
540
DOI 10.1007/s12182-014-0370-1

Wu Shuhong1, 2 , Xu Jinchao3, Feng Chunsheng4, Zhang Chen-Song5, Li
Qiaoyun2, Shu Shi4, Wang Baohua2, Li Xiaobo2 and Li Hua2

1 State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China
2 Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
3 Department of Mathematics, Penn State University, Univerisity Park, USA
4 School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China
5 Academy of Mathematics and System Sciences, Beijing 100190 China

© China University of Petroleum (Beijing) and Springer-Verlag Berlin Heidelberg 2014

Abstract: As a result of the interplay between advances in computer hardware, software, and algorithm,

fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this
paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on
multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale
linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel

Key words: Multilevel, preconditioner, shared memory, large-scale linear system, reservoir simulation

A multilevel preconditioner and its
shared memory implementation for a new
generation reservoir simulator

*Corresponding author. email: wush@petrochina.com.cn
Received January 22, 2014

computing resources (such as high-performance clusters),
desktop computers and workstations still dominate the work
environment for reservoir simulation engineers. Because
of the interplay of the three “walls” —the memory wall,
the instruction level parallelism wall, and the power wall
(the chip’s overall temperature and power consumption)—
the peak performance of a single core has almost stopped
improving. Even worse, single-core performance has started
to deteriorate in some cases. There is a trend toward using
multicore processors, which helps CPU designers to avoid the
high power-consumption problem that comes with increasing
chip frequency. As CPU speeds rise into the 3-4 GHz range,
the amount of electrical power required is prohibitive.
Hence, the trend toward multicore processors started and
will continue into the foreseeable future. OpenMP is an
application program interface that can be used to explicitly
direct multicore (shared memory) parallelism. It is a

and environment variables that can be used to specify shared
memory parallelism in Fortran and C/C++ programs.

Several difficulties can arise when using multithread
implementation for preconditioned Krylov subspace methods:
i) Some preconditioners use sequential algorithms, like
Gauss-Seidel; ii) OpenMP programs sometimes require more
memory space than their corresponding sequential versions
do. When a numerical algorithm is implemented in OpenMP
or any other multithread computer language, it is important

1 Introduction
Simulation-based scientific discovery and engineering

algorithms (as well as their implementations). This demand is
the main driving force for developing extreme-scale computer
hardware/software during the last few decades. Reservoir
simulation plays an important role both in designing an
efficient development process and in improving recovery
factors. Significant research effort has been devoted to
creating fine-scale reservoir models and efficient reservoir
simulators on high-performance computers; see Hayder and
Baddourah, 2012 and references therein for details.

Reservoir engineers are building high-resolution reservoir
models (Pavlas, 2002; Dogru et al, 2009), on which numerous
simulation runs are performed for the purpose of history
matching and model validation. According to a previous case
study by Saudi Aramco (Pavlas, 2002), a high-resolution
model can preserve reservoir heterogeneity at a fine scale
and thus maintain reservoir character and describe complex
water encroachment. Saudi Aramco obtained an excellent
historical validation using a 128-node cluster and the resulting
predictions were in line with the company’s expectations.

Despite of the increasing availability of more powerful

Pet.Sci.(2014)11:540-549

541

to maintain the convergence rate of the corresponding
sequential algorithm. However, this is not always possible as
many numerical algorithms are sequential in nature. When
working with sparse matrices in compressed formats, like
the Compressed Sparse Row format, we sometimes need
to introduce auxiliary memory space. This becomes an
increasingly heavy burden as the number of threads increases.
We will analyze the parallel interpolation and coarse-grid
operators in the setup phase of the algebraic multigrid (AMG)
method based on the fact that the coefficient matrices we
consider are banded.

In order to meet the increasing demand for high-
resolution reservoir simulations in low-end desktop
computing environments (multicore CPUs, sometimes
with heterogeneous co-processors), we design and develop
new cost-effective reservoir simulation techniques, such
as different fluid models and discretization methods, for

implementation of multilevel preconditioners for solving
large-scale fully-implicit simulations of the black oil model.
Some of the materials in this paper have been previously
presented in two conference proceedings by the authors
(Wu et al, 2013a; Feng et al, 2014) and we repeat them
for completeness. The main contribution of this paper is
the new numerical study on the OpenMP performance of
the multilevel FIM solver, which has not been seen in the
literature.

The rest of this paper is organized as follows: In Sec.
2, we briefly review the mathematical model and its fully
implicit discretization method. We discuss the data structure
for block sparse matrices in Sec. 3, after which we introduce
a preconditioner based on a successive subspace correction
framework in Sec. 4. We discuss several implementation
issues of the proposed algorithm using OpenMP. We then

and multicore speed-up of the proposed preconditioner in
Sec. 6. Finally, we summarize the discussion with a few
concluding remarks in Sec. 7.

2 Mathematical model and its fully implicit
discretization

Most of China’s oil fields are located in continental
basins and many are characterized by serious heterogeneity,
low permeability, and high oil viscosity (Han, 1998; Han
et al, 1999). Water breakthrough occurs at an early stage of
development in these fields, which results in low recovery

employed. Higher resolution reservoir modelling is needed to

The black oil model is often applied in the primary and
secondary oil-recovery stages. In this model, the fluid is
assumed to have three quasi-components (Water, Oil, and
Gas) and they form three respective phases (water, oil, and
gas): The water phase does not exchange mass with the
other phases, and the liquid and gaseous phases exchange
mass with each other. As a widely accepted approach, the
isothermal black oil model solves the three-dimensional
three-phase equations of the conservation of mass (volume)

in porous media in the standard surface conditions, subject
to appropriate initial and boundary conditions (Chen et al,
2006). The material balance of the hydrocarbon gaseous (gas),
liquid (oil), and water components is described, respectively,
by

(1)
g s o s

g o G
g o g o

1S R S R
u u q

t b b b b

(2)o
o O

o o

1S
u q

t b b

(3)w
w W

w w

1S
u q

t b b

(4)r , o, g, w
kk

u P g z

The phase saturations appear to satisfy the condition

(5)g wo 1S S S

We further assume that the capillary pressures characterize
the pressure differences between phases:

(6)g cgoo w cow o, P P P P P P

Remark 1 In this paper, we focus on the fully implicit
method for solving the above black oil model. The methods
discussed here can be readily extended to other models
and numerical discretization schemes. For example, a new-
generation simulator can also handle the well-known volatile
oil model in which the oil mass balance equation (Eq. (2)) is
replaced by

(7)
gvo v

o g O
o g o g

1R SS R
u u q

t b b b b

Before we start to discuss how to solve the above

rate and the total liquid production rate constraints can
be applied for the wells. When the bottom-hole pressure
Pbh cannot sustain the fixed flow rate, the well equation

For simplicity, we will not present details pertaining to the
treatment of well constraints. When the reservoir pressure
drops below the bubble-point pressure (undersaturated state),
the hydrocarbon phase splits into a liquid (oil) phase and a
gaseous (gas) phase at the thermodynamical equilibrium. In
this case, we choose Po, Sw, and Sg as the primary variables,
with the rest of the unknowns represented by the primary
variables using Eqs. (5) and (6). On the other hand, if the gas
phase is not present (saturated state), we use Rs instead of
Sg as a primary variable. However, we will not consider the

Pet.Sci.(2014)11:540-549

542

saturated case when presenting the algorithm in this paper.
Among many possible methods for the above model,

we will consider only the fully implicit method (FIM). The
fully implicit method (Douglas et al, 1959) is a discretization
method that is often used to solve the black oil model in
petroleum reservoir simulators. In FIM, Newton linearization
is combined with first-order upstream-weighting finite
difference spatial discretization (for details, see Chapter 8
in Chen et al, 2006). This scheme is accurate and stable,
as proved by several decades of practical usage. The main
disadvantage of FIM is the computational cost associated
with solving the Jacobian systems arising from Newton’s
method. Very often, solving such linear systems with direct

time in reservoir simulation. Furthermore, the demand for
more accurate computer simulation has led to larger and, in

3 Storage format for block sparse matrices
The Jacobian systems aris ing from the Newton

linearization in FIM are usually large, sparse, nonsymmetric,
and ill conditioned. Krylov subspace methods (Saad, 2003),

for solving these Jacobian systems. Many preconditioning
techniques have been proposed for reservoir simulation (see,
for example, Dupont et al, 1968; Meijerink and van der Vorst,
1977; Appleyard et al, 1981; Behie and Vinsome, 1982;
Appleyard and Cheshire, 1983; Meijerink, 1983; Wallis,
1983; Behie and Forsyth, 1984; Concus et al, 1985; Wallis et
al, 1985; Lacroix et al, 2001; 2003; Watts and Shaw, 2005;
Stüben et al, 2007; Al-Shaalan et al, 2009; Hu et al, 2013b;
Wang et al, 2013a; 2013b).

When FIM is combined with the cell-center finite
difference method, a fully coupled linear algebraic system

(8)ResRes ResWel Res Res

WelRes WelWel Wel Wel

, i.e.
A A u f

Au f
A A u f

must be solved in each Newton step. Here, the subscripts
‘Res’ and ‘Wel’ stand for the reservoir and implicit well parts,
respectively, of the main solution variables. Let m be the
number of unknowns in each grid cell. For example, in FIM
for the black oil model, m is equal to 3; and m is equal to 2
for the dead oil case (no gas phase). Assume that there are
N active grid cells and M implicit wells. Then the size of the
Jacobian matrix is mN+M. Specifically, the solution vector
space is V=RmN+M.

Remark 2 Because the well part and the main reservoir
part differ in regard to shape, the Jacobian matrix A is
sometimes referred to as the bordered matrix. In practice, we
have found that many iterative solvers converge slowly or
even fail to converge for practical problems. The coupling
between the reservoir equations and the well constraints
is usually strong. Based on this observation, we extend
all the implicit well blocks such that they have the same
dimension as the reservoir block by introducing artificial
auxiliary saturation variables to each implicit well block. At

the same time, we pad the right-hand side with zeros at the

()m N Mf RV . We then group the oil pressure together
with the well bottom-hole pressure together and further write
the local Jacobian matrix (for one grid cell) in the following
form:

(9)PP PS m m
ij

SP SS

J J
A J

J J
R

where P denotes the pressure variables (oil pressure and
the well bottom-hole pressure) and S denotes the saturation
variables (including physical water and oil saturations for the

blocks).
This way we can store the expanded coefficient matrix
() n n

ijA A R with ()n m N M in a uniform BSR format.
To store the coefficient matrix in a cost-effective way, we
employ a block sparse matrix data structure, which is often
used for numerically simulating PDE systems, i.e., the block
compressed sparse row (BSR) data structure. The BSR format
is a generalization of the well-known compressed sparse
row (CSR) format and is used in many numerical software
packages, including the Intel MKL sparse direct solver library
and the NIST sparse BLAS library. The difference between
BSR and CSR is that in BSR, each nonzero entry is an array
real numbers of size m2, instead of one real number as in
CSR. This array represents the small, dense Jacobian matrix
in each grid cell. Of the several variants of the BSR format,
the following triple-array definition is used in the present
paper as well as in a new-generation simulator:

zero blocks of a sparse matrix. The elements are stored block
by block in row-major order. All the elements of the non-zero
blocks are stored, even the elements that are equal to zero.
Within each non-zero block, the elements are stored in row
major order.

i of this integer array is the number of the
column in the block matrix that contains the i-th non-zero
block.

j of this integer array is the index of the
 j-th row of

the block matrix.

block system (Fig. 1) with a vertical well located at (2, 5, 8)
with 2 and 5 perforated. After expansion, we obtain a block

the black oil model. We then store this matrix in the BSR

introduce much extra storage or computational cost as the
number of implicit wells is usually small compared to the size
of the reservoir system.

An important reason why we choose the BSR format
for our implementation is that it can improve the parallel
scalability for sparse matrix-vector multiplications (SpMV),
which is the most time-consuming part in iterative linear
solvers and it usually takes most of the CPU time. A lot of
research has been devoted to improve SpMV; see Oliker
et al, 2002 and references therein for related discussions.

Pet.Sci.(2014)11:540-549

543

Usually different computer architectures require different
SpMV implementation in order to maximize performance.
Here we focus on the sparse Jacobian matrices from the fully
implicit reservoir simulation. For general purpose SpMV
implementations, interested readers are referred to Lam
et al, 1991; Bjørstad et al, 1993; Vuduc, 2003; Wang et al
2013a. In Table 1, we use Jacobian matrices, arising from a
three-phase black oil simulation on a mesh with 3.2 million
active celles (about 9.6 million degrees of freedom). In the
table, “Ratio CSR/BSR” means the ratio between wall times
taken by 100 times of CSR and BSR sparse matrix-vector
multiplication operaions. From this table, we immediately see
the advantages of the BSR format over the CSR format. The
BSR SpMV not only takes less computation time, but also
yields better parallel speed-up.

Table 1 SpMV (100 times) using the CSR and BSR sparse matrix formats

Number of OpenMP CSR format BSR format Ratio

threads NT Wall time, s Speed-up Wall time, s Speed-up CSR/BSR

1 29.52 1.00 26.40 1.00 1.12

2 17.43 1.69 13.17 2.00 1.32

4 10.68 2.76 8.77 3.01 1.22

8 8.21 3.60 6.61 3.99 1.24

4 A s u c c e s s i v e s u b s p a c e c o r re c t i o n
preconditioner for FIM

It is self-evident that different parts of A have different
algebraic properties (Trangenstein and Bell, 1989). The
part corresponding to the pressure unknowns is elliptic
and the part corresponding to the saturation unknowns is
mainly hyperbolic. Based on this understanding, CPR-
type preconditioners (Wallis, 1983; Wallis et al, 1985)
take advantage of this property and become a competitive
alternative in reservoir simulation. A subspace space method
(MSC) has been proposed and discussed by Hu et al (2013b)
where each auxiliary space solver takes these algebraic
properties into account. In this paper, we focus on the multi-
thread implementation of this preconditioner for solving
large-scale linear systems arising from the fully implicit
reservoir simulations analyzed by Hu et al (2013b). We now

Remark 3 As suggested by many researchers (Bank et

al, 1989; Lacroix et al, 2001; Stüben et al, 2007; Al-Shaalan
et al, 2009), in order to weaken the strong coupling between
the pressure and saturation unknowns, a decoupling step has
to be applied to Eq. (8). This decoupling procedure should
be computationally cheap and weaken the coupling between
the pressure and saturation unknowns. Here, we choose
the so-called alternative block factorization (ABF) strategy
(Bank et al, 1989). This strategy is basically block diagonal
preconditioning: 1A D A and 1f D f . Here, D stands
for the block diagonal matrix of the expanded matrix A,
i.e., () n n

iiD A R . In the rest of the paper, we will use
the notation and write the new matrix A as n nA R with
n=m(N+M). The same convention also applies to the right-
hand side vector nf R and to the solution nu R .

For the black oil model, we consider two subspace
spaces: PV V and SV V . Here, PV is the vector space
for the pressure variables (including Po for the oil phase
and the bottom-hole pressure for the implicit wells) and VS
is the vector space for the saturation variables (Sw and Sg,

for the implicit wells). We have the following multiplicative
version of the MSC algorithm:

Algorithm 1 (MSC Preconditioner) Given a vector u, we
Bu as follows:

1) 0u u

2) *
1 0 0()S S Su u B f Au

3) *
2 1 1()P P Pu u B f Au

4) 3 2 2()u u R f Au

5) 3Bu u

Here :P PV V and :S SV V are the inclusion
operators and the superscript * denotes the adjoint operator,
which is simply the transpose operator if applied to matrices.
For example, * :P PV V is the injection operator from
the whole space to the pressure variable space. Note that we
only apply the operator B as a preconditioner and that there
is no reason to solve the sub-problems exactly. Therefore,
in practice, we replace 1

PPA and 1
SSA by the preconditioners

(or simple iterative methods) BP and BS, respectively. In

Fig. 1 Left: A 2D 3-by-3 grid with a vertical well at the center; Right: Expansion of Jacobian matrix (the last row and column
 for well constraint are expanded to the BSR format)

1 3

4 6

7 98

5

2

Pet.Sci.(2014)11:540-549

544

Step 4), we introduce a smoother R for the original solution
space. Note that different subspace solvers yield different
preconditioners. We should choose appropriate subspace
solvers according to the characteristic of the problem and the
computer hardware.

The saturation variables S=(Sw, Sg) have hyperbolic
characteristics. Due to this fact, we solve the saturation
block by the block Gauss-Seidel method. To improve the
convergence rate, one can apply the Gauss-Seidel method
with downwind ordering and crosswind blocks (see Wang
and Xu, 1999 for details). This method orders the gridblocks
according to the direction of the multiphase flow and it
has been shown to be efficient for convection-dominated
problems. However, in order to obtain better parallel speed-
up, we use a simple block Gauss-Seidel method with multi-
color ordering (see Feng, 2014 for details). Note that this
choice is for better parallel scalability instead of improving
convergence rate. From this we can see the infrenence of
computer architecture on the choice of numerical algorithms.

It is well-known that the equations describing the
mass balance in terms of pressure unknowns P are mainly
elliptic (Wallis et al, 1985; Lacrois et al, 2003; Stüben et
al, 2007; Al-Shaalan et al, 2009; Hu et al, 2011). Therefore,
we use the algebraic multigrid (AMG) methods (Brandt et
al, 1985; Ruge and Stüben, 1987; Stüben, 2001; Falgout,
2006) to solve the pressure block APP. In this paper, we use
the classical AMG method for simplicity. In practice, the
performance and efficiency of AMG may degenerate when
the physical and geometric properties of the problems become
more complicated. In order to improve the performance
of the AMG solver, Hu et al (2013a) have developed an
approach that combines an iterative method with some other
preconditioner to obtain a new solver for the pressure block.

The smoother R in the algorithm resolves the coupling
between the pressure unknowns and the saturation unknowns,
as well as the coupling between the reservoir unknowns
and well unknowns. The line successive over-relaxation
(LSOR) method and the block incomplete factorization
(BILU) methods have been applied in reservoir simulations
and are often used in practice. The convergence rate of both
LSOR and BILU are noticed to deteriorate when the size of
the problems increases, or when the porous media become
more heterogeneous. LSOR requires geometric information
from the underlying mesh. BILU(k
k may become too expensive (in terms of memory usage)
in practice for large-scale simulations. Therefore, to reduce
computational cost (both CPU time cost and memory cost),
the block Gauss-Seidel method is used as the smoother in this
paper.

5 OpenMP implementation and shared
memory paradigm

I n t h i s s e c t i o n , w e d i s c u s s O p e n M P p a r a l l e l
implementation of the proposed preconditioner in Algorithm
1 on typical desktop computers with multicore CPU’s.
Compared to message-passing implementations like MPI,
the shared memory paradigm can greatly simplify the
programming task in a multicore environment. OpenMP

parallel programs are relatively easy to implement, as each
processor has a global view of the entire memory. Parallelism
can be achieved by inserting standard compiler directives into
the code to distribute loop iterations among the processors.
However, performance may suffer from poor spatial locality
of physically distributed shared data. We now focus to the
setup stage of the Classical AMG method. Notice that the
AMG method is applied to the pressure equation only and we

matrices. Feng et al (2014) proposed a simple but efficient
algorithm for constructing standard prolongation and coarse-
level operators using OpenMP. If the bandwidth of the sparse
coefficient matrix A is relatively small, this algorithm can
save a large amount of memory.

APP as n nA R in this section. Let GA(V, E) be the graph of
A, where V is the set of vertices (i.e., unknowns) and E is the
set of edges (i.e., connections that correspond to nonzero off-
diagonal entries of A). Assume that the index set of vertices
is split into two sets: a set C of coarse-level vertices and a set
F

andV C F C F

We denote nc as the cardinality of C, i.e., the number of
C-vertices. Assume that Fc is the map from F-vertices to
C i as

: { : }0,iji j AN V j i .
[0, 1), we denote the strong-

connected variables as

(10)() : : max ()i i ij k i ikS j N A A

Let , ,: () , : ()F s C s
i i i iD S F D S C , , ,(\:)w C s F s

i i i iD N D D .

, and without the same depended -verti: s: ceF s
i iF CD jj i

Let ˆ : 0ijA if 0ii ijA A , and ˆ :ij ijA A , otherwise. We
denote the standard prolongation (or interpolation) matrix
as () c

c

n n
ijP P R , where its entries can be determined as

follows:

,

,

\,

ˆ
() / ()ˆ

, , []

,
0.0, otherwise.
1.0, []

ik kj
ij ii ik

F s wk D F km k D Fi i i iC sm Di
ij C s Cc

i c
C

c

A A
A A A

A

P
i

i F

F j D j

i

F j

C j

The matrix P is sparse and is usually stored in the CSR
format, we need an auxiliary integer marker called Mp to
locate the column index of each non-zero entry. To generate
the i-th row of P 0 1j n , that

(11)

,

,

,

[] : \
1, otherw

, []

2 ,
ise

C s C
j i cc

F s
iP i

J j D j F j

i j DM j F

Pet.Sci.(2014)11:540-549

545

where jcJ is the position of ji cP entry in the column
index array of the CSR storage of P. In the OpenMP
implementation, we have to allocate an integer array for the
marker MP for each OpenMP thread. The length of each MP
is n , and the total length of MP of all threads is then NT n
where NT is the total number of threads.

Assume that n l rb b b is the bandwidth of A, where
bl and br

matrix A, respectively. When the parallel partition of V
is continuously distributed in a balanced fashion to each
OpenMP thread (i.e., the size difference on each thread does
not exceed one), we can easily see that the number of entries
of MP that are actually used by the program is much smaller
than n (see Fig. 2 for an example). Taking into account the
fact that the matrix is banded, we can get the following
estimates of the length t

PL and the minimal offset ()t
lM P

(Feng et al, 2014)

min(, 2) and () max 0, (1) 2()t t
P n l n

T T

n nL n b M P t b
N N

(12)
The coarse grid operator of multigrid methods can be built

using the Galerkin relation T() :
c c

c
c ij n nA A P AP , where

(13)1 1 1 1

1 1

., , 1, ,c
ij k i k l l j c

k l

A P A P i j nL

Similar to the implementation of the prolongation
operator, we need to allocate two auxiliary integer arrays
called MA and MP (see Fig. 3 for a pictorial demonstration).
The length of MA and MP are n and nc, respectively. By

noticing the characteristic of the banded sparse matrices of
the coarse operator, we can get the estimation formula for the
lengths of MA and MP. The actual needed length t

AL and the
offset ()t

lM A can be calculated using the following formulas

(14)min(, 2) and ()t t
A n l n

T T

n nL n b M A t b
N N

+

+

+

+

MP

+

+

bl

br

Ai 1 i1Ai1 j1

Ai 3 i3Ai 3 j3

Ai 2 i2 Ai 2 j2

Ai 4 i 4 Ai4, j4

t-th

+

M (P)t
l

An×n

~MP
M (P)t

u

Fig. 2 Construction of the prolongation for A. ()t
lM P and ()t

uM P are
the lower and upper, respectively, column indices of the non-zero entries
of A of the t-th OpenMP thread.

+

Ak1k1Ak2m1

Ak2k2

Ak2m 2

++

Pm1m1

Pm1n1

Pm2m 2
Pm2n2

++

An× n Pn× n c

t-th

PT
l1k1

PT
l2l2

PT
l1l1

PT
l2k2

PT
ncxn

t

l
M (A) ~MA

t

u
M (A)

MA

t

l
M (P) ~Mp

t

u
M (P)

MP

Fig. 3 Construction of the Galerkin coarse-level operator T
cA P AP. ()t

lM A and ()t
uM A are the lower and upper column

indices of the non-zero entries in A of the t-th OpenMP thread.

6 Numerical expriments
We use the second model f rom the Tenth SPE

Comparative Solution Project (Christie and Blunt, 2001),
which was designed to compare the ability of upscaling
approaches used by various participants to predict the
performance of water flooding in a highly heterogeneous

model. The model described herein was originally generated

that the competition’s purpose was to compare the respective
solutions in regard to accuracy. The model dimensions are

total simulation time is 2,000 days.
The model has no top structure or faults and has a uniform

initial water-oil interface. The depth of the reservoir is 3,657.6
m, and the initial field pressure is 41.37 MPa. Oil density
at the standard condition is 0.849 g/cm3 and oil viscosity
at the reservoir condition is 3 mPa·s. The field has a low
saturation pressure, and there are only two phases (water and
oil) during the whole simulation. The top 21.35 m (35 layers)
represents the Tarbert formation, and the bottom 30.5 m (50
layers) represents the Upper Ness. The top part of the model

Pet.Sci.(2014)11:540-549

546

represents a prograding near-shore environment and the lower

-3 -3 2 and the average permeability
-3 2. The ratio between the vertical and

horizontal permeabilities, kv/kh, varies from 0.001 to 0.3. The

and 0.5, respectively. See Fig. 4 for the porosity of each of
the four sample horizontal layers.

with Intel Core i7 3.33 GHz CPU (4 cores) and 8 GB DDR3
RAM. This test platform (Platform A) cost about $1,250 USD
when bought new in early 2011. The Intel Core i7 utilizes the
hypre-threading (HT) technology, which was developed to
improve parallel performance by duplicating certain sections
of the processor. However, some experiments have indicated

(Abdel-Qader and Walker, 2010). In our experiments, we
disable the HT feature of the i7 CPU. It is well-known
that the parallel efficiency heavily depends on algorithm,
implementation, and hardware architecture. We use another
computer (Platform B) for comparison: HP Z800 server with
two Intel Xeon X5590 CPU (4 cores) and 24 GB DDR3 RAM.
This computer was purchased early in 2010 and the market
price at that time was $7,000 USD. A single core of Intel Xeon
X5590 is much less powerful than the Intel i7 CPU.

0.000 0.125 0.250
PORO

0.375 0.500 0.000 0.125 0.250
PORO

0.375 0.500 0.000 0.125 0.250
PORO

0.375 0.500 0.000 0.125 0.250
PORO

0.375 0.500

Fig. 4 Porosity of four sample horizontal layers in SPE10 (Model 2)

The total wall time for a single simulation run using a
new-generation simulator, HiSim, is less than 45 minutes
for the SPE10 problem (1.1 M grid cells, 2.2 M degrees of
freedom) using one single thread (detailed numerical results
will be reported in Table 2 and further discussed later). HiSim
is an in-house reservoir simulator, developed by RIPED,

preconditioner discussed in this paper implemented therein;
see, Li et al, 2013a; 2013b; Wu et al, 2013a; 2013b. And, the

time of a new-generation simulator when using one core
only. We compared our numerical results with the benchmark
results by Landmark, Geoquest, Chevron, and Streamsim
reported in Christie and Blunt, 2001 (Figs. 5-6). The curves
of field oil rate, field average pressure, well oil rate, and

reported results using other simulators.

Fig. 5

Fi
el

d
oi

l r
at

e,
 m

3 /d

1000

900

800

700

600

500

400

300

200

100

0

Fi
el

d
av

er
ag

e
pr

es
su

re
, M

P
a

45

40

35

30

25

20

Time, days
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time, days
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Landmark

Geoquest

Chevron

Streamsim

HiSim

Landmark

Geoquest

Chevron

Streamsim

HiSim

Pet.Sci.(2014)11:540-549

547

The large problem size and heterogenous nature of the
benchmark make it very challenging; as a result, it is suitable
for testing algorithm efficiency, robustness, and parallel
speed-up of the proposed preconditioner. As we mentioned
earlier, Algorithm 1 results in various preconditioning
strategies by choosing different subspace solvers or
smoothers. In this section, we only compare the performance
of three simple choices: the original preconditioner B in
Algorithm 1, a simplified version B1 by neglecting Step 4
of Algorithm 1 (i.e., without the global smoothing step or R

B2 by neglecting Step 2
of Algorithm 1 (i.e. BS=0). We note that B2 is in fact the CPR

method if the global smoother R is chosen to be the ILU or
Block ILU method.

We set the stopping criteria to be the relative residual in
the Euclidian norm less than 10-3. In Table 2, we summarize
the performance of a new-generation simulator, in which
#Timesteps is the total number of time steps, #Newton is
the total number of Newton iterations, #Linear is the total
number of linear iterations, wall time is the total wall-time
for the whole simulation (including I/O operations), Average
#Newton is the average number of Newton iterations in each
time step, and Average #Linear is the average number of
linear iterations in each Newton iteration.

Fig. 6 Comparison of oil rate (Left) and water cut (Right) in Producer 1 by different simulators

Time, days

0 500 1000 2000

Time, days
0 200 400 600 800 1000 1200 1400 1600 1800 20001500

W
el

l o
il

ra
te

, m
3 /d

200

160

120

80

40

0

W
el

l w
at

er
 c

ut

1.0

0.8

0.6

0.4

0.2

0

Landmark

Geoquest

Chevron

Streamsim

HiSim

Landmark

Geoquest

Chevron

Streamsim

HiSim

Table 2 Comparison of the preconditioned GMRes methods for SPE10

Preconditioner #Timesteps #Newton #Linear Average #Newton Average #Linear Wall time, min

B 161 254 2508 1.58 9.87 41.58

B1 161 286 3773 1.78 13.19 53.50

B2 161 269 4462 1.67 16.59 59.19

From Table 2, we find that each component of the
preconditioner B plays a role in the convergence of the
iterative method. Removing the smoother BS or R will not
only cause the average number of linear iterations (#Linear)
to increase, but also cause the total number of nonlinear
iterations (#Newton) to increase slightly. Although our choice
for the components of the proposed algorithm might not yield
the best preconditioner for all problems, it is quite efficient
and robust for this challenging benchmark problem.

Next we investigate the OpenMP speed-up of the
preconditioned GMRes method discussed in Sec. 5. The

implementation is done by adding OpenMP directives to
our simulator code and it has only been done for the most
time-consuming part of the linear solver. The numerical
results (total number of Newton steps, average number of
linear iterations, total wall time in minutes, and parallel
speed-up) are reported in Table 3. The parallel speed-up
(the ratio between the simulation time using one core over
the simulation time on multiple cores) is 1.37 when using 4
threads on the 4-core i7 CPU. And speed-up of the solver part
is about 1.5 folds. Note that the solver part is the only place
where OpenMP directives are employed.

Table 3 OpenMP performance of the preconditioned GMRes solver for SPE10 on Platform A

Number of OpenMP threads
NT

Total Newton steps Average linear iterations Wall time
min

Linear solver time
min Parallel speed-up (Linear solver)

1 254 9.87 41.58 35.36 1.00

2 262 10.19 32.60 25.61 1.38

4 260 10.00 30.45 23.23 1.52

Pet.Sci.(2014)11:540-549

548

We can expect that, when using one thread, the simulation
on Platform B will take more CPU time than on Platform A.
The numerical results confirm this expectation; see Tables 3
and 4. However, we also notice that Platform B has much better

improved; see Table 4. This example shows the importance for
users to take full advantage of modern computers by explore
parallelism in their algorithms and implementations.

Table 4 OpenMP performance of the preconditioned GMRes solver for SPE10 on Platform B

Number of OpenMP threads
 NT

Total Newton steps Average linear iterations Wall time
min

Linear solver time
min Parallel speed-up (Linear solver)

1 254 9.87 50.08 46.13 1.00

2 262 10.19 41.25 30.28 1.52

4 260 10.00 32.78 20.82 2.22

8 261 10.67 32.40 20.42 2.26

7 Summary and conclusions
We discussed a practical and efficient preconditioner

for large sparse linear systems arising from the black oil
model discretized by the fully implicit method. The method
of subspace corrections was used to construct a new
preconditioner of the original highly coupled Jacobian system
by several sub-problems and suitable solution techniques
to approximate these sub-problems according to their
analytic characteristics. The new method can be used as a
preconditioner for Krylov subspace iterative methods. The
results of the preliminary numerical experiments show that
the linear algebraic solver is quite efficient and robust for
highly heterogeneous benchmark and field-scale problems.
This new solution technique can achieve a turnaround time
on a new-generation simulator for a million-cell model of
less than an hour on a mainstream desktop computer. The
performance of the solution method on a shared memory
multicore environment is reasonably good for relatively large
reservoir simulation models. Further code optimization is

Acknowledgements
The authors would like to thank RIPED, PetroChina,

for providing data for the numerical tests and support
through PetroChina New-generation Reservoir Simulation
Software (2011A-1010), the Program of Research on
Continental Sedimentary Oil Reservoir Simulation
(z121100004912001) founded by Beijing Municipal Science
& Technology Commission and PetroChina Joint Research
Funding12HT1050002654. Feng is partially supported
by the NSFC Grant 11201398, and Hunan Provincial
Natural Science Foundation of China Grant 14JJ2063 and
Specialized Research Fund for the Doctoral Program of
Higher Education of China Grant 20124301110003. Zhang is
partially supported by the Dean’s Startup Fund, Academy of
Mathematics and System Sciences and the State High Tech
Development Plan of China (863 Program) 2012AA01A309.
Shu is partially supported by NSFC Grant 91130002 and
Program for Changjiang Scholars and Innovative Research
Team in University of China Grant IRT1179 and by the

Department of China Grant 12A138.

Nomenclature

oil (o), gas (g) and water (w) phases
Oil (O), Gas (G) and Water (W) components

P
S saturation, fraction
u velocity, m/s

porosity, fraction
k absolute permeability, 10-3 2

k relative permeability, fraction
 viscosity, mPa.s

b formation value factor, m3/m3

 3

q source/sink term (wells), m3/d
Pcow, Pcgo capillary pressures, MPa
Rs solution gas-oil ratio, m3/m3

Rv oil volatility, m3/m3

g gravitational acceleration, m/s2

z depth,m

References
Abd el-Qader J H and Walker R S. Performance evaluation of OpenMP

benchmarks on Intel’s quad core processors, Proceedings of the 14th
WSEAS International Conference on Computers, 348-355, 2010

Al- Shaalan T M, Klie H, Dogru A H, et al. Studies of robust two
stage preconditioners for the solution of fully implicit multiphase
flow problems. Ppaer SPE 118722 presented at the SPE Reservoir
Simulation Symposium, Woodlands, TX, USA, 2009

App leyard J R, Cheshire I M and Pollard R K. Special techniques for
fully implicit simulators. Proc. European Symposium on enhanced
oil recovery, Bournemouth, England, 395-408, 1981

App leyard J R and Cheshire I M. Nested factorization. Paper SPE 12264
presented at Proc. 7th SPE Symposium on Reservoir Simulation,
1983

Ban k R E, Chan T F, Coughran J W M, et al. The alternate-block-
factorization procedure for systems of partial differential equations.
BIT. 1989. 29(4): 938-954

Beh ie A and Forsyth P A Jr. Incomplete factorization methods for fully
implicit simulation of enhanced oil recovery. SIAM J. Sci. Stat.
Comp. 1984. 5: 543-561

Beh ie G and Vinsome P. Block iterative methods for fully implicit
reservoir simulation. Soc. Pet. Eng. J. 1982. 22(5): 658-668

Pet.Sci.(2014)11:540-549

549

Bjø rstad P E, Manne F, Søre nt matrix multiplication
on SIMD computers. SIAM J. Matrix Anal. Appl. 1992. 13(1): 386-
401

Bra ndt A, McCormick S and Ruge J. Algebraic Multigrid (AMG) for
Sparse Matrix Equations, Sparsity and Its Applications. Cambridge
Univ. Press, Cambridge. 1985. 257-284

in porous media. Society for Industrial Mathematics, 2006
Chr istie M A and Blunt M J. Tenth SPE comparative solution project: a

comparison of upscaling techniques. SPE Reservoir Evaluation &
Engineering. 2001. 4: 308-317 (paper SPE 72469)

Con cus P, Golub G H and Meurant G. Block preconditioning for the
conjugate gradient method. SIAM J. Sci. Stat. Comput. 1985. 6:
220-252

Dog ru A, Fung L, Middya U, et al. A next-generation parallel reservoir
simulator for giant reservoirs. Paper SPE 119272 presented at SPE
Reservoir Simulation Symposium, 2009

Dou glas J Jr, Peaceman D W and Rachford H H Jr. A method of
calculating multi-dimensional immiscible displacement. SPE AIME.
1959. 216: 297-396

Dup ont T, Kendall R P and Rachford H H Jr. An approximate
factorization procedure for solving self-adjoint elliptic difference
equations. SIAM J. Numer. Anal. 1968. 5: 559-573

Fal gout R. An introduction to algebraic multigrid. Computing in Science
and Engineering. 2006. 8: 24-33

Fen g C, Shu S and Yue X. An improvement for the OpenMP version
BoomerAMG. Proceedings of CCF HPC China 2012, Zhangjiajie,
China. 2012. 321-328

Fen g C, Shu S, Xu J, et al. A multi-stage preconditioner for the black
oil model and its OpenMP implementation. 21st International
Conference on Domain Decomposition Methods (2012, INRIA
Rennes-Bretagne-Atlantique), in LNCSE, Springer Berlin
Heidelberg, 2014. 127-138

Fen g C. Multilevel Iterative Methods and Solvers for Reservoir
Simulation on CPU-GPU Heterogenous Computers. Ph.D. Thesis,
Xiangtan University, Hunan, China, 2014

Han D K. The achievements and challenges of EOR technology for
th World Petroleum

Congress, 363-372, 1998
Han D K, Yang C Z, Zhang Z Q, et al. Recent development of

enhanced oil recovery in China. Journal of Petroleum Science and
Engineering. 1999. 22: 181-188

Hay der M E and Baddourah M. Challenges in high performance
computing for reservoir simulation. Ppaer SPE 152414 presented
at the EAGE Annual Conference & Exhibition incorporating SPE
Europec, Copenhagen, Denmark, 4-7, June 2012

Hu X, Liu W, Qin G, et al. Development of a fast auxiliary subspace
preconditioner for numerical reservoir simulators. Paper SPE
148388 presented at SPE Reservoir Characterization and Simulation
Conference, 2011

Hu X, Wu S H, Wu X H, et al. Combined preconditioning with
applications in reservoir simulation. SIAM Multiscale Modeling and
Simulation. 2013a. 11: 507-521

Hu X, Xu J and Zhang C S. Applicat ion of auxil iary space
preconditioning in field-scale reservoir simulation. Science China
Mathematics. 2013b. 56: 2737-2751

Hyp re: A scalable linear solver library. URL: http://acts.nersc.gov/hypre/
Lac roix S, Vassilevski Y and Wheeler M. Decoupling preconditioners

in the implicit parallel accurate reservoir simulator (IPARS). Numer.
Linear Algebra with Applications. 2001. 8: 537-549

Lac roix S, Vassilevski Y, Wheeler J, et al. Iterative solution methods for

Sci. Comput. 2003. 25: 905-926
Lam M D, Rothberg E E and Wolf M E. The cache performance and

optimizations of blocked algorithms. Proceedings of the Fourth
International Conference on Architectural Support for Programming

Languages and Operating Systems (Asplos Iv), 1991. 63-74
Li Q Y, Wu S H, Wang B H, et al. A new generation reservoir simulator

Exhibition, Jakarta, Indonesia, 2013a
Li X B, Wu S H, Li Q Y, et al. An improved approach to simulate low-

permeability fractured reservoir with dynamic hybrid dual-porosity

Conference and Exhibition, Jakarta, Indonesia, 2013b
Mei jerink J A and van der Vorst H A. An iterative solution method

for linear systems of which the coefficient matrix is a symmetric
M-matrix. Math. Comp. 1977. 31: 148-162

Mei jerink J A. Iterative methods for the solution of linear equations
based on the incomplete block factorization of the Matrix. Paper
SPE12262 presented at the SPE Reservoir Simulation Symposium,
Lubbock, TX. Nov. 14-15, 1983

Oli ker L, Li X, Husbands P, et al. Effects of ordering strategies and
programming paradigms on sparse matrix computations. SIAM
Review. 2002. 44(3): 373-393

Pav las E J Jr. Fine-scale simulation of complex water encroachment in a
large carbonate reservoir in Saudi Arabia. SPE Reservoir Evaluation
& Engineering. 2002. 5(5): 346-354 (paper SPE 79718)

Rug e J and Stüben K. Algebraic multigrid, in multigrid methods. In:
Frontiers Appl. Math. Vol. 3, 73-130. SIAM, Philadelphia, PA, 1987

Saa d Y. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, 2003

Stü ben K. An introduction to algebraic multigrid. In: Trottenberg U,
Oosterlee C and Schüller A. Multigrid. Academic Presss. 2001. 413-
532

Stü ben K, Clees T, Klie H, et al. Algebraic multigrid methods (AMG)
for the efficient solution of fully implicit formulations in reservoir
simulation. Paper SPE 105832 presented at the SPE Reservoir
Simulation Symposium, Houston, TX, USA, 2007

Tra ngenstein J A and Bell J B. Mathematical structure of the black-oil
model for petroleum reservoir simulation. SIAM Journal on Applied
Mathematics. 1989. 49: 749-783

Vud uc R. Automatic Performance Tuning of Sparse Matrix Kernels.
Ph.D. Thesis. University of California, Berkeley, CA, USA, 2003

Wal lis J R. Incomplete Gaussian elimination as a preconditioning for
generalized conjugate gradient acceleration. Paper SPE 12265
presented at the SPE Reservoir Simulation Symposium, San
Francisco, California, November 15-18, 1983

Wal lis J R, Kendall R P and Little T E. Constrained residual acceleration
of conjugate residual methods. Paper SPE 13536 presented at the
SPE Reservoir Simulation Symposium, Dallas, TX, February 10-13,
1985

Wan g B H, Wu S H, Han D K, et al. Block compressed storage and
computation in the large-scale reservoir simulation. Petroleum
Exploration and Development. 2013a. 40: 495-500 (inChinese)

Wan g B H, Wu S H, Li Q Y, et al. Applications of BILU0-GMRES in
reservoir numerical simulation. ACTA Petrolei Sinica. 2013b. 34:
954-958 (inChinese)

Wan g F and Xu J. A crosswind block iterative method for convection-

21: 620-645
Wat ts J W and Shaw J S. A new method for solving the implicit reservoir

simulation matrix equation. Paper SPE 93068 presented at the SPE
Reservoir Simulation Symposium, Texas, TX, USA, 2005

Wu S H, Xu J, Zhang C S, et al. Multilevel preconditioners for a new
generation reservoir simulator. Paper SPE 166011 presented at
SPE Reservoir Characterisation and Simulation Conference and
Exhibition held in Abu Dhabi, UAE 2013a

Wu S H, Li X B, Li Q Y, et al. A dynamic hybrid model to simulation
fractured reservoirs. Paper IPTC 16521 presented at the International
Petroleum Technology Conference, Beijing, China, 2013b

(Edited by Sun Yanhua)

Pet.Sci.(2014)11:540-549

	1 Introduction
	2 Mathematical model and its fully implicit discretization
	3 Storage format for block sparse matrices
	4 A successive subspace correction preconditioner for FIM
	5 OpenMP implementation and shared memory paradigm
	6 Numerical expriments
	7 Summary and conclusions
	Acknowledgements
	Nomenclature
	References

