)ζ )k
(

1 + μ−na−1ζ γ̃1(μ
−nζ )

+ μ−na−1μ−k γ1(μ
−nζ )

(μ−nζ )k

f1
(
γ1(μ

−nζ ), γ2(μ
−nξ)

)

μ−n

)

= γ1

(
μ−(n−1)ψn(ζ, ξ)

)
.

Here, the function ψn has the form ψn(ζ, ξ) = ζ(1 + μ−nψ̃n(ζ, ξ)) with ψ̃n

holomorphic and bounded on D(0, ε) × D(0, ε), uniformly in n.
Likewise, we can work out that

Gk
2

(
γ1(μ

−nζ ), γ2(μ
−nξ)

)

= λkbμ−lnξ l + λkμ−nl−nξ l+1γ̃2(μ
−nξ) + γ2(μ

−nξ) f2
(
γ1(μ

−nζ ), γ2(μ
−nξ)

)

= bk(λ
k/ lμ−nξ)l

(
1 + μ−nb−1ξ γ̃2(μ

−nξ)

+ μ−nb−1
k λ−k γ2(μ

−nξ)

(μ−nξ)l

f2
(
γ1(μ

−nζ ), γ2(μ
−nξ)

)

μ−n

)

= γ2

(
μ−(n−1)χn(ζ, ξ)

)
.

The function χn has the shape χn(ζ, ξ) = λk/ lμ−1ξ
(
1+μ−nχ̃n(ζ, ξ)

)
, once again

with χ̃n bounded on D(0, ε) × D(0, ε), uniformly in n.
Writing ϕn = (ψn, χn), we now have

Φn(ζ, ξ) = Φn−1 ◦ ϕn(ζ, ξ).

Let C be an upper bound for all |ψ̃n| and |χ̃n| on D(0, ε) × D(0, ε), and choose N

large enough to ensure that | μ−NC
1−|μ−1| | < ε/2 and |λk/ lμ−1|(1 + |μ|−NC) < 1. Then

a straightforward induction on m shows that

ϕn ◦ · · · ◦ ϕn+m(ζ, ξ) ∈ D

(
0,

ε

2
+ |μ|−nC

1 − |μ|−1

)
× D(0, ε)

for all n ≥ N ,m ∈ N and (ζ, ξ) ∈ D(0, ε/2) × D(0, ε).
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94 H. Peters, I. M. Smit

We can now write Φn(ζ, ξ) = ΦN (ϕN+1 ◦ · · · ◦ ϕn(ζ, ξ)). By our bounds on |ψ̃n|
and |χ̃n|, the sequence (Φn(ζ, ξ))n≥N will converge uniformly and exponentially fast
on D(0, ε/2) × D(0, ε).

Plugging in ζ = ξ = t now proves the proposition: (Φn(t))n∈N must converge on
D(0, ε/2). By construction, it must satisfy the functional equation

Gk ◦ Φ(t) = Φ(μt).

This equation also gives us global convergence of (Φn(t))n∈N and uniform exponen-
tially fast convergence on compact subsets. By construction, Φ must have local order
k. ��
Remark 7 Let us say a few words about the role that the linearization map Φ will play
in the rest of this paper. We have a polynomial skew-product F of the form

F(z, w) = (
f (z, w), λ · w

)
,

where f (z, w) = zd + ad−1(w)zd−1 + · · · + a0(w), and we write p(·) = f (·, 0). As
mentioned at the start of this section, in some small neighborhood {|w| < ε} of the
{w = 0}-fiber, the critical points of F form finitely many irreducible critical varieties
K1, . . . Kq . We may assume, shrinking ε if necessary, that each Ki intersects {w = 0}
at one unique point, which must be a critical point of p. Assume for now that this
critical point lies in Jp.

We study these varieties one at a time. Write K for our irreducible critical variety,
and x0 for its intersection with {w = 0}. We can locally parameterize K by

K = {
(γ1(t), γ2(t))

}
.

By our assumptions on p, each of its critical points in Jp is eventually mapped to
a repelling fixed point pr (x0) = xr of p. Write μ = p′(xr ).

Then Fr (K ) is a variety though (xr , 0), where F has a saddle fixed point. Let Ψ

be a local change of coordinates such that G = Ψ ◦ F ◦ Ψ −1 satisfies the conditions
of Proposition 5: its stable and unstable manifolds are Cw and Cz , respectively. We
can write G(z, w) as

G : (z, w) �→ (
μz + zg1(z, w), λw + wg2(z, w)

)
.

Translating to our new coordinates, our variety of interest becomes Ψ (Fr (K )). It can
locally be parameterized by

{
Ψ
(
Fr (γ (t))

)}
.

If it is equal to Cw, the original variety Fr (K ) must lie in the stable manifold �s
F (xr ).

Otherwise, the first coordinate of Ψ (Fr (γ (t))) can be written as atk + h.o.t. where
a �= 0 and k ≥ 1.
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Note that Ψ (Fkr (γ (t))) = Gkr−r ◦Ψ (Fr (γ (t))) has μkr−r atk + h.o.t. as its first
coordinate; the value k did not change. We can therefore apply Proposition 5 to find
that the maps

Φn(t) = Fkn (γ (μ−nt)
)

= Ψ −1 ◦ Gk(n−r)
(
Ψ ◦ Fkr ◦ γ

(
μ−rμ−(n−r)t

))

must converge, uniformly and exponentially fast on compact subsets, to a holomorphic
map Φ : C → Ψ −1(Cz) = �u

F (xr ) = Cz of local order k. By construction, Φ must
satisfy the functional equation Fk ◦Φ(t) = Φ(μt). This map will be used all through
Sects. 4 and 6 to study the orbits of critical points in varieties K that pass through the
Julia set of p.

4 The Resonant Case

In this section, we consider the special resonant case, which was also studied by Vivas
and the first author in [8]. In this case, it is considerably easier to prove the non-
existence of wandering domains, and we will obtain a more precise description of
the critical orbits. Although the results in this section are not used in the proofs of
Proposition 2 and Theorem 1, they did serve as an inspiration.

We consider polynomial skew-products of the form

F(z, w) = (
p(z) + q(w), λ · w

)
,

for which we now assume that the polynomial p has only a single critical point x0,
which in a finite number of steps is mapped onto a repelling fixed point xr = pr (x0).
Without loss of generality, we may assume that xr = 0. As usual we write p′(0) = μ,
which satisfies |μ| > 1. To keep the study case in this section as straightforward as
possible, we assume that the critical variety K = {(x0, t)} has an image Fr (K ) that
is transverse to the stable variety �s

F (0). We further assume the following resonant
condition:

μ · λ = 1.

While the resonant case is the only case for which the existence of horizontal disks
that avoid the bulging Fatou components of p has been shown, it turns out that it is
also the simplest case where we can show that most fibers {w = w0} contain no such
disks. In fact, in this case the set E of such fibers will not only have full measure, but
will also be open and dense.

We use the linearization function Φ : C → Cz introduced in Sect. 3, given in this
resonant case by

Φ(t) = lim
n→∞ Fn (x0, λ

nt
)
.
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By Remark 7 and our assumption that Fr (K ) is transverse to �s
F (0), we know that Φ

is a non-constant holomorphic function.

Proposition 8 Let w0 ∈ C be such that Φ(w0) lies in the basin of infinity of the
polynomial p. Then the orbit of any horizontal disk in the {w = w0} fiber must
intersect the bulging Fatou component of p.

Note that under our assumptions the filled Julia set of p has empty interior, and
hence the basin of infinity is open and dense. Since Φ is a non-constant holomorphic
function, it follows that the above proposition holds for an open and dense set of
parameters w0, and in particular that F does not have wandering Fatou components.
The interested reader should have no difficulty generalizing Proposition 8 to the case
of several critical points that are all mapped to resonant repelling periodic points.

In preparation for the proof of Proposition 8, we will study the orbits of the critical
points (x0, λ

nw0) for w0 such that Φ(w0) lies in the basin of infinity of p. More
precisely, we will show that, for n ∈ N sufficiently large, the orbits of the critical
points (x0, λ

nw0) will stay uniformly away from any point in Jp \ {x0, . . . , xr }.
For n ∈ N,m ∈ Z and n + m ≥ 0 we define

an,m = Fn+m (
x0, λ

nw0
)
.

Note that an,0 = Φn(w0) and F(an,m) = an,m+1. Since F(Φ(t)) = Φ( t
λ
), we have

lim
n→∞ an,m = Φ

(w0

λm

)
= Fm (Φ(w0))

for m ≥ 0, and

lim
n→∞ an,−m = Φ(λmw0) ∈ F−m ({Φ(w0)}) .

Denote am = limn→∞ an,m . The sequence (am) satisfies

lim
m→−∞ am = 0 and lim

m→+∞ am = ∞.

Recall that R > 0 was chosen such that |p(z)| ≥ 2|z| for all |z| > R. Increasing R if
necessary, we may also assume that Jp ⊆ D(0, R − 1) and

|F(z, w)| > 2|z|

for all |z| > R and |w| < |w0|. We then define

V =
{
(z, w) ∈ C

2 : |z| > R and |w| < |w0|
}

.

It follows that F(V ) ⊆ V . Since limm→+∞ am = ∞ there exists an N1 > 0 such that
|am | > R for all m ≥ N1. Then for any ε > 0 we can find a natural number Nε such
that
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(i) |an,m − am | < ε whenever n ≥ Nε, n + m ≥ r and m ≤ N1.
(ii) an,m ∈ V whenever n ≥ Nε and m ≥ N1.

Recall that pr (x0) = 0, which is a repelling fixed point of p. By continuity of F we
also have that

lim
n→∞ an, j−n = p j (x0). (2)

for all j ≥ 0. With this information, we can prove the following lemma.

Lemma 9 Let y ∈ Jp \ {x0, p(x0), . . . pr−1(x0), 0}. Then there exist δ = δ(y) > 0
and N = N (y) ∈ N such that an,m /∈ D̄(y, δ) × C for n ≥ N and n + m ≥ 0.

Proof Note that all am lie in the Fatou set of p, and are therefore not equal to y. Since
limm→−∞ am = 0 and limm→∞ am = ∞ the points am must in fact avoid some small
disk D(y, δ1). Setting ε = δ = δ1/2, and N = Nε , the statement follows whenever
n ≥ N and n + m ≥ r . Equation 2 allows us to increase N and shrink δ to deal with
the case where 0 ≤ n + m < r . ��
Proof of Proposition 8 We follow the argument due to Fatou that we mentioned in
the introduction. Suppose for the purpose of a contradiction that a horizontal disk
D = D(x, s) × {w0} converges to the Julia set of p. Since this Julia set has empty
interior, we can find a subsequence (n j ) such that Fn j (D) converges to a point y ∈ Jp.
Since xr = 0 is repelling, we may assume that y /∈ {x0, . . . , xr }.

By Lemma 9, there exists a cylinder D̄(y, δ)× C that is avoided by an,m whenever
n ≥ N and n+m ≥ 0. To use this property, let FN (x, w0) =: (x ′, λNw0) and choose
s′ > 0 such that D′ = D(x ′, s′) × {λNw0} ⊆ FN (D). Then Fn j−N (D′) will still
converge to y.

For j ∈ N such that n j ≥ N , we consider the function

ψ j = Fn j−N (·, λNw0) : C → C × {λn jw0}.

Note that D′ ⊆ ψ−1
j (D(y, δ) × {λn jw0}) ⊂ D(0, R) × {λNw0} for all sufficiently

large values of j . Let Oj be the connected component of D′ in this inverse image.
Since the points an,m avoid D(y, δ) × {λn jw0}, it follows that ψ j |Oj has no critical
points. It must be a biholomorphism between Oj and D(y, δ) × {λn jw0}, and hence
it preserves the Poincaré metric. This gives us the inequality

diamD(0,R)(D
′) ≤ diamOj (D

′) = diamD(y,δ)(F
n j−N (D′)).

As Fn j−N (D′) converges to y, its Poincaré diameter in D(y, δ) must tend to zero.
This proves that D′ cannot exist. ��

5 Semi-Hyperbolic Polynomials and Sublevel Sets

Let p be a semi-hyperbolic polynomial, with Fatou set

Fp = I∞ ∪
⋃

y

�p(y)
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equal to the union of the basin of infinity and the basins of attracting periodic cycles.
Since p is semi-hyperbolic, Siegel disks and parabolic basins cannot occur. We define
a set W0 as in Sect. 2: Fix R > 0 large enough such that

|z| > R implies that |p(z)| > 2|z|,

and for each attracting periodic point y of p, fix an open neighborhood Wy of its orbit
such that p(Wy) ⊂ Wy . Now set

W0 = {|z| > R} ∪
⋃

y

Wy,

where we take the union over all attracting periodic points y ∈ C.
Define the sets Um := p−m(W0) and write Vm for their complements. Notice that

Fp =
⋃

m∈N
Um .

We will prove the following.

Proposition 10 The areas of the sets Vm decrease exponentially with m.

We note that this proposition certainly does not hold for any polynomial; for exam-
ple, it does not hold for the polynomial z �→ z + z2. We leave the computation to the
reader. To prove the above proposition, we will therefore make heavy use of the fact
that p is semi-hyperbolic.

First of all, the semi-hyperbolicity of p allows us to use Theorem 2.1 in [2]:

Theorem 11 There exist constants ε > 0, c > 0, and θ < 1 such that for all x ∈ Jp,
we have

diam(Bn(x, ε)) ≤ cθn,

where Bn(x, ε) is any connected component of p−n(D(x, ε)).

As {z ∈ C : |z| ≤ R and d(z,Jp) ≥ ε} is compact and contained in the increasing
union

⋃
m Um , it must be contained in Um0 for some m0 ∈ N. Then for m ≥ m0, we

know that Vm ⊆ {z ∈ C : d(z,Jp) < ε}. Let z ∈ Vm . Then pm−m0(z) ∈ Vm0 and
hence there exists x ∈ Jp such that pm−m0(z) ∈ D(x, ε). By Theorem 11, this implies
that d(z,Jp) ≤ cθm−m0 . It follows that the sets Vm are contained in δm-neighborhoods
of Jp, where δm decreases exponentially with m.

Recall from [2] that since p is semi-hyperbolic, the basin I∞ is a so-called John
domain. For a John domain in R

m , an upper bound for the Minkowski-dimension
of its boundary is given in [6]. In our circumstances, it follows that dimM (Jp) =
dimM (∂ I∞) < 2. A quick consequence is the following.

Lemma 12 Suppose that the sequence (δm) decreases exponentially fast. Then the
area of the δm-neighborhoods of Jp also decreases exponentially fast.
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Proof Let Nε be the number of ε-disks needed to cover Jp. Denote the Minkowski-
dimension of Jp by h, and let h < h′ < 2. Then the h′-dimensional measure of Jp is
0, hence for ε > 0 sufficiently small we have that

Nε <
1

εh
′ .

Hence for m sufficiently large the δm-neighborhood of Jp can be covered by ε−h′ =
δ−h′
m disks of radius 2δm , which means that the area of this neighborhood is at most

4πδ2
m

δh
′

m
= 4πδ2−h′

m .

The statement follows. ��
Proof of Proposition 10 Combining Lemma 12 with the fact that the sets Vm are
contained in δm-neighborhoods of Jp with exponentially decreasing δm proves Propo-
sition 10. ��
Corollary 13 We have that

∑

m∈N
Area(Vm) < ∞.

It is not reasonable to expect this corollary to hold for arbitrary polynomials, as Jp

may have positive measure. It would be interesting to know whether
∑

m∈N Area(Vm)

is necessarily finite when Jp is assumed to have Hausdorff dimension strictly less
than 2. Note that if the filled Julia set Kp has no interior, then Vm can be defined by
{G ≤ 1

dm }, where G is the Green’s function. Leaving the setting of Green’s functions
arising from complex dynamics, we note that there do exist compact subsets K ⊂ C

with Hausdorff dimension strictly smaller than 2 for which the Green’s function GK

with logarithmic pole at infinity satisfies

∑

m∈N
Area

{
GK ≤ 1

2m

}
= ∞.

Such a set K can for example be constructed by taking the boundaries of a nested
sequence of disks, and removing from these circles progressively smaller intervals.
We thank Sławomir Kołodziej for pointing out this construction to us.

6 Forcing Escape of Critical Points

In this section, we will prove the estimate in Proposition 15 as mentioned in the outline.
We consider the family of forward iterates Fn restricted to a fiber {w = w0} for a
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fixed w0 �= 0. Writing wn = λnw0 and fn(z) = fwn (z) = f (z, wn), we can consider
these iterates Fn as compositions of a sequence of polynomials, i.e.,

Fn|{w=w0} = fn−1 ◦ · · · ◦ f0.

Every polynomial fwi introduces new critical points. It turns out that by choosing w0
carefully we can make sure that all these critical points escape to the set W defined
in Sect. 2, and moreover obtain some control on the rate at which the critical points
escape. In fact, we will prove the existence of a subset E ⊂ Cw of full measure for
which all critical points of maps fwn , for w ∈ E , escape to W at least at some moderate
rate, while most critical points escape very fast.

The critical points of F form a finite union of irreducible varieties in C
2, as described

in Sect. 3. We will study these varieties one at a time. Given a fixed open neighborhood
U ⊆ C of the post-critical set of the polynomial p(·) = f (·, 0), we will prove the
following:

Proposition 14 Let K be an irreducible critical variety. Then there exists a set EK ⊆
C, of full measure in some neighborhood of the origin, with the following property:

For all η > 0 and w ∈ EK we have

#
{
s ≤ n : ∃(z, λsw) ∈ K with Fn−s

1 (z, λsw) /∈ W0 ∪U
} ≤ η log n + C4,

where C4 is a constant depending on K , η,U, and w.

A consequence is the main result of this section.

Proposition 15 There exists a set E ⊂ C, of full measure in some neighborhood of
the origin, with the following property: For allw ∈ E there exists a constant C2(w,U )

such that for all n ∈ N we have

#

{
z : ∂Fn

1

∂z
(z, w) = 0 and Fn

1 (z, w) /∈ W0 ∩U

}
≤ C2

√
n.

Proof Define E = ⋂
K EK , let w ∈ E and let η > 0. Pick ε′ > 0 such that E has full

measure in D(0, ε′). We have at most finitely many critical varieties: K1 up to Kq .
Applying Proposition 14 for each of them gives us

#
{
s ≤ n : ∃(z, λsw) ∈

⋃
Ki with Fn−s

1 (z, λsw) /∈ W0 ∪U
}

≤ qη log n + C,

where C depends only on η,U and w. As fw(z) = zd + ad−1(w)zd−1 + · · ·+ a0(w),
each {λsw}-fiber contains d − 1 critical points of fw(z), counting with multiplicities.
Then the restricted function

Fn
1 : (Fn)−1((C \ (W0 ∪U )) × {λnw}) → (C \ (W0 ∪U ))
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is a composition of n holomorphic functions. At most qη log n + C of them can each
have at most d − 1 critical points. The total number of critical points of this restricted
function is therefore at most

dqη log n+C = dCnqη log d .

The desired result is obtained by choosing η small enough. ��

The rest of this section is devoted to proving Proposition 14. This proposition will
be proved in two parts. First, we will prove that for almost every w0 ∈ C and all
n ∈ N, all critical points of fwn escape to the set W in at most C · log(n) steps, for
some uniform C > 0. We will not be able to control the constant C though, and hence
we will not yet be able to deduce that the estimate in Proposition 14 holds for any
η > 0. However, we will also prove that for almost every w0 ∈ C and most n ∈ N, the
critical points of fwn escape to the set W in a number of steps that does not depend
on n. By choosing a sufficiently strong interpretation of “most n ∈ N” it will follow
that η in Proposition 14 can be chosen arbitrarily small.

Let K be one of the irreducible analytic varieties of critical points of F in C ×
D(0, ε), as described in Remark 7. Then K intersects the {w = 0}-fiber in a single
point x0 ∈ Cz . If x0 ∈ Fp, then Fr (x0) ∈ W0 for some r ∈ N. Shrinking ε if necessary,
we find that Fr (K ) ⊆ W . In this setting, Proposition 14 follows immediately. We will
therefore assume that x0 ∈ Jp×{0} from now on. Its image xr = pr (x0) is a repelling
fixed point. We define μ = p′(xr ).

Since K intersects {w = 0} in a unique point, we can locally parameterize K by

K =
{(

γ1(u), γ2(u)
) : u ∈ D

(
0, ε1/ l)

}
,

where γ2(t) = t l for some l ≥ 1.
If Fr (K ) is contained in the stable variety �s

F (xr ) of F at xr , then so is Fn(K )

for any n ≥ r . The points in K all converge to (xr , 0) along this stable variety. In this
setting, Proposition 14 follows immediately.

For the rest of this section, we will therefore assume that Fr (K ) � �s
F (xr ).

Remark 7 then gives us the linearization maps

Φ j (t) = Fkj
(
γ1(μ

− j t), (μ− j t)l
)

that converge uniformly and exponentially fast on compact subsets, to a holomorphic
function Φ : C → Cz of local degree k for some k ≥ 1.

We wish to study the points of the critical variety K in a sequence of fibers C ×
{w}, C × {λw}, C × {λ2w}, . . . where w ∈ D(0, ε). This will be easier if we look at
pre-images of these critical points under γ : pick ν ∈ C such that νl = λ and consider
the sequences u, νu, ν2u . . . for u ∈ D(0, ε1/ l). By abuse of notation, we replace the
constant ε1/ l by the letter ε again. For u ∈ D(0, ε), the orbit of γ (νsu) under F can
now be studied using the functions Φ j and Φ:
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Fn(γ (νsu)
) = Fn−k j

(
Φ j (μ

jνsu)
)

whenever n ≥ k j

≈ Fn−k j
(
Φ(μ jνsu)

)
.

In order to use exponential estimates on the rate of convergence of Φ j to Φ, we ask
that |μ jνsu| ≤ ε, while having j run to infinity. We therefore define j (s) to be the
unique integer for which

|μ|−1 < |μ j (s)νs | ≤ 1.

Lemma 3 now implies the following:

Corollary 16 There exist constants C5,C6 > 0 such that for all s,m ∈ N satisfying
m < C5 j (s) − C6 and for all u ∈ D(0, ε), we have

If Φ
(
μ j (s)νsu

) ∈ Um, then Fm+1+k j (s)(γ (νsu)
) ∈ W.

Proof If Φ(μ j (s)νsu) ∈ Um and j (s) is large enough to ensure that ||Φ j (s) −
Φ||D(0,ε) ≤ C1M−m , then Fm+1+k j (s)(γ (νsu)) = Fm+1(Φ j (s)(μ

j (s)νsu)) ∈ W
by Lemma 3. By the uniform convergence of Φ j to Φ on D(0, ε), the requirement
that ||Φ j (s) − Φ||D(0,ε) ≤ C1M−m can be translated to m < C5 j (s) − C6 for some
uniform constants C5 and C6. ��

Corollary 16 motivates us to take a closer look at (Φ|D(0,ε))
−1(Um).

6.1 All Critical Points Escape Slowly

The complement of (Φ|D(0,ε))
−1(Um) within D(0, ε) is exactly (Φ|D(0,ε))

−1(Vm). By
Proposition 10 the area of Vm decreases exponentially with m. As Φ is a non-constant
holomorphic function, the area of

(
Φ|D(0,ε)

)−1
(Vm) also decreases exponentially with

m, although not necessarily at the same rate.
Using this information, we can apply Corollary 16 to show that given s ∈ N, the

critical point γ (νsu) moves away from the Julia set Jp fairly quickly for most values
u ∈ D(0, ε).

Lemma 17 There exist uniform constants C7 > 0 and α < 1 such that

Area
{
u ∈ D(0, ε) : Fkj (s)+m+1(γ (νsu)

)
/∈ W

}
≤ C7α

m

for all s,m ∈ N with m < C5 j (s) − C6.

Proof Corollary 16 implies the inclusion

{
u ∈ D(0, ε) : Fkj (s)+m+1(γ (νsu)

)
/∈ W

}
⊆

{
u ∈ D(0, ε) : Φ

(
μ j (s)νsu

)
/∈ Um

}

= D(0, ε) ∩ μ− j (s)ν−sΦ−1(Vm)

⊆ μ− j (s)ν−s (Φ|D(0,ε)

)−1
(Vm).
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The area of this last set is at most |μ|−1Area((Φ|D(0,ε))
−1(Vm)), which decreases

exponentially with m. ��
We will use Lemma 17 to find values of u ∈ D(0, ε) for which nearly all criti-

cal points {γ (νsu)}s∈N move away from Jp fairly fast. Our strategy is to apply the
following well-known lemma:

Lemma 18 Let {As}n∈N be a sequence of subsets of a measure space X such that

∑

s∈N
measure(As) < ∞.

Then the set E = {u ∈ X | ∃Nu ∈ N, ∀s ≥ Nu, u /∈ As} has full measure.
To be able to use Lemma 17 in the setting of Lemma 18, we need to pick an

appropriate value m(s) for each s ∈ N. Then we can apply Lemma 18 to the sets

As =
{
u ∈ D(0, ε) : Fkj (s)+m(s)+1(γ (νsu)

)
/∈ W

}
.

To make sure that the areas of the sets As have a finite sum, we need to pick m(s) such
that

∑

s∈N
C7α

m(s) < ∞.

On the other hand, it would be preferable to pick m(s) as low as possible. This gives
stronger information on the rate at which a critical point γ (νsu) (for u /∈ As) moves
towards W . And finally, m(s) needs to satisfy m(s) < C5 j (s) − C6 to be allowed to
use the estimate in Lemma 17.

To satisfy all these requirements, we define

m(s) :=
⌈−2 log s

log α
− C8

⌉
,

where the constant C8 > 0 is chosen such that m(s) < C5 j (s) − C6 holds for all
s ∈ N. As αm(s) ≤ α−C8s−2, the areas of the sets As will have their finite sum. We
have now proved the following corollary:

Corollary 19 The set

E1(K ) =
{
u ∈ D(0, ε)

∣∣∣ ∃Nu ∈ N, ∀s ≥ Nu, Fkj (s)+m(s)+1(γ (νsu)
) ∈ W

}

has full measure in D(0, ε).

For points νsu with u ∈ E1(K ) and s ≥ Nu , we now have a reasonable grasp of
the behavior of Fn(γ (νsu)) when n ≥ k j (s): the point will move to W in at most
another N + m(s) applications of the function F . The next lemma will take a look at
the setting when n < k j (s). For any neighborhood U ⊆ C of the post-critical set of
p, we have the following:
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Lemma 20 For u ∈ D(0, ε) we have

Fn
1

(
γ (νsu)

) ∈ U

whenever C9 ≤ n < k j (s) − C9, for a constant C9(ε,U ) that is independent of s.

Proof Pick ρ > 0 such that D(xr , ρ) ⊆ U ∩ D(0, R). Fix θ such that Φ(D(0, θ)) ⊆
D(xr , M−kρ/2). Write n = ki + v with 0 ≤ v < k, and note that

Fn(γ (νsu)
) = Fv

(
Φi (μ

iνsu)
)
.

Assume that i is small enough to have |μiνsε| < θ . On the other hand, assume that i
is large enough to ensure that ||Φi − Φ||D(0,ε) < M−kρ/2. Then for u ∈ D(0, ε) we
have d

(
Φi (μ

iνsu), xr
)

< M−kρ. As xr is a fixed point of F and v < k, this implies
that d

(
Fv(Φi (μ

iνsu)), xr
)

< ρ and hence Fn(γ (νsu)) ∈ U . Here, we used the fact
that D(xr , ρ) ⊆ D(0, R) and that M is an upper bound for |DF | on D(0, R)×D(0, ε).

As |μ j (s)νs | < 1, the requirements on i can be translated to C9 ≤ n < k j (s) −C9
for some constant C9(ε,U ). ��

Combining Corollary 19 with Lemma 20 allows us to prove the slow escape of the
points in the critical variety K :

Proposition 21 For any u ∈ E1(K ) and n ∈ N, we have

#
{
s ≤ n : Fn−s

1

(
γ (νsu)

)
/∈ W0 ∪U

} ≤ C10 log n + C11,

for constants C10(u, K ,U, ε) and C11(u, K ,U, ε) independent of n.

Proof Write Sn = {
s ≤ n : Fn−s

1 (γ (νsu)) /∈ W0 ∪U
}
. By definition of E1(K ) and

the fact that F(W ) ⊆ W , we know that s /∈ Sn when s satisfies both s ≥ Nu and
n − s ≥ k j (s) + m(s) + 1.

By Lemma 20, we know that s /∈ Sn when C9 ≤ n − s < k j (s) − C9. This leaves
us with 2C9 + Nu possible entries in Sn , plus all values s for which

k j (s) ≤ n − s < k j (s) + m(s) + 1.

Such a value of s must also satisfy

n ≥ s + k j (s) > n − m(n) − 1, and hence

n ≥ s + k

⌊
s

l

log |λ−1|
log |μ|

⌋
> n − m(n) − 1, and

n + k ≥ s

(
1 + k

l

log |λ−1|
log |μ|

)
> n − m(n) − 1.
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Plugging in our formula for m(n) shows that this gives us a sequence of at most

k + 1 +
⌈−2 log n

log α
− C8

⌉

1 + k
l

log |λ−1|
log |μ|

consecutive values of s. This proves the proposition. ��

6.2 Most Critical Points Escape Quickly

Proposition 21 and its proof showed that for each u ∈ E1(K ) and n ∈ N, the set

Sn(u) = {
s ≤ n : Fn−s

1

(
γ (νsu)

)
/∈ W0 ∪U

}

could contain at most C11 points, plus possibly some integers in an interval of length
C10 log n. Very little information about the dynamical system was used to prove this.
In this subsection, we will show that for almost all u ∈ E1(K ), an arbitrarily large
portion of the values s in any sufficiently large interval do not lie in Sn .

Recall that j (s) is the unique natural number such that

|μ−1| < |μ j (s)νs | ≤ 1.

The sequence {μ j (s)νs}s∈N lives in the annulus {|μ−1| < |t | ≤ 1}. Multiplication by
μ allows us to identify the inner and outer boundaries of the annulus, giving us the
torus (C \ {0}) /μZ. It will be more convenient to think about this torus additively.
Write

T = C/(2π iZ + log μZ).

It does not matter which value for log μ we use, since 2π i is included in our lattice
anyway. As |μ| > 1, we know that log μ is not purely imaginary. Composing a
projection with any branch of the logarithm, we obtain a holomorphic covering map:

Ψ : C \ {0} log−→ C
π−→ C/(2π iZ + log μZ) = T .

The projection π ensures that the branch of the logarithm is irrelevant. When restricted
to {|μ−1| < |t | ≤ 1}, the map Ψ is a bijection.

Let y be any value for log ν. Then in the torus T , the sequence {Ψ (μ j (s)νs)}s∈N is
represented by {sy}s∈N. We recall the following lemma from Sect. 1.4 of [5].

Lemma 22 Let T be an additive torus and y ∈ T . Then the set {sy}s∈N is a subgroup
of T , and one of the following statements must be true:

(1) The set {sy}s∈N is finite.
(2) The set {sy}s∈N is one-dimensional. It is a disjoint union of finitely many evenly

spaced lines/circles in T .
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(3) The set {sy}s∈N equals T .

The torus T can be covered by cosets [a] = a + {sy}s∈N for a ∈ T . Denote by σa
the counting measure, the one-dimensional Lebesgue measure, or the two-dimensional
Lebesgue measure on [a] for cases (1), (2), or (3), respectively. The action of x �→ x+y
on [a] is uniquely ergodic, and hence we have

Lemma 23 Let η > 0, a ∈ T , and O ⊆ [a] open. Then there exists C12(η, O, T ) > 0
such that for all r ∈ N and n ≥ C12 we have

1

n
# {r < s ≤ r + n : a + sy ∈ O} >

σa(O)

σa([a]) − η.

See for example Sect. 4.3 in [3].
Since Jp is F-invariant and Φ satisfies the equation Fk ◦ Φ(t) = Φ(μt), the set

Φ−1(Jp) must be invariant under multiplication by μ. By our assumptions Jp has
measure zero, so since Φ is a non-constant holomorphic function, the set Φ−1(Jp) ∩
D(0, 1) must also have measure zero. Note that Φ−1(Jp) is also closed. It follows
that Ψ

(
Φ−1(Jp)

)
is a compact set of measure zero.

For any a ∈ T , the set Ψ
(
Φ−1(Jp)

) ∩ [a] will be a closed subset. By Fubini’s
Theorem, it follows that σa

(
Ψ
(
Φ−1(Jp)

) ∩ [a]) = 0 for almost every a ∈ T . Denote
the set of these values of a by A.

Let η > 0. For each a ∈ A, we can choose an open set O(a, η) ⊆ [a] such that
σa(O) ≥ (1 − η)σa([a]) and O ∩ Ψ

(
Φ−1(Jp)

) = ∅. By Lemma 23 we can find
C12(a, η) such that

1

n
# {r < s ≤ r + n : a + sy ∈ O} > 1 − 2η for all r ∈ N, n ≥ C12.

Define E2(K ) = {u ∈ D(0, ε) : u �= 0 and Ψ (u) ∈ A}. As A has full measure in T ,
the set E2(K ) has full measure in D(0, ε). For any u ∈ E2(K ), r ∈ N, and n ≥ C12
we can translate the above statement to

1

n
#
{
r < s ≤ r + n : μ j (s)λsu ∈ Ψ −1(O) ∩ {|μ−1u| ≤ |t | ≤ |u|}

}
> 1 − 2η.

The set Ψ −1(O) ∩ {|μ−1u| ≤ |t | ≤ |u|} is closed and bounded, hence compact. Its
intersection with Φ−1(Jp) is empty. We can therefore cover Ψ −1(O) ∩ {|μ−1u| ≤
|t | ≤ |u|} by the increasing open sets {Φ−1(Um)}m∈N. By compactness, we can find
� = �(u, η) such that Ψ −1(O) ∩ {|μ−1u| ≤ |t | ≤ |u|} ⊆ Φ−1(U�).

We can now prove the following proposition:

Proposition 24 For all η > 0 and u ∈ E2(K ), we have

1

n
#
{
r < s ≤ r + n : Fkj (s)+�+1(γ (λsu)

) ∈ W
}

> 1 − 2η,

whenever n ≥ C12 and r ≥ C13. Here � = �(u, η) and C12(u, η) are as defined above
and C13 depends on �.
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Proof Let η > 0, u ∈ E2(K ) and n ≥ C12(u, η). We start by the observation that

1 − 2η <
1

n
#
{
r < s ≤ r + n : μ j (s)λsu ∈ Φ−1(U�)

}

= 1

n
#
{
r < s ≤ r + n : Φ(μ j (s)λsu) ∈ U�

}

for all r ∈ N. When r is sufficiently large, j (s) will be large enough to ensure that the
latter set is included in

1

n
#
{
r < s ≤ r + n : d

(
Φ j (s)(μ

j (s)λsu),U�

)
< C1M

−�
}

,

and by Lemma 3, this set is contained in the set

1

n
#
{
r < s ≤ r + n : F�+1

(
Φ j (s)(μ

j (s)λsu)
)

∈ W
}

> 1 − 2η.

Combining all this with the definition of Φ j (s) proves the proposition. ��
Define E3(K ) = E1(K ) ∩ E2(K ). This set still has full measure in D(0, ε), and

we can combine Propositions 21 and 24 to find

Corollary 25 Let η > 0 and u ∈ E3(K ). Then there exists a constant C14, depending
on η, u,U, ε, and K , such that for all n ∈ N we have

#
{
s ≤ n : Fn−s

1

(
γ (νsu)

)
/∈ W0 ∪U

} ≤ η log n + C14.

Proof As in the proof of Proposition 21, write

Sn = {
s ≤ n : Fn−s

1

(
γ (νsu)

)
/∈ W0 ∪U

}
.

We showed that Sn contains 2C9 + Nu entries, plus possibly the values s for which

k j (s) ≤ n − s < k j (s) + m(n) + 1.

The length of this interval was bounded by C10 log n, for a constant C10 depending on
u, K ,U , and ε. Choose θ > 0 such that 2θC10 < η and apply Proposition 24:

Whenever n − s ≥ k j (s) + � + 1 and s ≥ C13, no interval of length L ≥ C12 will
contain more than 2θL elements of Sn . We can now pick C14 to be large enough to
ensure that #Sn ≤ η log n + C14 for all n ∈ N. ��
Proof of Proposition 14 Write Q = D(0, ε) \ E3(K ), a set of measure zero. The set
Ql = {ul : u ∈ Q} still has measure zero. Define EK = D(0, εl) \ Ql . Then for each
w ∈ EK we have

#
{
s ≤ n : ∃(z, λsw) ∈ K with Fn−s

1 (z, λsw) /∈ W0 ∪U
}

=
⋃

u: ul=w

#
{
s ≤ n : Fn−s

1

(
γ (νsu)

)
/∈ W0 ∪U

} ≤ lη log n + C4.

for a constant C4 = C4(K , η,U, w). ��
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7 Hyperbolic Areas of Inverse Images

Only Proposition 28 remains to be shown. First recall the following similar result from
[9].

Lemma 26 For any 0 < r < 1 and any holomorphic proper map f : V → D of
degree d, with V simply connected, each connected component of f −1(Dr (0)) has
diameter at most

2d log

(
1 + r1/d

1 − r1/d

)

with respect to the Poincaré metric on V .

Our goal is to prove a similar estimate regarding hyperbolic areas rather than diam-
eters. Our strategy will be to remove small neighborhoods of critical points, and prove
that the area of the inverse image outside of these neighborhoods must be small. We first
give an estimate on the proximity of a critical point for points with small derivatives.

Lemma 27 If f (z) : D → D is a proper holomorphic map of degree d satisfying
f (0) = 0 and | f ′(0)| ≤ δd−1 with δ < 1/4, then f has a critical point c with
dD(c, 0) ≤ 32dδ.

Proof Without loss of generality may write

f (z) = z
d−1∏

i=1

z − ai
1 − āi z

.

We may assume that |a1| ≤ |a j | for j ≥ 2. By our assumption that δd−1 ≥ | f ′(0)| =
|∏d−1

i=1 ai |, it follows that |a1| < δ. For z = ta1 with t ∈ [0, 1] we have

f (z) = z
d−1∏

i=1

z − ai
1 − āi z

= z(z − a1)

d−1∏

i=2

(z − ai )
d−1∏

i=1

1

1 − āi z
, and hence

| f (z)| ≤ |a1|2
4

d−1∏

i=2

(2|ai |)
d−1∏

i=1

1

1 − δ
≤
(

2δ

1 − δ

)d

.

Let r = ( 2δ
1−δ

)d . By the above estimate the set f −1 (D(0, r)) contains the interval
between 0 and a1. As both endpoints of this interval are mapped to 0 and D(0, r)
is simply connected, the connected component of f −1 (D(0, r)) that contains this
interval must also contain a critical point c. By Lemma 26 the Poincaré distance from
c to 0 can therefore be estimated by
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2d log

(
1 + r1/d

1 − r1/d

)
= 2d log

(
1 + 2δ

1−δ

1 − 2δ
1−δ

)

≤ 2d · 4
2δ

1 − δ
≤ 32dδ

For the first inequality, we used our assumption that δ < 1/4. ��
Let f : D → D be a proper holomorphic map of degree d. Suppose that x ∈ D

satisfies dD(x, ci ) > 32dδ for each critical point ci . Write f (x) = y and define the
functions g(z) = z+x

1+x̄ z and h(z) = z−y
1−ȳz . Since g and h preserve the Poincaré metric,

the point 0 = g−1(x) has Poincaré distance at least 32dδ to any critical point of
h ◦ f ◦ g, and Lemma 27 gives

δd−1 ≤ |(h ◦ f ◦ g)′(0)| = |h′(y)|| f ′(x)||g′(0)| = 1 − |x |2
1 − |y|2 | f ′(x)|.

Proposition 28 Let f : D → D be a proper holomorphic map of degree d, and let
R ⊆ D have Poincaré area A. If d · A1/2d < 1/8, the inverse image of R under f will
have Poincaré area at most C3d3A1/d for a uniform constant C3.

Proof Define δ = A1/2d and let S = {z ∈ D | dD(z, ci ) > 32dδ for all i}. Then
f −1(R) ⊆ f |−1

S (R) ∪ (D \ S) and we can estimate the areas of these sets separately.
To estimate the area of D \ S, note that the hyperbolic area of a disk of hyperbolic

radius s is equal to 4π sinh2(s/2), which is smaller than 4πs2 whenever s < 4. As
D \ S is a union of d − 1 disks of hyperbolic radius 32dδ < 4, we find

AreaD(D \ S) ≤ (d − 1)4π210d2δ2 < 212πd3δ2.

To estimate f |−1
S (R), we use our estimate on the derivative. For any open set

U ⊆ f |−1
S (R) such that f |U is conformal, we find

AreaD( f (U )) =
∫∫

f (U )

4

(1 − |w|2)2 dλ(w)

=
∫∫

U

4

(1 − | f (z)|2)2 | f ′(z)|2 dλ(z)

≥
∫∫

U

4

(1 − | f (z)|2)2

(1 − | f (z)|2)2

(1 − |z|2)2 δ2d−2 dλ(z) = δ2d−2AreaD(U ).

Since f has topological degree d, we can therefore estimate the Poincaré area of
f |−1

S (R) by d
δ2d−2 · A = dδ2. Combining this with our estimate on the area of D \ S

gives

AreaD( f −1(R)) ≤ dδ2 + 212πd3δ2 ≤ C3d
3A1/d .

��
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