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Abstract Heat stress triggers an evolutionarily conserved set
of responses in cells. The transcriptome responds to hyperther-
mia by altering expression of genes to adapt the cell or organ-
ism to survive the heat challenge. RNA-seq technology allows
rapid identification of environmentally responsive genes on a
large scale. In this study, we have used RNA-seq to identify
heat stress responsive genes in the chicken male white leghorn
hepatocellular (LMH) cell line. The transcripts of 812 genes
were responsive to heat stress (p<0.01) with 235 genes up-
regulated and 577 downregulated following 2.5 h of heat
stress. Among the upregulated were genes whose products
function as chaperones, along with genes affecting collagen
synthesis and deposition, transcription factors, chromatin
remodelers, and genes modulating the WNT and TGF-beta
pathways. Predominant among the downregulated genes were
ones that affect DNA replication and repair along with chro-
mosomal segregation. Many of the genes identified in this

study have not been previously implicated in the heat stress
response. These data extend our understanding of the tran-
scriptome response to heat stress with many of the identified
biological processes and pathways likely to function in
adapting cells and organisms to hyperthermic stress.
Furthermore, this study should provide important insight to
future efforts attempting to improve species abilities to with-
stand heat stress through genome-wide association studies and
breeding.
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Introduction

Fluctuations in environmental temperatures are encountered
over the life span of most organisms. Many species have a
metabolism that is adapted to the temperature range of the
environment in which they evolved. When the external tem-
perature rises above this range, the heat produced by a
homothermic animal exceeds the amount that can be lost to
the environment, resulting in a rise in body temperature. This
triggers an evolutionarily conserved heat stress transcriptome
response modulating genes that control multiple cellular ac-
tivities including protein folding, protein degradation, trans-
port, metabolism, DNA repair, and replication (Lindquist and
Craig 1988; Feder and Hofmann 1999; Kregel 2002).

A starting point for understanding the heat stress response
is identifying the genes that are modulated by hyperthermia.
Numerous studies have identified genes that respond to heat
stress, but high-throughput transcriptome sequencing is a
technology able to provide a more complete catalog of heat
responsive genes (Szustakowski et al. 2007; Li et al. 2011;
Islam et al. 2013; Kristiansson et al. 2013; Smith et al. 2013;
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Wang et al. 2013). While the ultimate goal might be to
identify every gene in every tissue of an organism that
responds to heat stress, a practical first step is to use
in vitro cell culture methods. Cultured cells can be
raised under defined temperature conditions for precise
amounts of time, allowing for careful control of their
environment. Subjecting a cell line to heat stress and
comparing the transcriptome results with control cells
will identify heat responsive genes. The objective of
this work was to use transcriptome sequencing to define
the heat stress response of the chicken hepatocellular
carcinoma cell line, LMH (Kawaguchi et al. 1987),
which was developed from a male white leghorn chicken.
A total of 812 genes consistently responded to heat
stress with 235 induced and 577 repressed following
treatment. Enrichment analysis identified functional
groupings such as molecular chaperones and transcription
factors within the induced genes, and DNA replication and
DNA repair among the repressed genes.

Materials and methods

Cell culture

LMH cells were obtained from ATCC (Manassas, VA) and
cultured in Waymouth’s MB medium with 10 % heat-
inactivated fetal bovine serum in flasks coated with 0.1 %
gelatin. Cells were cultured at 37 °C in 5 % CO2 and passaged
every 2–3 days. Prior to heat stress, cells were grown to 80 %
confluence. Three T-75 (Falcon) flasks were maintained at
control temperature and a second set of three flasks subjected
to heat challenge. Six individual flasks of control cells were
cultured at 37 °C while six flasks of heat-stressed cells were
maintained at 43 °C for 2.5 h. This protocol was chosen as
prior published work indicated it would provide for maximal
heat stress response (Gabis et al. 1996).

RNA preparation

Cells were released from flasks with trypsin and collected in
50-ml conical tubes by centrifugation (1200 RPM; at 37 °C
for control cells, 43 °C for heat-stressed cells). RNAwas pre-
pared using the Qiagen RNeasy mini kit with DNAase treat-
ment and quality-checked using the Agilent 2100
Bioanalyzer. RNAwith a RIN value greater than 9.0 was used
for transcriptome library production.

Transcriptome production and data analyses

Transcriptome libraries were prepared separately from each
control and experimental flask using the Illumina TrueSeq
RNA Sample Preparation Kit. The 12 individual libraries were

sequenced on an Illumina HiSeq 2500 at the University of
Delaware DNA Sequencing Facility. Sequences were mapped
to the 2006 release of the Red Jungle Fowl genome
(International Chicken Genome Sequencing, C 2004) and
gene Reads Per Kilobase perMillion (RPKM) values assigned
using ERANGE (Mortazavi et al. 2008). Expression data were
statistically analyzed using JMP, and genes were assigned to
functional groups using DAVID (Huang et al. 2009a, 2009b)
and eGIFT (Tudor et al. 2010). All fastq files have been sub-
mitted to the GEO database under GEO number GSE55321.

Quantitative RT-PCR

First-strand synthesis was done with superscript II Reverse
Transcriptase (Life Technologies) according to the manufac-
turer’s directions. Quantitative reverse transcription PCR
(qRT-PCR) was performed using gene-specific primers
(Table 2) and the Fast SYBER green master mix (Applied
Biosystems) on an Applied Biosystems 7500 Fast Real Time
PCR System according to the manufacturer’s directions.

Results and discussion

Overview of results

Over 250 million transcriptome reads were generated across
12 separate flasks of control or heat-stressed LMH cells
(Table 1). A total of 15,945 chicken genes were analyzed in
LMH cells for their response to heat stress at 43 °C

Table 1 Transcriptome Read Depth for Each Sample Library

Library Total Reads Mapped Reads Unique Reads

Control 1 26,481,906 89.9 % 95.9 %

Control 2 35,224,137 89.8 % 96.4 %

Control 3 35,841,457 90.4 % 95.8 %

Control 4 22,491,917 87.8 % 96.0 %

Control 5 17,147,757 87.3 % 96.5 %

Control 6 13,106,307 87.4 % 96.6 %

Heat stress 1 33,816,428 90.0 % 95.2 %

Heat stress 2 13,710,771 90.0 % 95.8 %

Heat stress 3 27,526,906 90.4 % 96.0 %

Heat stress 4 19,754,286 87.6 % 96.2 %

Heat stress 5 26,463,555 87.7 % 96.1 %

Heat stress 6 31,610,408 88.2 % 96.2 %

The total number of sequences from each library prepared from separate
flasks of either control (37 °C) or heat stressed (43 °C) LMH cells is given
in the Total Reads column. The Mapped Reads column is the percentage
of these total reads that mapped to the chicken genome. The Unique
Reads column is the percentage of mapped reads that only correspond
to one site in the genome. Combined, this data yielded more than 25×107

reads that mapped uniquely to the chicken genome.
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versus 37 °C for 2.5 h (Supplementary File 1). A total of 12,
299 genes were detected under heat or control conditions with
RPKM values greater than 0.1. The log2 values of the ratio
between the heat stress and control RPKM were determined
for each of these genes. A t test was applied to identify
genes that were significantly differentially expressed be-
tween the two conditions (p<0.01). This generated a list
of 812 genes that reproducibly responded to heat chal-
lenge across all 12 samples, with 235 genes whose ex-
pression was increased and 577 genes whose expression
was decreased after heat challenge (Supplementary File
2). Hierarchical clustering (Fig. 1) of the 812 responsive
genes segregated the samples based on environmental
condition (heat vs. control) with principal component
analysis (Supplementary File 3) indicating that 22 %
of the variance in the data was associated with the cell
incubation temperature. For a complete list of all genes
discussed in this paper, see Supplementary File 4.

Validation

Illumina RNA-seq transcriptome data was validated by quan-
titative RT-PCR (qRT-PCR) using ten genes, comparing ex-
pression levels between control and heat-stressed samples
(Table 2). Although the absolute fold changes differed be-
tween qRT-PCR and RNA-seq, the direction of change was
concordant for each gene. Plotting the qRT-PCR delta Ct
values (difference between heat stress and control Ct values)
versus the Log2RPKM for the genes yielded an R2 value of
0.90 (Fig. 2), which is consistent with other studies comparing
correlations between RNA-seq and qRT-PCR studies (Core
et al. 2008; Nagalakshmi et al. 2008; Camarena et al. 2010;
Feng et al. 2010).

Heat shock factors

Four heat shock factors (HSFs), HSF2, HSF3, HSF4, and
HSF5, were detectably expressed in the LMH cells
(Table 3). HSF2 and HSF3 transcripts were 30–100-fold more
abundant than HSF4 and HSF5 although no HSF showed a
significant change in expression as a function of temperature
(Table 3). In the chicken, HSF1 is not yet mapped to a specific

Fig. 1 Hierarchical clustering Hierarchical cluster analysis of
transcriptome data from heat challenged and control cells. Note that the
control and heat stress samples cluster separately. Red corresponds to

genes whose transcripts were enriched in the corresponding sample
while blue corresponds to genes whose transcripts were reduced in that
sample.

Table 2 Gene symbols and primers used for qRT-PCR validation of
RNA seq dat

Gene Primer (5′->3′)

BAG3_R GATGGGAGTTGAGGGCTGTA

BAG3_F TACCATCAGGCCCAGAAGAC

CAPS2_R CCCCATGGGTTCCTTAAGAT

CAPS2_F GGCAGGCAAAGCTACAGAAG

DNAJA4_R TCTATTCATTCGGCCTCCAC

DNAJA4_F GAAGTACCACCCCGACAAGA

GABRA2_R TGAATTTCGAGCACTGATGC

GABRA2_F GGCCAAACAATTGGAAAAGA

HMOX1_R GACGCCGTGACCAGCTTGAAC

HMOX1_F GCCACCAAGGAGGTGCACGA

HSP25_R GGCGAAGTTCTTCACATCCT

HSP25_F CACGCAGAGACCATCTTCAG

KLHDC2_R GACGCCTTGTGCCATTATTT

KLHDC2_F GCTCATGCGTGTGCTACAGT

MYCN_R TTGGTTGGATCATGGGTTTT

MYCN_F ACCACTTTTCCATCGGTCAG

P4HA2_R CTGTGATCTGCTGCATTCGT

P4HA2_F AACAACTGGCCAAACCAAAG

UCP3_R GAACGACAAAGGTTGGCAGT

UCP3_F CGGGATTTGATTCTGTGCTT
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chromosome, and for this reason, we do not have a determined
RPKM level for HSF1. However, inspection of the unmapped
sequence reads by BLAST identifies chicken HSF1 in the
LMH transcriptome. Hence, all five known HSFs are
expressed in this cell line.

Chaperones, heat shock protein, and DNAJ genes

Amajor function of many heat shock inducible gene products
is to serve as protein chaperones, assisting in folding of na-
scent proteins and inhibiting protein aggregation (Lindquist
and Craig 1988; Hightower 1991; Moseley 1997). Fifteen
genes encoding chaperones were modulated by heat stress
(Table 4). The greatest induction was observed for
LOC772158, a heat shock protein 30 (HSP30) like gene prod-
uct (223-fold), while the least was DNAJB6 (2-fold). Two
genes encoding products classified as chaperones, HSPA14
and DNAJC17, exhibited reduced expression following heat
treatment.

DAVID functional enrichment analysis (Huang et al. 2009)
of gene transcripts elevated by heat stress provided an over-
view of processes affected by hyperthermia. The functional
groupings included Chaperone, Unfolded Protein Binding,

Endoplasmic Reticulum, Protein Kinase Activity, and
Regulation of Transcription. eGIFT (Tudor et al. 2010) iden-
tifies informative terms (iTerms) for individual genes using
text-mining approaches. Because iTerms are not limited to
ontology terms, iTerms can provide a finer grained interpreta-
tion of gene lists than GO ontology analysis (Table 5). The
majority of iTerms refer to processes and functions typically
modulated during heat stress including molecular chaperones,
co-chaperone, endoplasmic reticulum (ER), secretion, and ap-
optosis. Many of the gene products in these groups are chap-
erones that assist in proper protein folding.

Fig. 2 Relationship between
RNA-seq and qRT-PCR R-
squared analysis of the fold
difference relationship between
heat challenged and control levels
in the expression of 10 genes as
determined by transcriptome
analysis (X-axis) and quantitative
reverse transcriptase PCR
(Y-axis).

Table 3 RPKM values for Heat Shock Factor (HSF) transcription
regulatory genes

Heat Shock Factor RPKM Control RPKM Heat Stress

HSF2 46.2 32.8

HSF3 8.9 10.7

HSF4 0.1 0.1

HSF5 0.5 0.3

Table 4 Fold change for Chaperone gene products

Entrez Gene ID Symbol Fold Change Heat Stress

772158 LOC772158 223

428310 HSP25 157.5

423504 HSPA2 64

416988 HSPB8 36.7

396228 SERPINH1 8.6

418917 HSPH1 8

423463 HSP90AA1 6.5

396487 HSPA5 5.3

395853 HSPA8 4

374163 HSP90B1 3.5

416339 HSPA4 3

427376 DNAJA1 3

420448 DNAJB6 2

770519 DNAJC17 0.4

418802 HSPA14 0.3

Fold change for Chaperone gene products as determined by: (Mean
RPKM(43oC) ÷ Mean RPKM (37 °C))

942 L. Sun et al.



Collagen scaffold

Six gene products affecting the collagen scaffold were elevat-
ed by heat stress: serpin peptidase inhibitor 1 (SERPINH1);
La ribonucleoprotein domain family, member 6 (LARP6);
TIMP metallopeptidase inhibitor 3 (TIMP3); discoidin do-
main receptor tyrosine kinase 2 (DDR2); connective tissue
growth factor (CTGF); and cysteine-rich, angiogenic inducer,
61 (CYR61). SERPINH1 is a molecular chaperone responsi-
ble for proper folding and secretion of collagen (Kurkinen
et al. 1984; Nagata et al. 1986; Cates et al. 1987) while
LARP6 is a La ribonucleoprotein domain family member that
binds the 5′ noncoding region of the collagen mRNA and
directs collagen protein synthesis to discrete locations within
the endoplasmic reticulum (Cai et al. 2010a, 2010b). TIMP3
(Pavloff et al. 1992) plays a role in the extracellular stabiliza-
tion of collagen matrices by inhibiting metalloproteases (Leco
et al. 2001), while DDR2 functions as a collagen receptor and
plays an important role in suppressing liver fibrosis (Olaso
et al. 2011). Finally, both CTGF and CYR61 are growth fac-
tors that, among other things, promote synthesis and deposi-
tion of collagen (Duncan et al. 1999; Brigstock 2002).

Transcription factors

Several transcription factors were positively regulated by heat
stress, two of which, activating transcription factor 4 (ATF4)
and nuclear transcription factor A (NFYA), are known to cou-
ple ER stress to transcriptional regulation. Also enriched was
the transcription factor E2F7 that regulates the cell cycle, with
elevated E2F7 expression causing arrest in G2 phase (de
Bruin et al. 2003). Fourteen other genes whose products reg-
ulate transcription showed a significant increase in expression
when LMH cells were heat-stressed (Table 5). Salt-inducible

kinase 1 (SIK1) responds to osmotic stress (Wang et al. 1999;
Sjostrom et al. 2007), TSC22 domain family, member 1
(TSC22D1) is induced by TGFß (Kester et al. 1999), trans-
membrane protein 173 (TMEM173) responds to viral infec-
tion (Ishikawa et al. 2009), and regulatory factor X (RFX2) is
involved in testes development (Horvath et al. 2004; Wolfe
et al. 2004), but none of these have previously been shown to
be heat responsive. Two members of the Kruppel-like tran-
scription factor family, KLF5 and KLF6, also responded to
heat stress in these experiments. To date, only KLF4 has been
shown to be induced by heat stress (Liu et al. 2006); in our
experiments, KLF4 expressionwas not detected in LMH cells.
Perhaps the paralogous KLF5 and KLF6 gene products re-
place KLF4 function in LMH cells. Six additional transcrip-
tion regulatory genes were enriched by heat challenge that
have not, to our knowledge, been previously implicated in
heat stress response including cAMP responsive element
modulator (CREM), v-myc related oncogene, neuroblastoma
derived (MYCN), nescient helix loop helix 1 (NHLH1), nu-
clear receptor subfamily 0, group B, member 1 (NR0B1),
pleiomorphic adenoma gene 1 (PLAG1), and Scm-like with
four MBT domains protein 1 (SFMBT1).

Chromatin modification

Four gene products that were upregulated by heat stress con-
trol transcription by chromatin modification. K(lysine) acetyl-
transferase 2A (KAT2A) promotes histone acetylation (Nagy
and Tora 2007), while Jun dimerization protein 2 (JDP2) in-
hibits (Jin et al. 2006) histone acetylation, jumonji domain
containing 6 (JMJD6) is responsible for demethylation of
HIS3 at arginine residues (Chang et al. 2007), and SFMBT1
is a member of the polycomb protein family that inhibits tran-
scription by altering chromatin localization (Alfieri et al.
2013). Another four genes controlling epigenetic modulation
are downregulated by heat stress: chromatin assembly factor
1, subunit B (CHAF1B); ubiquitin-like with PHD and ring
finger domains 1 (UHRF1); DNA (cytosine-5-)-methyltrans-
ferase 3 beta (DNMT3B); and enhancer of zeste homolog 2
(EZH2). CHAF1B (Nabatiyan and Krude 2004), UHRF1
(Hashimoto et al. 2009), and DNMT3B (Wang et al. 2007)
function inmaintaining DNAmethylation and silencing genes
through incorporation of DNA into heterochromatin. EZH2 is
a polycomb family member that is responsible for silencing
genes during development by trimethylation of Histone H3
(Rajasekhar and Begemann 2007).

The different transcription factors and chromatin modifiers
whose transcripts were affected by heat stress suggest a com-
plex interplay between transcription activators, repressors, and
epigenetic modifications in response to heat challenge. For
example, KLF5 is a strong transcriptional activator typically
expressed in proliferating cells of the gastrointestinal track that
plays a role in suppressing apoptosis (Sun et al. 2001). In

Table 5 iTERMS for gene significantly up-regulated by heat stress

iTERM Gene symbols

SECRETION HSP90B1, SFRP1, HSPA5, CYR61, NTNG1,
WNT4, CAPS2, AMH, ABHD5, MYOC,
SERPINH1, CTGF, CBLN1, SYT4, INHBA,
ABCC2

APOPTOSIS HSPA5, BAG3, HSPA4, LARP6, TIMP3, E2F7,
HSP90AA1,KLF5, HSP25, ATF4, HSPH1,
MAP3K5, TSC22D1, SQSTM1

TRANSCRIPTION
FACTOR

ATF4, NFYA, RFX2, JDP2, NHLH1, CREM,
PLAG1, TMEM173, NFYA, KLF5, KAT2A,
SIK1, KLF6, NR0B1, TSC22D1

MOLECULAR
CHAPERONES

HSP90B1, HSPA5, HSPA2, HSPA4, HSPA8,
DNAJA1, HSP90AA1, SERPINH1, HSP25,
HSPH1, DNAJB6, HSPB8

STRESS HSP90B1, HSPA5, BAG3, HSP90AA1,
SERPINH1 HSPA2, HSPA4,
HSPA8, HSP25, ATF4, HSPH1
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contrast, NR0B1 functions as a transcriptional repressor, pos-
sibly affecting the large number of genes whose expression is
suppressed by heat stress in the LMH cells. At least eight
genes affected by heat stress (up regulated or downregulated)
modulate transcription by epigenetic mechanisms and could
play an important role in both short- and long-term responses
to heat. These epigenetic regulators control different types of
modifications including DNA methylation, histone acetyla-
tion, and histone methylation. Exposure of chicken embryos
to elevated temperatures during embryonic development im-
proves the ability of the hatched bird to tolerate heat stress
(Wang and Edens 1998; Pavani and Piestun 2008; Piestun
et al. 2008, 2009; Willemsen et al. 2010; Al-Zhgoul et al.
2013). Conceivably, the epigenetic regulators identified in this
study could be involved in inducing the tolerance phenomena.

Signaling pathways

Two signal transduction cascades appear to be affected by heat
stress: TGFß (Massague 1990; Lawrence 1996) and WNT
(Clevers 2006). Five genes affecting the TGFß pathway were
induced by heat stress, three of which, SMAD family member
6 (SMAD6), Endoglin (ENG), and TSC22 domain family,
member 1 (TSC22D1), modulate signaling by direct interac-
tions with components of the TGFß1 pathway. No changes
were detected in the level of TGFß ligands as a function of
heat stress. However, only ligands TGFB2 and TGFB3 have
been identified in the chicken genome; consequently, our cur-
rent analysis only quantifies expression of those two genes.
The expression data for the TGFß receptors, TGFBR1 and
TGFBR2, are conflicting, with the level of TGFBR1 elevated
(mean control, 45 RPKM; mean heat-treated, 65 RPKM), but
TGFBR2 decreased by heat shock (mean control, 0.13
RPKM; mean heat-treated, undetected). One WNT ligand,
WNT4, was increased threefold by heat treatment. An addi-
tional four other genes that were elevated by heat stress, Sp5
transcription factor (SP5), secreted frizzled-related protein 1
(SFRP1), dapper, antagonist of beta-catenin (DACT1), and
sex determining region Y–box7 (SOX7), inhibit the WNT
pathway, either by interfering with intracellular signaling or
by blocking canonical WNT-mediated transcription activation
(Cavallo et al. 1998; Uren et al. 2000; Takash et al. 2001;
Zhang et al. 2006; Fujimura et al. 2007).

The increased expression of SMAD6, KLF6, and CTGF
suggests that the TGFß pathway was activated during heat
stress. This could be achieved, even in the absence of in-
creased TGFß ligand, by the increase in TGFßR1 receptor
expression. Elevated expression of this receptor might in-
crease the sensitivity of cells to existing ligand levels.
Increased signaling through the TGFß pathway inhibits apo-
ptosis and improves cell survival during hyperthermia (Jia and
Souchelnytskyi 2011). The WNT pathway typically promotes
cellular growth. One WNT ligand, WNT4, was upregulated

by hyperthermia, and this ligand functions as an antagonist of
the canonical WNT signaling pathway. The remainder of the
heat-induced genes affecting the WNT pathway typically in-
hibit WNT signaling. In addition, the chaperone encoded by
the DNAJB6 gene has recently been shown to inhibit the ca-
nonical WNT signaling pathway (Mitra et al. 2010), and
DNAJB6 was induced in the LMH cells by heat stress. The
cumulative effect of heat stress on the TGFß and WNT path-
ways appears to be promoting cell survival during heat stress
by inhibiting apoptosis (TGFß) and suppressing proliferation
(WNT inhibition).

DNA repair and replication

DAVID functional enrichment analysis classified transcripts
enriched in control cells into two groups: DNA replication and
DNA repair. Characterizing this gene list with eGIFT iTerms
supported the DAVID analysis (Table 6 and Fig. 3) and ex-
tended it to identify genes involved in chromosomal segrega-
tion and telomeric function. Some of these downregulated
genes control the onset of S phase, including origin recogni-
tion complex, subunit 2 (ORC2), polo-like kinase 1 (PLK1),
STE20-like kinase (SLK), and DBF4 homolog B (DBF4B),
and decreased expression of these genes may slow the cell
cycle. For example, the kinase PLK1 plays an important role
in regulating mitotic entry, spindle formation, and cytokinesis
(Lenart et al. 2007; Takaki et al. 2008) and PLK1 knockdown
in non-transformed diploid cells prolongs S phase (Lei and
Erikson 2008).

This study identified several genes affecting DNA repair
and replication that are downregulated by heat stress. The
ATR-Chk1 pathway plays a major role in repair of double-
stranded breaks (Kampinga and Dikomey 2001; Krawczyk
et al. 2011), and one of the several proteins that function in
this pathway, Rad17 (Yan and Michael 2009a, 2009b; Tuul
et al. 2013) is downregulated in LMH cells by heat stress.
Several other proteins affecting DNA repair, DNA replication,
spindle formation, chromatin structure, and cell cycle check-
points were also downregulated by heat stress in the LMH
cells (Fig. 3). Given that heat stress responses are frequently
conserved across the evolutionary spectrum, these observa-
tions in a chicken liver cancer cell line may be relevant to
hyperthermic treatment in oncology patients prior to radiation
therapy. A major effect of radiation therapy is causing double-
stranded breaks in DNA, thereby triggering apoptosis.
Downregulating genes that repair such damage might play
an important role in sensitizing tumors to radiation treatment
(Kaur et al. 2011; Dewhirst and Chi 2013).

Endoplasmic reticulum and Golgi

eGIFT also identified the endoplasmic reticulum and Golgi as
cellular compartments affected by genes downregulated by
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heat stress. Stromal interaction molecule 1 (STIM1) and
ORAI calcium release–activated calcium modulator 1
(ORAI1) gene products are found in the endoplasmic reticu-
lum and both modulate intracellular Ca2+ levels. STIM1 is a
calcium sensor that activates plasma membrane ORAI1 when
calcium levels are depleted in the ER (Putney 2007). This
leads to replenishment of the ER calcium stores. Another
downregulated gene, membrane-bound transcription factor
peptidase, subunit 2 (MBTPS2), controls the ER stress re-
sponse by functioning as a metalloprotease responsible for
activating transcription factors, such as activating transcrip-
tion factor 6 (ATF6), that control the unfolded protein

response (Rawson et al. 1997; Haze et al. 1999). While
ATF6 expression was detected in the LMH cells, its transcript
level did not change in response to heat stress. Three down-
regulated genes function in protein modification including
leucine-proline-enriched proteoglycan 1 (LEPRE1),
a s p a r a g i n e - l i n k e d g l y co s y l a t i o n 1 , b e t a - 1 , 4 -
mannosyltransferase homolog (ALG1), and ST6 beta-
galactosamide alpha-2,6-sialyltranferase 1 (ST6GAL1).
LEPRE1 and ALG1 function in the ER, with the former re-
sponsible for prolyl hydroxylase activity during collagen mat-
uration (Vranka et al. 2004) while the latter carries out the first
step in the production of lipid-linked oligosaccharides
(Albright and Robbins 1990). ST6GAL1 is a sialyltransferase
that functions in glycosylation in the Golgi (Weinstein et al.
1982, 1987). Finally, three downregulated gene products, sec1
family domain containing 1 (SCFD1), v-SNARE homolog
(YKT6), and vacuolar protein sorting 8 homolog (VPS8),
function in proper transport of cellular vesicles (Chen and
Stevens 1996; Zhang and Hong 2001; Kosodo et al. 2002).

Translation

Two transcripts downregulated by heat stress, HSPA14 and
MTOR associated protein, LST8 homolog (MLST8), have
potential roles in controlling translation. HSPA14 encodes a
protein that is associated with the ribosome and functions as a
chaperone for nascent proteins, controlling their folding as
they emerge from the ribosome. Why the expression of
HSPA14 is downregulated in LMH cells during heat stress is
uncertain. Potentially, reduction of HSPA14 could lower the
rate of translation by slowing the emergence of properly
folded proteins from the ribosome. This could contribute to
reducing the protein synthesis burden during heat stress.
MLST8 is a component of the mTORC1 complex, and one
effect of mTORC1 activation is increased translation.

Fig. 3 Functional network of selected down-regulated genes. Genes
down-regulated by heat stress and associated iTerms affecting DNA
replication and repair processes. The yellow nodes correspond to gene
products and the red nodes refer to iTerms associated with those gene
products.

Table 6 iTERMS for genes significantly down-regulated by heat stress

iTERM Gene symbols

MITOSIS RASGRF1, TNKS, KIF11, RCC2, RAD21, RAD50 , PCNT, TUBA3E, TACC3,
CDC14B, PAPD4, PLK1 TLK1, CDC20, KIF4A, DBF4B, CLIP1, ORC2L,
CHAF1B, RAD17, SLK, NEDD9

DNA DAMAGE RASGRF1, FANCI, RAD21, ERCC3, RAD50, UIMC1 PLK1, PPP6C, DBF4B,
TDG, TDP1, CHAF1B, RAD17, UHRF1, CCDC98

MICROTUBULES CKAP4, KIF11, RAD21, PCNT, TUBA3E, TACC3, GTSE1, PLK1, RANBP10,
CDC20, KIF4A, CHFR, CLIP1, SLK

APOPTOSIS MAP2K4, CKAP4, KIF11, FAF1, BAG1, HIP1R, IKBKB, PLK1, HIP1, SLK, NEDD9

SPINDLE KIF11, RCC2, RAD21, PCNT, TUBA3E, CDC14B, PLK1, EWSR1, KIF4A, DBF4B, CLIP1

ACTIN CYTOSKELETON TECR, CLIP1, TUBA3E, SLK, HIP1R, RHOC, MYO6 HIP1, MAGI2, DOCK1

CHROMOSOME TNKS, RAD21, RAD50, PCNT, ASPM, EWSR1, CDC20, TECR, ORC2L, RAD17

DNA REPLICATION RASGRF1, RAD21, TECR, DBF4B, ORC2L, TDP1, CHAF1B, UHRF1, RAD17, PIF1

ENDOPLASMIC RETICULUM LEPRE1, STIM1, RTN1, PTGES2, CYB5R4, PCSK7, MBTPS2, SCFD1, ALG1, ORAI1
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Reduction of MLST8 levels would likely reduce overall pro-
tein synthesis by lowering the available pool of mTORC1.
Taken together, downregulation of these two transcripts may
play a direct role in the overall repression of protein synthesis
seen during heat stress (Yamasaki and Anderson 2008; Shalgi
et al. 2013)

Correlation analysis

Pearson correlation analysis was conducted on all differential-
ly expressed genes and identified four networks of heat-
modulated genes (Fig. 4). We limited this analysis to genes
having connections to at least three other genes with correla-
tion coefficients greater than 0.95 (Mansson et al. 2004). Two
of the clusters contained downregulated genes (clusters 1 and
2) while the other two (clusters 3 and 4) contained upregulated
genes. Highly correlated downregulated genes affected a va-
riety of processes including DNA replication and repair,
mRNA polyadenylation, pro-inflammatory responses, and
glycosylation. The cluster of upregulated genes is predomi-
nantly comprised of genes encoding molecular chaperones
along with some genes not previously associated with heat
stress response. Finally, clusters 2, 3, and 4 are connected by
several downregulated genes in cluster 2 that show strong
negative correlation with several genes that are upregulated
by heat stress.

A reasonable hypothesis is that individual clusters contain
genes that are coordinately regulated by the same transcription
factors. Given that HSFs form functional heterotrimers
(Sandqvist et al. 2009), it is possible that different combina-
tions of the HSFs have distinct transcription factor activities
and could yield these different networks. Also, the strong neg-
ative correlations between up regulated and downregulated

genes (i.e., HSPA4 andMLST8) in clusters 2, 3, and 4 suggest
a mechanism in which the same transcription factor is posi-
tively regulating one set of genes (clusters 3 and 4), while
negatively regulating another set (cluster 2). Future work can
use overexpression and knockdown approaches to evaluate
the impact of changing the levels of different transcription
factors on these networks.

It is possible that heat responsive genes may function in
setting body temperature. The Animal Quantitative Trait Loci
(QTL) Database (Hu et al. 2013)(Release 24, Aug 25, 2014)
identifies QTLs associated with body temperature mapped to
five chicken chromosomes (chromosomes 2, 3, 4, 6, and 23).
Inspecting the chromosomal locations of the heat stress re-
sponsive genes defined in this study (Table 7) provides a total
of 25 genes located within the QTL boundaries on chromo-
somes 2, 3, 4, and 6. These 25 can be considered candidate
genes for regulating body temperature.

Overall, this work has identified 812 genes whose tran-
scription is modified by heat stress. Based on numerous pre-
vious studies, many of the genes identified in the current study
were predicted to be responsive to heat stress (Lindquist and
Craig 1988; Akerfelt et al. 2010). However, several of the
genes either upregulated or downregulated by heat challenge
in our studies have not, to our knowledge, been previously
identified as heat responsive. Multiple biological processes
were affected by the responsive genes including translation,
transcription, chromatin modification, DNA repair, and DNA
synthesis. In addition, two signaling pathways were modulat-
ed by heat stress: TGFß and WNT. The heat responsive genes
affecting the TGFß pathway indicate activation of this path-
way, while the WNT pathway appears to be inactivated.
Current studies in our laboratory are using RNA-seq to iden-
tify heat responsive genes following hyperthermic treatment

Fig. 4 Pearson Correlation
Network Networks containing
significantly correlated gene pairs
(Pearson correlation coefficient>
0.95) that were modulated either
up or down by heat stress. Nodes
in cluster 1 (green) or cluster 2
(purple) were down-regulated in
heat challenge while nodes in
cluster 3 (gray) or cluster 4
(brown) were up-regulated. Red
edges indicate positive correlation
between gene pairs while blue
edges indicate negative
correlation.
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of chickens with the goal of providing a more complete cata-
log of heat responsive genes.

Broader implications

We have examined the transcriptome response of the chicken
LMH hepatocarcinoma cell line to hyperthermia using
RNA-seq and identified biological processes and pathways
impacted by heat stress. It is important to recognize the
nature of the cells studied; the LMH cell line was obtain-
ed from a male chicken fed diethylnitrosamine, a potent
inducer of liver cancer (Kawaguchi et al. 1987). The line
was derived in 1987 and has adapted to long-term growth
in cell culture. When comparing our results with analyses
of response to heat stress in other cell lines or tissues,
both similarities and differences are noted. Among the
major similarities across cell lines from different species
are increases in transcripts encoding chaperones and co-
chaperones that play important roles in maintaining ho-
meostasis during heat stress (Lindquist and Craig 1988;
Murray et al. 2004). Responses in these functional groups

of genes are also noted in the livers of chickens (Schmidt,
unpublished), ducks (Zeng et al. 2014), and other animals
(Flanagan et al. 1995). Another common response to heat
stress are changes in gene expression consistent with cell
cycle arrest (Sonna et al. 2002) although this is variable.
For example, the human fibroblasts exhibit cell cycle ar-
rest during hyperthermia while human Hela and K-562
cancer cell lines do not (Murray et al. 2004). Upregulation
of the TGFß pathway through different mechanisms has been
noted in other cell culture systems (Jia and Souchelnytskyi
2011; Li et al. 2015) and in scrotal tissues (Cai et al. 2011)
during heat stress. In reviewing this information, it becomes
apparent that not all cell lines or tissues respond to heat
stress in exactly the same fashion. The total response
likely depends on a combination of variables including
the genetic composition of the target species, the genomic
changes that have occurred due to past environmental stresses,
and the nature of the current heat challenge (Sonna et al.
2002). An important future goal will be to relate heat stress
transcriptome responses at the cellular and organismal level to
these different variables.

Table 7 Heat Responsive genes mapping to QTL locations that regulate body temperature. QTL locations were obtained from the Animal QTL
Database

GENE CHROMOSOME Start Finish Ave. Control RPKM Ave. Heat Stress RPKM

NSUN2 2 82,300,000 87,200,000 93.5 49.4

MOCOS 2 82,300,000 87,200,000 2.01 1.08

PDE10A 3 35,500,000 51,300,000 12.5 28.5

PNLDC1 3 35,500,000 51,300,000 0.09 0.24

SHPRH 3 35,500,000 51,300,000 1.65 0.87

UST 3 35,500,000 51,300,000 3.80 7.25

EXOSC9 4 50,900,000 88,400,000 35.7 12.6

SYNPO2 4 50,900,000 88,400,000 0.35 0.13

METTL14 4 50,900,000 88,400,000 24.4 13.5

TLR3 4 50,900,000 88,400,000 3.28 1.64

SLC7A2 4 50,900,000 88,400,000 0.89 0.34

KCTD8 4 50,900,000 88,400,000 4.00 1.25

ATP8A1 4 50,900,000 88,400,000 3.66 1.80

RBM47 4 50,900,000 88,400,000 28.9 16.5

CHRNA9 4 50,900,000 88,400,000 0.33 0.08

PCDH7 4 50,900,000 88,400,000 0.88 0.44

ANAPC4 4 50,900,000 88,400,000 7.65 4.23

CCDC149 4 50,900,000 88,400,000 4.84 2.11

TBC1D14 4 50,900,000 88,400,000 14.3 7.18

AFAP1 4 50,900,000 88,400,000 3.70 8.21

TACC3 4 50,900,000 88,400,000 78.7 29.6

LOC423899 6 4,500,000 33,800,000 0.26 0.07

BAG3 6 4,500,000 33,800,000 33.8 806.0

LHPP 6 4,500,000 33,800,000 11.1 6.15

DOCK1 6 4,500,000 33,800,000 6.11 2.65
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