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Abstract: As a result of the interplay between advances in computer hardware, software, and algorithm, 

fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this 
paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on 
multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale 
linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel 
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computing resources (such as high-performance clusters), 
desktop computers and workstations still dominate the work 
environment for reservoir simulation engineers. Because 
of the interplay of the three “walls” —the memory wall, 
the instruction level parallelism wall, and the power wall 
(the chip’s overall temperature and power consumption)—
the peak performance of a single core has almost stopped 
improving. Even worse, single-core performance has started 
to deteriorate in some cases. There is a trend toward using 
multicore processors, which helps CPU designers to avoid the 
high power-consumption problem that comes with increasing 
chip frequency. As CPU speeds rise into the 3-4 GHz range, 
the amount of electrical power required is prohibitive. 
Hence, the trend toward multicore processors started and 
will continue into the foreseeable future. OpenMP is an 
application program interface that can be used to explicitly 
direct multicore (shared memory) parallelism. It is a 

and environment variables that can be used to specify shared 
memory parallelism in Fortran and C/C++ programs.

Several difficulties can arise when using multithread 
implementation for preconditioned Krylov subspace methods: 
i) Some preconditioners use sequential algorithms, like 
Gauss-Seidel; ii) OpenMP programs sometimes require more 
memory space than their corresponding sequential versions 
do. When a numerical algorithm is implemented in OpenMP 
or any other multithread computer language, it is important 

1 Introduction
Simulation-based scientific discovery and engineering 

algorithms (as well as their implementations). This demand is 
the main driving force for developing extreme-scale computer 
hardware/software during the last few decades. Reservoir 
simulation plays an important role both in designing an 
efficient development process and in improving recovery 
factors. Significant research effort has been devoted to 
creating fine-scale reservoir models and efficient reservoir 
simulators on high-performance computers; see Hayder and 
Baddourah, 2012 and references therein for details. 

Reservoir engineers are building high-resolution reservoir 
models (Pavlas, 2002; Dogru et al, 2009), on which numerous 
simulation runs are performed for the purpose of history 
matching and model validation. According to a previous case 
study by Saudi Aramco (Pavlas, 2002), a high-resolution 
model can preserve reservoir heterogeneity at a fine scale 
and thus maintain reservoir character and describe complex 
water encroachment. Saudi Aramco obtained an excellent 
historical validation using a 128-node cluster and the resulting 
predictions were in line with the company’s expectations. 

Despite of the increasing availability of more powerful 
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to maintain the convergence rate of the corresponding 
sequential algorithm. However, this is not always possible as 
many numerical algorithms are sequential in nature. When 
working with sparse matrices in compressed formats, like 
the Compressed Sparse Row format, we sometimes need 
to introduce auxiliary memory space. This becomes an 
increasingly heavy burden as the number of threads increases. 
We will analyze the parallel interpolation and coarse-grid 
operators in the setup phase of the algebraic multigrid (AMG) 
method based on the fact that the coefficient matrices we 
consider are banded.

In order to meet the increasing demand for high-
resolution reservoir simulations in low-end desktop 
computing environments (multicore CPUs, sometimes 
with heterogeneous co-processors), we design and develop 
new cost-effective reservoir simulation techniques, such 
as different fluid models and discretization methods, for 

implementation of multilevel preconditioners for solving 
large-scale fully-implicit simulations of the black oil model. 
Some of the materials in this paper have been previously 
presented in two conference proceedings by the authors 
(Wu et al, 2013a; Feng et al, 2014) and we repeat them 
for completeness. The main contribution of this paper is 
the new numerical study on the OpenMP performance of 
the multilevel FIM solver, which has not been seen in the 
literature. 

The rest of this paper is organized as follows: In Sec. 
2, we briefly review the mathematical model and its fully 
implicit discretization method. We discuss the data structure 
for block sparse matrices in Sec. 3, after which we introduce 
a preconditioner based on a successive subspace correction 
framework in Sec. 4. We discuss several implementation 
issues of the proposed algorithm using OpenMP. We then 

and multicore speed-up of the proposed preconditioner in 
Sec. 6. Finally, we summarize the discussion with a few 
concluding remarks in Sec. 7. 

2 Mathematical model and its fully implicit 
discretization

Most of China’s oil fields are located in continental 
basins and many are characterized by serious heterogeneity, 
low permeability, and high oil viscosity (Han, 1998; Han 
et al, 1999). Water breakthrough occurs at an early stage of 
development in these fields, which results in low recovery 

employed. Higher resolution reservoir modelling is needed to 

The black oil model is often applied in the primary and 
secondary oil-recovery stages. In this model, the fluid is 
assumed to have three quasi-components (Water, Oil, and 
Gas) and they form three respective phases (water, oil, and 
gas): The water phase does not exchange mass with the 
other phases, and the liquid and gaseous phases exchange 
mass with each other. As a widely accepted approach, the 
isothermal black oil model solves the three-dimensional 
three-phase equations of the conservation of mass (volume) 

in porous media in the standard surface conditions, subject 
to appropriate initial and boundary conditions (Chen et al, 
2006). The material balance of the hydrocarbon gaseous (gas), 
liquid (oil), and water components is described, respectively, 
by

(1)
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The phase saturations appear to satisfy the condition

(5)g wo 1S S S

We further assume that the capillary pressures characterize 
the pressure differences between phases:

(6)g cgoo w cow o,   P P P P P P

Remark 1 In this paper, we focus on the fully implicit 
method for solving the above black oil model. The methods 
discussed here can be readily extended to other models 
and numerical discretization schemes. For example, a new-
generation simulator can also handle the well-known volatile 
oil model in which the oil mass balance equation (Eq. (2)) is 
replaced by

(7)
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Before we start to discuss how to solve the above 

rate and the total liquid production rate constraints can 
be applied for the wells. When the bottom-hole pressure  
Pbh cannot sustain the fixed flow rate, the well equation 

For simplicity, we will not present details pertaining to the 
treatment of well constraints. When the reservoir pressure 
drops below the bubble-point pressure (undersaturated state), 
the hydrocarbon phase splits into a liquid (oil) phase and a 
gaseous (gas) phase at the thermodynamical equilibrium. In 
this case, we choose Po, Sw, and Sg as the primary variables, 
with the rest of the unknowns represented by the primary 
variables using Eqs. (5) and (6). On the other hand, if the gas 
phase is not present (saturated state), we use Rs instead of 
Sg as a primary variable. However, we will not consider the 
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saturated case when presenting the algorithm in this paper.
Among many possible methods for the above model, 

we will consider only the fully implicit method (FIM). The 
fully implicit method (Douglas et al, 1959) is a discretization 
method that is often used to solve the black oil model in 
petroleum reservoir simulators. In FIM, Newton linearization 
is combined with first-order upstream-weighting finite 
difference spatial discretization (for details, see Chapter 8 
in Chen et al, 2006). This scheme is accurate and stable, 
as proved by several decades of practical usage. The main 
disadvantage of FIM is the computational cost associated 
with solving the Jacobian systems arising from Newton’s 
method. Very often, solving such linear systems with direct 

time in reservoir simulation. Furthermore, the demand for 
more accurate computer simulation has led to larger and, in 

3 Storage format for block sparse matrices
The Jacobian systems aris ing from the Newton 

linearization in FIM are usually large, sparse, nonsymmetric, 
and ill conditioned. Krylov subspace methods (Saad, 2003), 

for solving these Jacobian systems. Many preconditioning 
techniques have been proposed for reservoir simulation (see, 
for example, Dupont et al, 1968; Meijerink and van der Vorst, 
1977; Appleyard et al, 1981; Behie and Vinsome, 1982; 
Appleyard and Cheshire, 1983; Meijerink, 1983; Wallis, 
1983; Behie and Forsyth, 1984; Concus et al, 1985; Wallis et 
al, 1985; Lacroix et al, 2001; 2003; Watts and Shaw, 2005; 
Stüben et al, 2007; Al-Shaalan et al, 2009; Hu et al, 2013b; 
Wang et al, 2013a; 2013b). 

When FIM is combined with the cell-center finite 
difference method, a fully coupled linear algebraic system

(8)ResRes ResWel Res Res

WelRes WelWel Wel Wel

,    i.e. 
A A u f

Au f
A A u f

 

must be solved in each Newton step. Here, the subscripts 
‘Res’ and ‘Wel’ stand for the reservoir and implicit well parts, 
respectively, of the main solution variables. Let m be the 
number of unknowns in each grid cell. For example, in FIM 
for the black oil model, m is equal to 3; and m is equal to 2 
for the dead oil case (no gas phase). Assume that there are 
N active grid cells and M implicit wells. Then the size of the 
Jacobian matrix is mN+M. Specifically, the solution vector 
space is V=RmN+M. 

Remark 2 Because the well part and the main reservoir 
part differ in regard to shape, the Jacobian matrix A is 
sometimes referred to as the bordered matrix. In practice, we 
have found that many iterative solvers converge slowly or 
even fail to converge for practical problems. The coupling 
between the reservoir equations and the well constraints 
is usually strong. Based on this observation, we extend 
all the implicit well blocks such that they have the same 
dimension as the reservoir block by introducing artificial 
auxiliary saturation variables to each implicit well block. At 

the same time, we pad the right-hand side with zeros at the 

( )m N Mf RV . We then group the oil pressure together 
with the well bottom-hole pressure together and further write 
the local Jacobian matrix (for one grid cell) in the following 
form:

(9)PP PS m m
ij

SP SS

J J
A J

J J
R  

where P denotes the pressure variables (oil pressure and 
the well bottom-hole pressure) and S denotes the saturation 
variables (including physical water and oil saturations for the 

blocks). 
This way we can store the expanded coefficient matrix 
( ) n n

ijA A R  with ( )n m N M  in a uniform BSR format. 
To store the coefficient matrix in a cost-effective way, we 
employ a block sparse matrix data structure, which is often 
used for numerically simulating PDE systems, i.e., the block 
compressed sparse row (BSR) data structure. The BSR format 
is a generalization of the well-known compressed sparse 
row (CSR) format and is used in many numerical software 
packages, including the Intel MKL sparse direct solver library 
and the NIST sparse BLAS library. The difference between 
BSR and CSR is that in BSR, each nonzero entry is an array 
real numbers of size m2, instead of one real number as in 
CSR. This array represents the small, dense Jacobian matrix 
in each grid cell. Of the several variants of the BSR format, 
the following triple-array definition is used in the present 
paper as well as in a new-generation simulator:

zero blocks of a sparse matrix. The elements are stored block 
by block in row-major order. All the elements of the non-zero 
blocks are stored, even the elements that are equal to zero. 
Within each non-zero block, the elements are stored in row 
major order.

i of this integer array is the number of the 
column in the block matrix that contains the i-th non-zero 
block.

j of this integer array is the index of the 
 j-th row of 

the block matrix.

block system (Fig. 1) with a vertical well located at (2, 5, 8) 
with 2 and 5 perforated. After expansion, we obtain a block 

the black oil model. We then store this matrix in the BSR 

introduce much extra storage or computational cost as the 
number of implicit wells is usually small compared to the size 
of the reservoir system.  

An important reason why we choose the BSR format 
for our implementation is that it can improve the parallel 
scalability for sparse matrix-vector multiplications (SpMV), 
which is the most time-consuming part in iterative linear 
solvers and it usually takes most of the CPU time. A lot of 
research has been devoted to improve SpMV; see Oliker 
et al, 2002 and references therein for related discussions. 
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Usually different computer architectures require different 
SpMV implementation in order to maximize performance. 
Here we focus on the sparse Jacobian matrices from the fully 
implicit reservoir simulation. For general purpose SpMV 
implementations, interested readers are referred to Lam 
et al, 1991; Bjørstad et al, 1993; Vuduc, 2003; Wang et al 
2013a. In Table 1, we use Jacobian matrices, arising from a 
three-phase black oil simulation on a mesh with 3.2 million 
active celles (about 9.6 million degrees of freedom). In the 
table, “Ratio CSR/BSR” means the ratio between wall times 
taken by 100 times of CSR and BSR sparse matrix-vector 
multiplication operaions. From this table, we immediately see 
the advantages of the BSR format over the CSR format. The 
BSR SpMV not only takes less computation time, but also 
yields better parallel speed-up.

Table 1  SpMV (100 times) using the CSR and BSR sparse matrix formats

Number of OpenMP  CSR format BSR format Ratio

threads NT Wall time, s Speed-up Wall time, s Speed-up CSR/BSR

1 29.52 1.00 26.40 1.00 1.12

2 17.43 1.69 13.17 2.00 1.32

4 10.68 2.76 8.77 3.01 1.22

8 8.21 3.60 6.61 3.99 1.24

4  A s u c c e s s i v e  s u b s p a c e  c o r re c t i o n 
preconditioner for FIM

It is self-evident that different parts of A have different 
algebraic properties (Trangenstein and Bell, 1989). The 
part corresponding to the pressure unknowns is elliptic 
and the part corresponding to the saturation unknowns is 
mainly hyperbolic. Based on this understanding, CPR-
type preconditioners (Wallis, 1983; Wallis et al, 1985) 
take advantage of this property and become a competitive 
alternative in reservoir simulation. A subspace space method 
(MSC) has been proposed and discussed by Hu et al (2013b) 
where each auxiliary space solver takes these algebraic 
properties into account. In this paper, we focus on the multi-
thread implementation of this preconditioner for solving 
large-scale linear systems arising from the fully implicit 
reservoir simulations analyzed by Hu et al (2013b).  We now 

Remark 3 As suggested by many researchers (Bank et 

al, 1989; Lacroix et al, 2001; Stüben et al, 2007; Al-Shaalan 
et al, 2009), in order to weaken the strong coupling between 
the pressure and saturation unknowns, a decoupling step has 
to be applied to Eq. (8). This decoupling procedure should 
be computationally cheap and weaken the coupling between 
the pressure and saturation unknowns. Here, we choose 
the so-called alternative block factorization (ABF) strategy 
(Bank et al, 1989). This strategy is basically block diagonal 
preconditioning: 1A D A  and 1f D f . Here, D stands 
for the block diagonal matrix of the expanded matrix A, 
i.e., ( ) n n

iiD A R . In the rest of the paper, we will use 
the notation and write the new matrix A as n nA R  with 
n=m(N+M). The same convention also applies to the right-
hand side vector nf R  and to the solution nu R . 

For the black oil model, we consider two subspace 
spaces: PV V  and SV V . Here, PV  is the vector space 
for the pressure variables (including Po for the oil phase 
and the bottom-hole pressure for the implicit wells) and VS 
is the vector space for the saturation variables (Sw and Sg, 

for the implicit wells). We have the following multiplicative 
version of the MSC algorithm:

Algorithm 1  (MSC Preconditioner) Given a vector u, we 
Bu as follows: 

1) 0u u  

2) *
1 0 0( )S S Su u B f Au

3) *
2 1 1( )P P Pu u B f Au

4) 3 2 2( )u u R f Au   

5) 3Bu u  

Here :P PV V  and :S SV V  are the inclusion 
operators and the superscript * denotes the adjoint operator, 
which is simply the transpose operator if applied to matrices. 
For example, * :P PV V  is the injection operator from 
the whole space to the pressure variable space. Note that we 
only apply the operator B as a preconditioner and that there 
is no reason to solve the sub-problems exactly. Therefore, 
in practice, we replace 1

PPA  and 1
SSA  by the preconditioners 

(or simple iterative methods) BP and BS, respectively. In 

Fig. 1 Left: A 2D 3-by-3 grid with a vertical well at the center; Right: Expansion of Jacobian matrix (the last row and column  
             for well constraint are expanded to the BSR format)

1 3

4 6

7 98

5
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Step 4), we introduce a smoother R for the original solution 
space. Note that different subspace solvers yield different 
preconditioners. We should choose appropriate subspace 
solvers according to the characteristic of the problem and the 
computer hardware. 

The saturation variables S=(Sw, Sg) have hyperbolic 
characteristics. Due to this fact, we solve the saturation 
block by the block Gauss-Seidel method. To improve the 
convergence rate, one can apply the Gauss-Seidel method 
with downwind ordering and crosswind blocks (see Wang 
and Xu, 1999 for details). This method orders the gridblocks 
according to the direction of the multiphase flow and it 
has been shown to be efficient for convection-dominated 
problems. However, in order to obtain better parallel speed-
up, we use a simple block Gauss-Seidel method with multi-
color ordering (see Feng, 2014 for details). Note that this 
choice is for better parallel scalability instead of improving 
convergence rate. From this we can see the infrenence of 
computer architecture on the choice of numerical algorithms.  

It is well-known that the equations describing the 
mass balance in terms of pressure unknowns P are mainly 
elliptic (Wallis et al, 1985; Lacrois et al, 2003; Stüben et 
al, 2007; Al-Shaalan et al, 2009; Hu et al, 2011). Therefore, 
we use the algebraic multigrid (AMG) methods (Brandt et 
al, 1985; Ruge and Stüben, 1987; Stüben, 2001; Falgout, 
2006) to solve the pressure block APP. In this paper, we use 
the classical AMG method for simplicity. In practice, the 
performance and efficiency of AMG may degenerate when 
the physical and geometric properties of the problems become 
more complicated. In order to improve the performance 
of the AMG solver, Hu et al (2013a) have developed an 
approach that combines an iterative method with some other 
preconditioner to obtain a new solver for the pressure block. 

The smoother R in the algorithm resolves the coupling 
between the pressure unknowns and the saturation unknowns, 
as well as the coupling between the reservoir unknowns 
and well unknowns. The line successive over-relaxation 
(LSOR) method and the block incomplete factorization 
(BILU) methods have been applied in reservoir simulations 
and are often used in practice. The convergence rate of both 
LSOR and BILU are noticed to deteriorate when the size of 
the problems increases, or when the porous media become 
more heterogeneous. LSOR requires geometric information 
from the underlying mesh. BILU(k
k may become too expensive (in terms of memory usage) 
in practice for large-scale simulations. Therefore, to reduce 
computational cost (both CPU time cost and memory cost), 
the block Gauss-Seidel method is used as the smoother in this 
paper. 

5 OpenMP implementation and shared 
memory paradigm

I n  t h i s  s e c t i o n ,  w e  d i s c u s s  O p e n M P p a r a l l e l 
implementation of the proposed preconditioner in Algorithm 
1 on typical desktop computers with multicore CPU’s. 
Compared to message-passing implementations like MPI, 
the shared memory paradigm can greatly simplify the 
programming task in a multicore environment. OpenMP 

parallel programs are relatively easy to implement, as each 
processor has a global view of the entire memory. Parallelism 
can be achieved by inserting standard compiler directives into 
the code to distribute loop iterations among the processors. 
However, performance may suffer from poor spatial locality 
of physically distributed shared data. We now focus to the 
setup stage of the Classical AMG method. Notice that the 
AMG method is applied to the pressure equation only and we 

matrices. Feng et al (2014) proposed a simple but efficient 
algorithm for constructing standard prolongation and coarse-
level operators using OpenMP. If the bandwidth of the sparse 
coefficient matrix A is relatively small, this algorithm can 
save a large amount of memory. 

APP as n nA R   in this section. Let GA(V, E) be the graph of 
A, where V is the set of vertices (i.e., unknowns) and E is the 
set of edges (i.e., connections that correspond to nonzero off-
diagonal entries of A). Assume that the index set of vertices  
is split into two sets: a set C of coarse-level vertices and a set 
F

andV C F C F

We denote nc as the cardinality of C, i.e., the number of 
C-vertices. Assume that Fc is the map from F-vertices to 
C i as 

: { : }0,iji j AN V j i .
[0, 1), we denote the strong-

connected variables as

(10)( ) : : max ( )i i ij k i ikS j N A A  

Let , ,: ( ) , : ( )F s C s
i i i iD S F D S C , , ,(\: )w C s F s

i i i iD N D D . 

, and  without the same depended -verti:  s: ceF s
i iF CD jj i

Let ˆ : 0ijA  if 0ii ijA A , and ˆ :ij ijA A , otherwise. We 
denote the standard prolongation (or interpolation) matrix 
as ( ) c

c

n n
ijP P R , where its entries can be determined as 

follows:

,

,

\,

ˆ
( ) / ( )ˆ

, , [ ]

,
0.0, otherwise.
1.0, [ ]

ik kj
ij ii ik

F s wk D F km k D Fi i i iC sm Di
ij C s Cc

i c
C

c

A A
A A A

A

P
i

i F

F j D j

i

F j

C j

The matrix P is sparse and is usually stored in the CSR 
format, we need an auxiliary integer marker called Mp to 
locate the column index of each non-zero entry. To generate 
the i-th row of P 0 1j n , that

(11)

,

,

,

[ ] : \
1,         otherw

, [ ]

2 ,
ise

C s C
j i cc

F s
iP i

J j D j F j

i j DM j F
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where jcJ  is the position of ji cP  entry in the column 
index array of the CSR storage of P. In the OpenMP 
implementation, we have to allocate an integer array for the 
marker MP for each OpenMP thread. The length of each MP  
is n , and the total length of MP  of all threads is then NT n 
where NT  is the total number of threads. 

Assume that n l rb b b  is the bandwidth of A, where 
bl and br

matrix A, respectively. When the parallel partition of V 
is continuously distributed in a balanced fashion to each 
OpenMP thread (i.e., the size difference on each thread does 
not exceed one), we can easily see that the number of entries 
of MP that are actually used by the program is much smaller 
than n (see Fig. 2 for an example). Taking into account the 
fact that the matrix is banded, we can get the following 
estimates of the length t

PL  and the minimal offset ( )t
lM P   

(Feng et al, 2014)

min( , 2 ) and ( ) max 0, ( 1) 2( )t t
P n l n

T T

n nL n b M P t b
N N

(12)
The coarse grid operator of multigrid methods can be built 

using the Galerkin relation T( ) :
c c

c
c ij n nA A P AP , where

(13)1 1 1 1

1 1

., , 1, ,c
ij k i k l l j c

k l

A P A P i j nL  

Similar to the implementation of the prolongation 
operator, we need to allocate two auxiliary integer arrays 
called MA and MP  (see Fig. 3 for a pictorial demonstration). 
The length of MA and MP are n and nc, respectively. By 

noticing the characteristic of the banded sparse matrices of 
the coarse operator, we can get the estimation formula for the 
lengths of  MA and MP. The actual needed length t

AL  and the 
offset ( )t

lM A  can be calculated using the following formulas

(14)min( , 2 ) and ( )t t
A n l n

T T

n nL n b M A t b
N N

+

+

+

+

MP

+

+

bl

br

Ai 1 i1Ai1 j1

Ai 3 i3Ai 3 j3

Ai 2 i2 Ai 2 j2

Ai 4 i 4 Ai4, j4

t-th

+

M  (P)t
l

An×n

~MP
M  (P)t

u

Fig. 2  Construction of the prolongation for A. ( )t
lM P  and ( )t

uM P  are 
the lower and upper, respectively, column indices of the non-zero entries 
of A of the t-th OpenMP thread.

+

Ak1k1Ak2m1

Ak2k2

Ak2m 2

++

Pm1m1

Pm1n1

Pm2m 2
Pm2n2

++

An× n Pn× n c

t-th

PT
l1k1

PT
l2l2

PT
l1l1

PT
l2k2

PT
ncxn

t

l
M (A) ~MA

t

u
M (A)

MA

t

l
M (P) ~Mp

t

u
M (P)

MP

Fig. 3 Construction of the Galerkin coarse-level operator T
cA P AP. ( )t

lM A  and ( )t
uM A  are the lower and upper column 

indices of the non-zero entries in A of the t-th OpenMP thread.

6 Numerical expriments 
We use  the  second model  f rom the  Tenth  SPE 

Comparative Solution Project (Christie and Blunt, 2001), 
which was designed to compare the ability of upscaling 
approaches used by various participants to predict the 
performance of water flooding in a highly heterogeneous 

model. The model described herein was originally generated 

that the competition’s purpose was to compare the respective 
solutions in regard to accuracy. The model dimensions are 

total simulation time is 2,000 days.
The model has no top structure or faults and has a uniform 

initial water-oil interface. The depth of the reservoir is 3,657.6 
m, and the initial field pressure is 41.37 MPa. Oil density 
at the standard condition is 0.849 g/cm3 and oil viscosity 
at the reservoir condition is 3 mPa·s. The field has a low 
saturation pressure, and there are only two phases (water and 
oil) during the whole simulation. The top 21.35 m (35 layers) 
represents the Tarbert formation, and the bottom 30.5 m (50 
layers) represents the Upper Ness. The top part of the model 
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represents a prograding near-shore environment and the lower 

-3 -3 2 and the average permeability 
-3 2. The ratio between the vertical and 

horizontal permeabilities, kv/kh, varies from 0.001 to 0.3. The 

and 0.5, respectively. See Fig. 4 for the porosity of each of 
the four sample horizontal layers. 

with Intel Core i7 3.33 GHz CPU (4 cores) and 8 GB DDR3 
RAM. This test platform (Platform A) cost about $1,250 USD 
when bought new in early 2011. The Intel Core i7 utilizes the 
hypre-threading (HT) technology, which was developed to 
improve parallel performance by duplicating certain sections 
of the processor. However, some experiments have indicated 

(Abdel-Qader and Walker, 2010). In our experiments, we 
disable the HT feature of the i7 CPU. It is well-known 
that the parallel efficiency heavily depends on algorithm, 
implementation, and hardware architecture. We use another 
computer (Platform B) for comparison: HP Z800 server with 
two Intel Xeon X5590 CPU (4 cores) and 24 GB DDR3 RAM. 
This computer was purchased early in 2010 and the market 
price at that time was $7,000 USD. A single core of Intel Xeon 
X5590 is much less powerful than the Intel i7 CPU. 
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Fig. 4 Porosity of four sample horizontal layers in SPE10 (Model 2)

The total wall time for a single simulation run using a 
new-generation simulator, HiSim, is less than 45 minutes 
for the SPE10 problem (1.1 M grid cells, 2.2 M degrees of 
freedom) using one single thread (detailed numerical results 
will be reported in Table 2 and further discussed later). HiSim 
is an in-house reservoir simulator, developed by RIPED, 

preconditioner discussed in this paper implemented therein; 
see, Li et al, 2013a; 2013b; Wu et al, 2013a; 2013b. And, the 

time of a new-generation simulator when using one core 
only. We compared our numerical results with the benchmark 
results by Landmark, Geoquest, Chevron, and Streamsim 
reported in Christie and Blunt, 2001 (Figs. 5-6). The curves 
of field oil rate, field average pressure, well oil rate, and 

reported results using other simulators.  

Fig. 5 
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The large problem size and heterogenous nature of the 
benchmark make it very challenging; as a result, it is suitable 
for testing algorithm efficiency, robustness, and parallel 
speed-up of the proposed preconditioner. As we mentioned 
earlier, Algorithm 1 results in various preconditioning 
strategies by choosing different subspace solvers or 
smoothers. In this section, we only compare the performance 
of three simple choices: the original preconditioner B in 
Algorithm 1, a simplified version B1 by neglecting Step 4 
of Algorithm 1 (i.e., without the global smoothing step or R 

B2 by neglecting Step 2 
of Algorithm 1 (i.e. BS=0). We note that B2 is in fact the CPR 

method if the global smoother R is chosen to be the ILU or 
Block ILU method. 

We set the stopping criteria to be the relative residual in 
the Euclidian norm less than 10-3. In Table 2, we summarize 
the performance of a new-generation simulator, in which 
#Timesteps is the total number of time steps, #Newton is 
the total number of Newton iterations, #Linear is the total 
number of linear iterations, wall time is the total wall-time 
for the whole simulation (including I/O operations), Average 
#Newton is the average number of Newton iterations in each 
time step, and Average #Linear is the average number of 
linear iterations in each Newton iteration. 

Fig. 6 Comparison of oil rate (Left) and water cut (Right) in Producer 1 by different simulators
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Table 2 Comparison of the preconditioned GMRes methods for SPE10

Preconditioner #Timesteps #Newton #Linear Average #Newton Average  #Linear Wall time, min

B 161 254 2508 1.58   9.87 41.58

B1 161 286 3773 1.78 13.19 53.50

B2 161 269 4462 1.67 16.59 59.19

From Table 2, we find that each component of the 
preconditioner B plays a role in the convergence of the 
iterative method. Removing the smoother BS or R will not 
only cause the average number of linear iterations (#Linear) 
to increase, but also cause the total number of nonlinear 
iterations (#Newton) to increase slightly. Although our choice 
for the components of the proposed algorithm might not yield 
the best preconditioner for all problems, it is quite efficient 
and robust for this challenging benchmark problem. 

Next we investigate the OpenMP speed-up of the 
preconditioned GMRes method discussed in Sec. 5. The 

implementation is done by adding OpenMP directives to 
our simulator code and it has only been done for the most 
time-consuming part of the linear solver. The numerical 
results (total number of Newton steps, average number of 
linear iterations, total wall time in minutes, and parallel 
speed-up) are reported in Table 3. The parallel speed-up 
(the ratio between the simulation time using one core over 
the simulation time on multiple cores) is 1.37 when using 4 
threads on the 4-core i7 CPU. And speed-up of the solver part 
is about 1.5 folds. Note that the solver part is the only place 
where OpenMP directives are employed.

Table 3 OpenMP performance of the preconditioned GMRes solver for SPE10 on Platform A

Number of OpenMP threads 
NT

Total Newton steps Average linear iterations Wall time 
min

Linear solver time 
min Parallel speed-up (Linear solver)

1 254 9.87 41.58 35.36 1.00

2 262 10.19 32.60 25.61 1.38

4 260 10.00 30.45 23.23 1.52
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We can expect that, when using one thread, the simulation 
on Platform B will take more CPU time than on Platform A. 
The numerical results confirm this expectation; see Tables 3 
and 4. However, we also notice that Platform B has much better 

improved; see Table 4. This example shows the importance for 
users to take full advantage of modern computers by explore 
parallelism in their algorithms and implementations. 

Table 4  OpenMP performance of the preconditioned GMRes solver for SPE10 on Platform B

Number of OpenMP threads
 NT

Total Newton steps Average linear iterations Wall time 
min

Linear solver time 
min Parallel speed-up (Linear solver)

1 254 9.87 50.08 46.13 1.00

2 262 10.19 41.25 30.28 1.52

4 260 10.00 32.78 20.82 2.22

8 261 10.67 32.40 20.42 2.26

7 Summary and conclusions
We discussed a practical and efficient preconditioner 

for large sparse linear systems arising from the black oil 
model discretized by the fully implicit method. The method 
of subspace corrections was used to construct a new 
preconditioner of the original highly coupled Jacobian system 
by several sub-problems and suitable solution techniques 
to approximate these sub-problems according to their 
analytic characteristics. The new method can be used as a 
preconditioner for Krylov subspace iterative methods. The 
results of the preliminary numerical experiments show that 
the linear algebraic solver is quite efficient and robust for 
highly heterogeneous benchmark and field-scale problems. 
This new solution technique can achieve a turnaround time 
on a new-generation simulator for a million-cell model of 
less than an hour on a mainstream desktop computer. The 
performance of the solution method on a shared memory 
multicore environment is reasonably good for relatively large 
reservoir simulation models. Further code optimization is 
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Nomenclature

oil (o), gas (g) and water (w) phases
Oil (O), Gas (G) and Water (W) components

P  
S  saturation, fraction
u  velocity, m/s

porosity, fraction
k absolute permeability, 10-3 2

k relative permeability, fraction
 viscosity, mPa.s

b  formation value factor, m3/m3

 3

q  source/sink term (wells), m3/d
Pcow, Pcgo capillary pressures, MPa
Rs solution gas-oil ratio, m3/m3

Rv oil volatility, m3/m3

g gravitational acceleration, m/s2

z depth,m
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