Skip to main content
Log in

Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Convolutional neural networks (CNNs) have been applied in state-of-the-art visual tracking tasks to represent the target. However, most existing algorithms treat visual tracking as an object-specific task. Therefore, the model needs to be retrained for different test video sequences. We propose a branch-activated multi-domain convolutional neural network (BAMDCNN). In contrast to most existing trackers based on CNNs which require frequent online training, BAMDCNN only needs offline training and online fine-tuning. Specifically, BAMDCNN exploits category-specific features that are more robust against variations. To allow for learning category-specific information, we introduce a group algorithm and a branch activation method. Experimental results on challenging benchmark show that the proposed algorithm outperforms other state-of-the-art methods. What’s more, compared with CNN based trackers, BAMDCNN increases tracking speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BAI Y C, TANG M. Object tracking via robust multitask sparse representation [J]. IEEE Signal Processing Letters, 2014, 21(8): 909–913.

    Article  Google Scholar 

  2. DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]//International Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005: 886–893.

    Google Scholar 

  3. KALAL Z, MIKOLAJCZYK K, MATAS J. Trackinglearning-detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 6(1): 1–14.

    Google Scholar 

  4. NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 4293–4302.

    Google Scholar 

  5. WANG N Y, LI S Y, GUPTA A, et al. Transferring rich feature hierarchies for robust visual tracking [EB/OL]. (2017-02-22). https://arxiv.org/abs/1501.04587.

  6. MA C, HUANG J B, YANG X K, et al. Hierarchical convolutional features for visual tracking [C]//Proceedings of the IEEE International Conference on Computer Vision. Boston, USA: IEEE, 2015: 3074–3082.

    Google Scholar 

  7. WANG L J, OUYANG W L, WANG X G, et al. Visual tracking with fully convolutional networks [C]//Proceedings of the IEEE International Conference on Computer Vision. Boston, USA: IEEE, 2015: 3119–3127.

    Google Scholar 

  8. MA C, XU Y, NI B B, et al. When correlation filters meet convolutional neural networks for visual tracking [J]. IEEE Signal Processing Letters, 2016, 23(10): 1454–1458.

    Article  Google Scholar 

  9. CHEN K, TAO W B. Once for all: A two-flow convolutional neural network for visual tracking [EB/OL]. (2017-02-22). https://arxiv.org/abs/1604.07507.

  10. LI H X, LI Y, PORIKLI F. Deeptrack: Learning discriminative feature representations online for robust visual tracking [J]. IEEE Transactions on Image Processing, 2016, 25(4): 1834–1848.

    Article  MathSciNet  Google Scholar 

  11. CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details: Delving deep into convolutional nets [EB/OL]. (2017-02-22). https://arxiv.org/abs/1405.3531.

  12. JANWE N J, BHOYAR K K. Video key-frame extraction using unsupervised clustering and mutual comparison [J]. International Journal of Image Processing, 2016, 10(2): 73–84.

    Google Scholar 

  13. VEDALDI A, LENC K. MatConvNet: Convolutional neural networks for MATLAB [C]//Proceedings of the 23rd ACM International Conference on Multimedia. Brisbane, Australia: ACM, 2015: 689–692.

    Chapter  Google Scholar 

  14. KRISTAN M, PFLUGFELDER R, LEONARDIS A, et al. The visual object tracking VOT2013 challenge results [C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Sydney, Australia: IEEE, 2013: 98–111.

    Google Scholar 

  15. KRIATAN M, PFLUGFELDER R, LEONARDIS A, et al. The visual object tracking VOT2014 challenge results [C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Paris, France: IEEE, 2014: 1–23.

    Google Scholar 

  16. KRISTAN M, MATAS J, LEONARDIS A, et al. The visual object tracking VOT2015 challenge results [C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Santiago, Chile: IEEE, 2015: 1–23.

    Google Scholar 

  17. WU Y, LIM J W, YANG M H. Object tracking benchmark [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848.

    Article  Google Scholar 

  18. CHEN D P, YUAN Z J, WU Y, et al. Constructing adaptive complex cells for robust visual tracking [C]//Proceedings of the IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 1113–1120.

    Google Scholar 

  19. HARE S, GOLODETZ S, SAFFARI A, et al. Struck: Structured output tracking with kernels [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109.

    Article  Google Scholar 

  20. HE S F, YANG Q X, LAU R W H, et al. Visual tracking via locality sensitive histograms [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Oregon, Portland: IEEE, 2013: 2427–2434.

    Google Scholar 

  21. JIA X, LU H C, YANG M H. Visual tracking via adaptive structural local sparse appearance model [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. RI, USA: IEEE, 2012: 1822–1829.

    Google Scholar 

  22. ZHONG W, LU H C, YANG M H. Robust object tracking via sparsity-based collaborative model [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. RI, USA: IEEE, 2012: 1838–1845.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Chen  (陈一民).

Additional information

Foundation item: the Innovation Action Plan Foundation of Shanghai (No. 16511101200))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Lu, R., Zou, Y. et al. Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking. J. Shanghai Jiaotong Univ. (Sci.) 23, 360–367 (2018). https://doi.org/10.1007/s12204-018-1951-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-018-1951-8

Key words

CLC number

Document code

Navigation