A quick evaluation model for CO₂ flooding and sequestration

Yao Yuedong* and Ji Zemin

Key Laboratory of Petroleum Engineering, Ministry of Education, China University of Petroleum, Beijing 102249, China

© China University of Petroleum (Beijing) and Springer-Verlag Berlin Heidelberg 2010

Abstract: CO_2 flooding not only triggers an increase in oil production, but also reduces the amount of CO_2 released to the atmosphere (by storing it permanently in the formations). It is one of the best ways to use and store CO_2 . This paper firstly selects the key factors after analyzing the factors influencing the CO_2 storage potential in the formations and oil recovery, and then introduces a series of dimensionless variables to describe reservoir characteristics. All influencing factors with varying values are calculated through a Box-Behnken experimental design. The results are interpreted by a response surface method, and then a quick screening model is obtained to evaluate the oil recovery and CO_2 storage potential for an oil reservoir. Based on the evaluation model, sensitivity analysis of each factor is carried out. Finally, research on CO_2 sequestration and flooding in a typical reservoir indicates that the evaluation model fits well with the numerical simulation, which proves that the evaluation model can provide criteria for screening attractive candidate reservoirs for CO_2 sequestration and flooding.

Key words: Evaluation model, enhanced oil recovery, CO₂ sequestration, Box-Behnken design, response surface method

1 Introduction

Due to the deterioration of the environment caused by global warming, China has to face even greater environmental challenges than before (Duan et al, 2004; Zeng et al, 2004). Effectively control and reduction of CO₂ emissions has become a hot topic, which urgently needs to be studied in depth (Qiang et al, 2006). Storing CO₂ permanently in deep strata by injecting it into reservoirs has been considered as a promising method (Bachu, 2000; Bachu and Stewart 2002; Bachu et al, 2007; Stevens et al, 2001; Winter, 2001; Li and Dong, 2006; Bradshaw et al, 2007). Firstly, the existence of natural CO₂ gas reservoirs proves that favorable geological structures can store CO₂ for a long time. Moreover, CO₂ flooding can improve oil recovery and then obtain greater economic benefits (Li et al, 2000; Xiong et al, 2001; Espie, 2003). When evaluating the suitability of reservoirs for CO_2 sequestration and flooding, the oil recovery and CO_2 utilization coefficient of the reservoir need to be used to make a wise decision. The oil recovery (expressed by R, fraction) is defined as the ratio between the oil production and the initial oil in place in the reservoir, and the CO₂ utilization coefficient (expressed by R_{CO_2} , t/m³) is the ratio of the net injection amount of CO₂ to the volume of the oil produced (Bachu, 2003; Hendriks et al, 2004; Jiang and Shen, 2008; Shen et al. 2009). If the CO_2 utilization coefficient is known,

it is convenient and useful for evaluating the potential of $\rm CO_2$ sequestration.

There are many factors influencing CO₂ sequestration and oil displacement efficiency (Kovseek, 2003; Mo and Akervol, 2005; Wang et al, 2008; Zhang and Yang, 2008; Yao and Li, 2009). It is difficult to identify attractive candidate reservoirs for CO₂ flooding and sequestration. Therefore, it is necessary to establish an objective function considering a number of factors. A Box-Behnken design is used to evaluate the non-linear relationship between the objective function and factors (Ferreira et al, 2007). Moreover, compared with other methods for evaluating the non-linear relationship between objective function and factors, the Box-Behnken design is more efficient and requires only a few experiments to study the factors influencing CO₂ sequestration and flooding in complex reservoirs. A response surface method (Gao et al, 2004), which takes full advantage of mathematics and statistics, can be used to establish the functional relationship between the independent variables and objective values in complex experiments influenced by many factors. Wood et al (2006) introduced such dimensionless parameters as the effective aspect ratio, dip angle group, CO₂-oil mobility ratio, and buoyancy number to carry out a useful attempt in selecting attractive candidate reservoirs for CO₂ sequestration and flooding. They did not take into account the effect of reservoir heterogeneity. However, CO₂ sequestration and oil displacement efficiency is significantly influenced by reservoir heterogeneity.

In this paper, after analyzing all key factors affecting CO₂

^{*}Corresponding author. email: yaoyuedong@163.com Received September 28, 2009

flooding and sequestration, we introduces such dimensionless parameters as the homogeneity coefficient, effective aspect ratio, CO_2 -oil mobility ratio, buoyancy number, initial oil saturation, position parameters of high-permeability layers, injection pressure parameter, producing pressure parameter, reservoir pressure parameter and relative water body size to systematically characterize properties of CO_2 sequestration and oil displacement efficiency. Based on the Box-Behnken experimental design and the interpretative results from the response surface method, we derive a mathematical model for evaluating quickly carbon dioxide sequestration and displacement efficiency, which can provide criteria for identifying the attractive candidate reservoirs for CO_2 storage and oil displacement.

2 Analysis of factors affecting CO₂ flooding and sequestration

2.1 Evaluation indices for CO₂ flooding and sequestration

In the process of CO_2 injection to the reservoir, the oil recovery and CO_2 sequestration capacity are important. Consequently, the oil recovery (*R*) and CO_2 utilization coefficient (R_{co2}) are introduced to characterize CO_2 flooding and sequestration, which can be expressed as follows:

$$R = \frac{N_{\rm p}}{N} \times 100\% \tag{1}$$

$$R_{\rm CO_2} = \frac{\rho_{\rm CO_2} Q_{\rm CO_2 \cdot s}}{NR}$$
(2)

with

$$Q_{\rm CO_2 - S} = N_{\rm iCO_2} - N_{\rm pCO_2}$$
(3)

$$N_{pCO_{2}} = \int_{0}^{t_{shut}} Q_{0} F_{CO_{2} \cdot o} dt$$

= $\int_{t_{breakthrough}}^{t_{shut}} Q_{0} F_{CO_{2} \cdot o} dt$ (4)
= $\int_{t_{breakthrough}}^{t_{shut}} Q_{0} (F_{CO_{2} + g \cdot o} - F_{go}) dt$

$$N_{\rm iCO_2} = \int_0^{t_{\rm stop}} v_{\rm CO_2} \,\mathrm{d}t \tag{5}$$

where *R* is the oil recovery, fraction; N_p is the cumulative oil production, 10^4 m^3 ; *N* is the initial oil in place, 10^4 m^3 ; $Q_{\text{co}_2.\text{s}}$ is the amount of CO₂ stored in the reservoir, 10^4m^3 ; N_{icO_2} is the cumulative volume of CO₂ injected, 10^4m^3 ; N_{pCO_2} is the cumulative volume of CO₂ produced, 10^4 m^3 ; v_{co_2} is the CO₂ injection rate, $10^4 \text{m}^3/\text{a}$; Q_0 is the oil production rate, $10^4 \text{m}^3/\text{a}$; F_{go} is the ratio of gas to oil in the hydrocarbons produced, m^3/m^3 ; $F_{\text{CO}_2+g_{2}}$ is the ratio of the volume of CO₂ and hydrocarbon gas produced to the volume of oil, m^3/m^3 ; $t_{\text{breakthrough}}$ is the CO₂ breakthrough time, a; t_{shut} is the production time required when the F_{CO_2-g} of the production well reaches the controlling gas-oil ratio, which is defined as the maximum gas-oil ratio for normal operation; t_{stop} is the cumulative time of gas injection, a; R_{CO_2} is the CO₂ utilization coefficient, t/m^3 ; ρ_{CO_2} is the density of CO₂ under standard conditions, t/m^3 .

2.2 Numerical calculation of CO₂ flooding and sequestration

Taking a typical reservoir as a research example, we established a three-dimensional geological model and calculated the CO_2 utilization coefficient and oil recovery under different reservoir conditions. We considered such main factors as thickness, permeability, vertical/horizontal permeability ratio, reservoir heterogeneity (areal heterogeneity and sedimentary rhythm), crude oil composition, fluid viscosity ratio, buoyancy (buoyancy is the ratio of the gravity forces to the viscous forces in a reservoir), diffusion, development mode, and the size of natural water bodies. Based on the initial parameters of the typical reservoirs, we changed the magnitude of above parameters, and calculated CO_2 utilization coefficient and oil recovery. Fig. 1 shows the numerical simulation of CO_2 sequestration and oil displacement.

Fig. 1 Numerical simulation of CO₂ sequestration and oil displacement

2.3 Factors affecting CO₂ sequestration and flooding

The simulation results indicate that the key factors are formation heterogeneity, oil-CO₂ viscosity ratio, sedimentary rhythm, miscible/immiscible phases, and buoyancy/gravity; the minor ones are formation thickness, diffusion/dispersion, gas injection rate, and water body size (Yao and Li, 2009).

In short, there are many factors influencing CO_2 sequestration and oil displacement efficiency, which makes it difficult to evaluate the effect of CO_2 flooding and sequestration. Consequently, it is necessary to establish an evaluation model considering a number of factors.

3 Introduction of dimensionless groups to systematically scale reservoir properties

Based on the aforementioned analysis of main controlling factors for CO₂ utilization coefficient and oil recovery, ten factors were selected. They are the effective aspect ratio $R_{\rm L}$, CO_2 -oil mobility ratio M_g^o , buoyancy number N_g^o , initial oil saturation S_{oi} , reservoir heterogeneity, sedimentary rhythm, injection pressure parameter, producing pressure parameter, reservoir pressure parameter, and water body size. Previous studies provide positive and negative influencing relationships of all reservoir parameters, and a detailed description is given of how these parameters affect the CO₂ sequestration and oil displacement efficiency. According to the analysis of physics and mechanics, we determined the affiliation relationship between the related reservoir parameters and the above ten dimensionless groups. As to every group, on the base of dimensional analysis, influencing parameters were more obviously chosen for the dimensionless group. The most important principle of its combination was that making sure every positive and negative factor to oil recovery and CO₂ utilization coefficient lie separately on different sides of the fraction line. Similarly, other dimensionless groups were formed; all ten dimensionless groups were qualified to systematically scale reservoir properties. The concrete dimensionless groups are defined as follows:

The effective aspect ratio $R_{\rm L} = \frac{L}{H} \sqrt{\frac{k_z}{k_{\rm h}}}$ ($R_{\rm L}$ is related to

cross-flow within the reservoir, which includes the length to height ratio and the vertical to horizontal permeability ratio)

CO₂-oil mobility ratio
$$M_{g}^{o} = \frac{k_{rg}^{o}m_{o}}{k_{ro}^{o}m_{g}}$$

The buoyancy number $N_g^o = \frac{H\Delta\rho g \cos\alpha}{\Delta P}$

Initial oil saturation S_{oi}

The homogeneity coefficient $\sigma_{\rm R} = \frac{A_{\rm i}\sqrt{H_{\rm i}}}{V_{\rm i} \lg k_{\rm i}}$

The relative position of the high-permeability layer

$$H_{\rm D} = \frac{h_{\rm i}}{H}$$

The injection pressure parameter $P_{\rm iniD} = \frac{P_{\rm inj} - P_{\rm MM}}{D}$

 $P_{\rm MM}$

The producing pressure parameter $P_{pD} = \frac{P_p - P_{MM}}{P_{MM}}$ The reservoir pressure parameter $P_{eD} = \frac{P_e - P_{MM}}{P_{MM}}$ The water body size $N_D = \frac{V_w}{V_e}$

where H is the reservoir thickness, m; L is the reservoir length, m; k_x is the horizontal permeability, mD; k_z is the vertical permeability, mD; μ_0 is the oil viscosity, mPa·s; μ_g is the gas viscosity, mPa·s; k_{rg}^{o} is the gas relative permeability; k_{ro}^{o} is the oil relative permeability; $\Delta \rho$ is the oil-water density difference, kg/m³; ΔP is the difference between the injection and producing pressures, MPa; $P_{\rm MM}$ is the minimum miscible pressure, MPa; α is the dip angle; A_i is the hydrodynamic communication in the horizontal direction; V_i is the permeability variation coefficient; H_i is the net/gross thickness ratio; K_i is the permeability contrast (maximum to minimum permeability ratio); h_i is the distance from the highpermeability layer to the top of the reservoir, m; P_{ini} is the injection pressure, MPa; P_p is the producing pressure, MPa; P_e is the reservoir pressure, MPa; $V_{\rm w}$ is the water body volume, m³; V_{ϕ} is the reservoir pore volume, m³.

4 Evaluation model of CO₂ flooding and sequestration

4.1 Box-Behnken experimental design

Based on a Box-Behnken design for 10 factors and 3 levels, we designed a response surface analysis experiment, which consisted of a total of 220 simulations. Ten dimensionless groups were chosen as independent variables; and oil recovery and CO_2 utilization coefficient as response values. The maximum of the positive factors and the minimum of the negative factors were chosen to calculate the high level value of dimensionless groups; the minimum of the positive factors were chosen to calculate the low level value of dimensionless groups; the intermediate value of all factors were chosen to calculate the intermediate level value of dimensionless groups. All test factors and their ranges are listed in Table 1. These values of all dimensionless groups were normalized such that the values ranged from -1 to 1, see Table 2.

Table 1 Range of group values

Factor	Value					
	Low	Intermediate	High			
$R_{ m L}$	0.499	2.23	3.525			
$M_{\rm g}^{ m o}$	25	37.5	50			
$N_{\rm g}^{\rm o}$	0.097	0.165	0.23			
$S_{ m oi}$	0.3	0.5	0.7			
$H_{\rm D}$	0.1	0.5	0.9			
$\sigma_{ m R}$	0.89	60.77	102.4			
$P_{\rm injD}$	-0.1	0.2	0.5			
$P_{\rm pD}$	-0.5	-0.2	0.1			
P_{eD}	-0.3	0	0.3			
N_{D}	0	5	10			

Table 2 Normalized group values

Factor	Level					
	Low	Intermediate	High			
R _L	-1	0.144	1			
$M_{\rm g}^{ m o}$	-1	0	1			
N ^o _g	-1	0.026	1			
$S_{ m oi}$	-1	0	1			
$H_{\rm D}$	-1	0	1			
$\sigma_{ m R}$	-1	0.18	1			
$P_{\rm injD}$	-1	0	1			
$P_{\rm pD}$	-1	0	1			
P_{eD}	-1	0	1			
$N_{\rm D}$	-1	0	1			

4.2 Calculation

A geological model built was a non-homogeneous, 3-D, Cartesian, dipping reservoir in which a five-spot pattern was adopted. Fig. 2 shows the geometry diagram of the CO_2 driving system. The reservoir was divided into 2,420 gridblocks — 11 *x*-grid-blocks, 11 *y*-grid-blocks and 20 *z*-gridblocks. The matching result of the PVT*i* model was given as the fluid model, and the pseudo-component of oil used is shown in Table 3.

According to the experimental points obtained from the Box-Behnken design, we adjusted the initial values of the parameters and then calculated the oil recovery and CO_2 utilization coefficient, which provided the data base for the following establishment of the CO_2 sequestration and enhanced oil recovery evaluation model.

Table 3 Oil composition

Component	CO ₂	N_2	C ₁	C ₂	C ₃₊₄	C ₅₊₆	C ₇ -C ₁₉	C ₁₉ -C ₃₅	C ₃₅₊
Mole fraction, %	0.3	2.0	16.7	5.9	5.5	4.0	37.9	20.4	7.3

Fig. 2 Geometry diagram of the CO₂ driving system

4.3 Response surface design and evaluation model

The response surface method is a combination of mathematics and statistics. Because it can build a functional relationship between the objective value and independent variables, then quantitatively analyze the influencing relation between the objective value and independent variables, this method is widely used in the test data analysis. As the response surface method includes many types of response surface models, it is necessary to screen models in the response surface analysis. In this paper, we used different response surface models to fit the results of 220 simulations. Error analysis shows that the fitting effect of the quadratic model (Eq. (6)) is the best. Eq.(6) was chosen as the initial model for the following research.

$$\hat{Y} = C_0 + \sum_{i=1}^n a_i x_i + \sum_{i \le j} b_{ij} x_i x_j + \sum_{i=1}^n c_i x_i^2$$
(6)

where Y is the predicted response value (predicted value of the oil recovery R or CO₂ utilization coefficient R_{CO_2}); x_i , x_j are the coded values of independent variables; C_0 is the constant term; a_i is the linear coefficient; b_{ij} is the interaction coefficient; c_i is the quadratic coefficient; n is the number of factors, which is 10 in this test.

Using the least-squares method we fitted the relationship between the response values and the independent variables obtained from numerical calculation with the quadratic model. The results are shown as follows.

The evaluation equation for the oil recovery:

$$R = 0.4234 - 0.024R_{\rm L} - 0.04341M_{\rm g}^{\circ} - 0.059N_{\rm g}^{\circ} + 0.1222S_{\rm oi} + 0.0254H_{\rm D} + 0.0663\sigma_{\rm R} + 0.034P_{\rm injD} + 0.01663P_{\rm pD} + 0.0765P_{\rm eD} + 0.0503N_{\rm D} - 0.0036R_{\rm L}M_{\rm g}^{\circ} + 0.000767R_{\rm L}N_{\rm g}^{\circ} - 0.00602R_{\rm L}S_{\rm oi} + 0.00131R_{\rm L}H_{\rm D} - 0.00386R_{\rm L}\sigma_{\rm R} + 0.00986R_{\rm L}P_{\rm injD} - 0.01006R_{\rm L}P_{\rm pD} + 0.001554R_{\rm L}P_{\rm eD} - 0.00196R_{\rm L}N_{\rm D} + 0.0309M_{\rm g}^{\circ}N_{\rm g}^{\circ} - 0.00633M_{\rm g}^{\circ}S_{\rm oi} + 0.0127M_{\rm g}^{\circ}H_{\rm D} + 0.0371M_{\rm g}^{\circ}\sigma_{\rm R} + 0.04881M_{\rm g}^{\circ}P_{\rm injD} - 0.04848M_{\rm g}^{\circ}P_{\rm pD} + 0.01093M_{\rm g}^{\circ}P_{\rm eD} - 5 \times 10^{-6}M_{\rm g}^{\circ}N_{\rm D} + 0.0224N_{\rm g}^{\circ}S_{\rm oi} + 0.00607N_{\rm g}^{\circ}H_{\rm D} - 0.01481N_{\rm g}^{\circ}\sigma_{\rm R} + 0.00368N_{\rm g}^{\circ}P_{\rm injD} - 0.00805N_{\rm g}^{\circ}P_{\rm pD} - 0.00317N_{\rm g}^{\circ}P_{\rm eD} - 0.00059N_{\rm g}^{\circ}N_{\rm D} + 0.00522S_{\rm oi}H_{\rm D} - 0.00212S_{\rm oi}\sigma_{\rm R} + 0.00288S_{\rm oi}P_{\rm injD} + 0.0149S_{\rm oi}P_{\rm pD} + 0.0181S_{\rm oi}P_{\rm eD} + 0.00038S_{\rm oi}N_{\rm D} - 0.04451H_{\rm D}\sigma_{\rm R} + 0.0053H_{\rm D}P_{\rm injD} - 0.00465H_{\rm D}P_{\rm pD} + 0.003344H_{\rm D}P_{\rm eD} + 0.000318H_{\rm D}N_{\rm D} + 0.0357\sigma_{\rm R}P_{\rm injD} - 0.0318\sigma_{\rm R}P_{\rm pD} + 0.01138\sigma_{\rm R}P_{\rm eD} - 0.0007\sigma_{\rm R}N_{\rm D} - 0.03043P_{\rm injD}P_{\rm pD} + 0.00274P_{\rm injD}P_{\rm eD} - 0.0039P_{\rm injD}N_{\rm D} - 0.00345P_{\rm pD}P_{\rm eD} - 0.00058P_{\rm pD}N_{\rm D} + 0.000326P_{\rm eD}N_{\rm D} + 0.0047R_{\rm L}^{2} + 0.00407M_{\rm g}^{2} - 0.0234N_{\rm g}^{\circ2} - 0.0141S_{\rm oi}^{2} - 0.00751H_{\rm D}^{2} + 0.0129\sigma_{\rm R}^{2} + 0.000132P_{\rm injD}^{2} + 0.000326P_{\rm pD}^{2} + 0.0359P_{\rm eD}^{2} - 0.00727N_{\rm D}^{2}$$

The evaluation equation for the CO₂ utilization coefficient:

$$\begin{aligned} R_{\rm CO_2} &= 2.018 - 0.087R_{\rm L} + 0.088M_{\rm g}^{\rm o} + 0.052N_{\rm g}^{\rm o} - 1.186S_{\rm oi} + 0.028H_{\rm D} + 0.034\sigma_{\rm R} + 0.047P_{\rm injD} + 0.082P_{\rm pD} \\ &+ 0.373P_{\rm eD} + 0.119N_{\rm D} - 0.0043R_{\rm L}M_{\rm g}^{\rm o} - 0.02R_{\rm L}N_{\rm g}^{\rm o} + 0.185R_{\rm L}S_{\rm oi} + 0.0092R_{\rm L}H_{\rm D} - 0.029R_{\rm L}\sigma_{\rm R} + 0.0083R_{\rm L}P_{\rm injD} \\ &- 0.0062R_{\rm L}P_{\rm pD} - 0.027R_{\rm L}P_{\rm eD} + 0.0033R_{\rm L}N_{\rm D} - 0.016M_{\rm g}^{\rm o}N_{\rm g}^{\rm o} - 0.188M_{\rm g}^{\rm o}S_{\rm oi} - 0.0014M_{\rm g}^{\rm o}H_{\rm D} - 0.049M_{\rm g}^{\rm o}\sigma_{\rm R} \\ &- 0.16M_{\rm g}^{\rm o}P_{\rm injD} + 0.163M_{\rm g}^{\rm o}P_{\rm pD} + 0.0096M_{\rm g}^{\rm o}P_{\rm eD} + 0.0011M_{\rm g}^{\rm o}N_{\rm D} - 0.197N_{\rm g}^{\rm o}S_{\rm oi} + 0.032N_{\rm g}^{\rm o}H_{\rm D} - 0.0094N_{\rm g}^{\rm o}\sigma_{\rm R} \\ &- 0.125N_{\rm g}^{\rm o}P_{\rm injD} + 0.129N_{\rm g}^{\rm o}P_{\rm pD} + 0.00057N_{\rm g}^{\rm o}P_{\rm eD} - 0.0056N_{\rm g}^{\rm o}N_{\rm D} - 0.151S_{\rm oi}H_{\rm D} + 0.394S_{\rm oi}\sigma_{\rm R} + 0.148S_{\rm oi}P_{\rm injD} \\ &- 0.152S_{\rm oi}P_{\rm pD} - 0.232S_{\rm oi}P_{\rm eD} - 0.0082S_{\rm oi}N_{\rm D} + 0.0076H_{\rm D}\sigma_{\rm R} + 0.019H_{\rm D}P_{\rm injD} - 0.018H_{\rm D}P_{\rm pD} + 2.53 \times 10^{-5}H_{\rm D}P_{\rm eD} \\ &+ 0.0003H_{\rm D}N_{\rm D} + 0.074\sigma_{\rm R}P_{\rm injD} - 0.075\sigma_{\rm R}P_{\rm pD} + 0.004\sigma_{\rm R}P_{\rm eD} - 0.0029\sigma_{\rm R}N_{\rm D} - 0.073P_{\rm injD}P_{\rm pD} - 0.021P_{\rm injD}P_{\rm eD} \\ &+ 0.0099P_{\rm injD}N_{\rm D} + 0.002P_{\rm pD}P_{\rm eD} - 0.0049P_{\rm pD}N_{\rm D} - 0.001P_{\rm eD}N_{\rm D} - 0.034R_{\rm L}^{2} - 0.044M_{\rm g}^{\rm o2} - 0.066N_{\rm g}^{\rm o2} + 0.494S_{\rm oi}^{2} \\ &+ 0.034H_{\rm D}^{2} + 0.0091\sigma_{\rm R}^{2} - 0.0028P_{\rm injD}^{2} - 0.0007P_{\rm pD}^{2} - 0.064P_{\rm eD}^{2} + 0.053N_{\rm D}^{2} \end{aligned}$$

We compared the values obtained from Eqs. (7) and (8) with the results from the numerical calculation. The error analysis results indicate that the correlation coefficients for the recovery and the CO_2 utilization coefficient are 0.941 and 0.958, respectively. Eqs. (7) and (8) fit well with the results from the numerical calculation, so they can be used to evaluate the oil displacement recovery and the CO_2 storage potential in the reservoir.

Using Design Expert software (Stat-Ease, Inc, Minneapolis), we carried out variance analysis of influencing factors to the test data of reservoir recovery and CO_2 utilization coefficient. A significant analysis of variance was done and the results are listed in Tables 4 and 5. As can be seen from the data in the tables, in the quadratic model the minimum significance level for rejecting the original hypothesis is less than 0.001, which indicates that the model is good and the errors are small.

If the minimum significance level for rejecting the original hypothesis is set at 0.05, as can be seen from Tables 4 and 5, the influence of all dimensionless groups on the objective function are significant in the oil recovery regression equation, which proves that the introduction of dimensionless groups characterizing reservoir properties is effective. In the quadratic of the recovery regression equation, the buoyancy parameter, initial oil saturation, and the reservoir pressure parameter are the most significant. Amongst the interactive effects, the CO_2 -crude oil mobility ratio and the producing pressure parameter, the initial oil saturation and the reservoir pressure parameter, the high-permeability layer position parameter and the homogeneity coefficient, the homogeneity coefficient and the injection pressure parameter, the homogeneity coefficient and the producing pressure parameter, the injection pressure parameter, the injection pressure parameter, the injection pressure parameter and the producing pressure parameter are significant, and the other interactions are weak.

In the regression equation for the CO_2 utilization coefficient (Eq. (8)), the influence of all dimensionless groups on the objective function are also significant. In the quadratic terms in Eq. (8), the initial oil saturation is significant; in the aspect of interactive effects, the CO_2 -crude oil mobility ratio and the injection pressure parameter, the CO_2 -crude oil mobility ratio and the producing pressure parameter, the buoyancy parameter and the initial oil saturation, the initial oil saturation and the homogeneity coefficient, the initial oil saturation and the producing pressure parameter, the initial oil saturation and the reservoir pressure parameter, the initial oil saturation and the reservoir pressure parameter, and the injection pressure parameter and the producing pressure parameter are significant; and the other interactions are weak.

 Table 5
 Significant terms in the quadratic regression equation of CO2 utilization coefficient

Source	Mean square	F value	P-value	Sourc	ce Mean square	F value	P-value
Model	0.1128	69.1	< 0.0001	Mode	el 0.6666	102.13	< 0.0001
$R_{ m L}$	0.0171	10.46	0.0014	$R_{ m L}$	0.05756	8.82	0.0033
$M_{ m g}^0$	0.019	11.67	0.0008	$M_{ m g}^0$	0.02464	3.78	0.0534
$N_{ m g}^0$	0.1385	84.86	< 0.0001	N_g^0	0.000254	0.0389	0.8439
$S_{ m oi}$	0.4885	299.31	< 0.0001	S _{oi}	2.8163	431.53	< 0.0001
$H_{\rm D}$	0.0542	33.2	< 0.0001	H _D	0.01842	2.82	0.0945
$\sigma_{ m R}$	0.0237	14.51	0.0002	$\sigma_{\rm P}$	0.02426	3.717	0.0553
$P_{\rm injD}$	0.0207	13.44	0.0005	Pinit	0.00524	0.803	0.3713
$P_{\rm pD}$	0.0635	38.9	< 0.0001	- mjl	0 1578	24 185	< 0.0001
P_{eD}	0.3027	185.51	< 0.0001	Р_	0.8125	124.49	< 0.0001
$N_{\rm D}$	0.1038	63.59	< 0.0001	I eD	0.00472	14.51	0.0001
$M^0_{ m g} P_{ m injD}$	0.0365	22.37	< 0.0001	ND	0.09472	14.51	0.0002
$M^0_{ m g} P_{ m PD}$	0.0233	14.29	0.0002	$M_{\rm g}^{\rm o} P_{\rm in}$	njD 0.04488	6.88	0.0094
$S_{\rm oi}P_{\rm eD}$	0.00875	5.36	0.0216	$M^0_{ m g} P_1$	PD 0.05178	7.934	0.0053
$H_{\rm D}\sigma_{ m R}$	0.008023	4.92	0.0277	$N_g^0 S_c$	Di 0.0297	4.55	0.0341
$\sigma_{ m R} P_{ m injD}$	0.01954	11.97	0.0007	$S_{ m oi}\sigma_{ m F}$	a 0.09953	15.251	0.0001
$\sigma_{\rm R} P_{\rm pD}$	0.00758	4.64	0.0324	$S_{ m oi}P_{ m ir}$	_{njD} 0.0275	4.213	0.0414
$P_{\rm injD}P_{\rm pD}$	0.01594	9.77	0.0020	$S_{\rm oi} P_{\rm p}$	0.02893	4.432	0.0365
$(N_{g}^{0})^{2}$	0.03128	19.17	< 0.0001	$S_{\rm oi} P_{\rm e}$	eD 0.05064	7.758	0.0059
$S_{\rm oi}^{2}$	0.00722	4.42	0.0367	$P_{\rm injD}$ F	р _{рD} 0.0814	12.48	0.0005
P_{eD}^{2}	0.00946	6.09	0.0125	S_{oi}^{2}	1.2783	195.86	< 0.0001

 Table 4
 Significant terms in the quadratic regression equation of oil recovery

4.4 A simplified evaluation model

Because the interactive effects of all the ten dimensionless groups were taken into consideration, the equations are too complicated to evaluate rapidly for the target reservoir. We selected the significant terms in the Eqs. (7) and (8) to simplify the previous evaluation equations as follows:

The evaluation equation for the oil recovery:

$$R = 0.4259 - 0.02R_{\rm L} - 0.03541M_{\rm g}^{\circ} - 0.05854N_{\rm g}^{\circ} + 0.1278S_{\rm oi} + 0.02447H_{\rm D} + 0.068\sigma_{\rm R} + 0.03307P_{\rm injD} + 0.01481P_{\rm pD} + 0.0849P_{\rm eD} + 0.0497N_{\rm D} + 0.01608M_{\rm g}^{\circ}P_{\rm injD} + 0.01482M_{\rm g}^{\circ}P_{\rm pD} + 0.027S_{\rm oi}P_{\rm eD} - 0.04415H_{\rm D}\sigma_{\rm R} + 0.04048\sigma_{\rm R}P_{\rm injD}$$
(9)
$$-0.02521\sigma_{\rm R}P_{\rm pD} - 0.01159P_{\rm injD}P_{\rm pD} - 0.02467N_{\rm g}^{\circ 2} - 0.01488S_{\rm oi}^{\circ 2} - 0.03675P_{\rm eD}^{\circ 2}$$

The evaluation equation for the CO₂ utilization coefficient:

$$R_{\rm CO_2} = 2.01 - 0.093R_{\rm L} + 0.073M_{\rm g}^{\circ} + 0.0057N_{\rm g}^{\circ} - 1.16S_{\rm oi} + 0.053H_{\rm D} + 0.06\sigma_{\rm R} - 0.032P_{\rm injD} + 0.18P_{\rm pD} + 0.35P_{\rm eD} + 0.12N_{\rm D} - 0.16M_{\rm g}^{\circ}P_{\rm injD} + 0.17M_{\rm g}^{\circ}P_{\rm pD} - 0.2N_{\rm g}^{\circ}S_{\rm oi} + 0.39S_{\rm oi}\sigma_{\rm R} + 0.15S_{\rm oi}P_{\rm injD} - 0.15S_{\rm oi}P_{\rm pD} - 0.23S_{\rm oi}P_{\rm eD} - 0.14P_{\rm injD}P_{\rm pD} + 0.5S_{\rm oi}^{2}$$

$$(10)$$

5 Sensitivity analysis and validation

5.1 Sensitivity analysis of factors

5.1.1 Single factors

We plotted the oil recovery and CO_2 utilization coefficient against various influencing factors (Figs. 3 and 4). These figures show that these factors have significant but different effects on the oil recovery and CO_2 utilization coefficient.

The factors are listed in order of importance to the

oil recovery: the initial oil saturation, reservoir pressure parameter, homogeneity coefficient, buoyancy parameter, water body size parameter, CO₂-oil mobility ratio, injection pressure parameter, high-permeability layer position parameter, effective aspect ratio, and the producing pressure parameter.

The factors influencing the CO_2 utilization coefficient are also ranked in descending order: the initial oil saturation, reservoir pressure parameter, producing pressure parameter, water body size parameter, effective aspect ratio, CO₂-oil mobility ratio, homogeneity coefficient, high-permeability layer position parameter, injection pressure parameter, and the buoyancy parameter.

Fig. 3 Influence curves of single factors on oil recovery

Fig. 4 Influence curves of single factors on the CO₂ utilization coefficient

5.1.2 Interaction between any two factors

Figs. 5 and 6 are two response surface diagrams of oil recovery and CO_2 utilization coefficient. Fig. 5 shows that the interaction of the homogeneity coefficient and highpermeability layer position parameter to the oil recovery is significant in the recovery response surface diagram. It is specifically manifested as follows: when the homogeneity coefficient is large, lower high-permeability layer position parameter leads to higher oil recovery. Fig. 6 shows that the interaction of the CO_2 -crude oil mobility ratio and the injection pressure parameter is significant in the CO_2

Fig. 5 The interaction of the homogeneity coefficient and high-permeability layer position on oil recovery

Fig. 6 The interaction of the CO₂-crude oil mobility ratio and the injection pressure on CO₂ utilization coefficient

utilization coefficient response surface diagram. It is specifically manifested as follows: when the CO_2 -crude oil mobility ratio is large, lower injection pressure parameter leads to greater CO_2 utilization coefficient.

5.2 Model calculation and analysis

After adjusting each parameter value, the values of all dimensionless groups were calculated using the data of a typical reservoir. Then the numerical method and Eqs. (9) and (10) were used respectively to calculate oil recovery and CO_2 utilization coefficient. The calculated results are shown in Figs. 7 and 8.

Figs. 7 and 8 show that the results calculated by formulae proposed in this paper is consistent with those obtained from numerical calculation. The correlation coefficients for oil

Fig. 8 A comparison of CO₂ utilization coefficient calculated by numerical simulation and by Eq. (10)

recovery evaluation equation and CO_2 utilization coefficient evaluation equation are respectively 0.935 and 0.952, which indicates that the simplified model can be used to predict oil recovery and CO_2 utilization coefficient.

6 Conclusions

After analyzing the factors influencing the CO_2 utilization coefficient and oil recovery, we introduced ten dimensionless groups to characterize the reservoir. Based on the Box-Behnken design, all factors with varying values affecting storage and recovery were calculated, the results were interpreted by the response surface method, and a quick evaluation model for evaluating CO_2 sequestration and oil recovery was obtained finally. The main understandings are shown as follows:

1) There are many factors influencing the CO_2 sequestration and oil recovery: the most influencing factors are stratum heterogeneity, oil and CO_2 viscosity ratio, sedimentary rhythm, miscible/immiscible phases, buoyancy/gravity; the secondary ones are formation thickness, diffusion/dispersion, and gas injection rate and water body size.

2) Based on analysis of main factors influencing the CO_2 utilization coefficient and oil recovery, the affiliation relation between every reservoir parameter and every factor was determined by dimensional analysis and the theory of physics and mechanics. Ten dimensionless groups were selected (such as the effective aspect ratio, CO_2 -oil mobility ratio, buoyancy number, initial oil saturation, reservoir heterogeneity, sedimentary rhythm, injection pressure, producing pressure, reservoir pressure, and water body size), and the ten dimensionless groups were qualified to systematically scale reservoir properties.

3) The evaluation model established through the Box-Behnken design and response surface method is accurate and simple for calculating oil recovery and the CO_2 utilization coefficient. It can be used to quickly evaluate the oil recovery and CO_2 storage potential for reservoirs in China, and can also provide criteria for screening candidate reservoirs for CO_2 sequestration and flooding.

4) Based on sensitivity analysis and test of the evaluation model, the factors are listed in order of importance as follows: For reservoir recovery: the initial oil saturation, reservoir pressure parameter, homogeneity coefficient, buoyancy parameter, water body size parameter, CO_2 -oil mobility ratio, injection pressure parameter, high-permeability layer position parameter, effective aspect ratio, and the producing pressure parameter. For the CO_2 utilization coefficient: the initial oil saturation, reservoir pressure parameter, producing pressure parameter, water body size parameter, effective aspect ratio, CO_2 -oil mobility ratio, homogeneity coefficient, high-permeability layer position parameter, injection pressure parameter, and the buoyancy parameter.

Acknowledgements

The authors are grateful for financial support from the National Basic Research Program of China (2006CB705805).

References

- Bachu S. Sequestration of CO₂ in geological media: Criteria and approach for site selection in response to climate change. Energy Conversion and Manage. 2000. 41: 953-70
- Bachu S and Stewart S. Geological storage of anthropogenic carbon dioxide in the Western Canada Sedimentary Basin: Suitability analysis. Journal of Canadian Petroleum Technology. 2002. 41(2): 32-40
- Bachu S. Evaluation of the CO₂ sequestration capacity in bed oil and gas reservoirs at depletion and the effect of underlying aquifers. Journal of Canadian Petroleum Technology. 2003. 42(9): 51-61
- Bachu S, Bonijoly D, Bradshaw J, et al. CO₂ storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control. 2007. 1(4): 430-443
- Bradshaw J, Bachu S, Bonijoly D, et al. CO₂ storage capacity estimation: Issues and development of standards. International Journal of Greenhouse Gas Control. 2007. 1(1): 62-68
- Duan Z H, Sun S, Zhang C, et al. Reducing the release of CO₂ into the atmosphere: CO₂ sequestration. Geological Review. 2004. 50(5): 514-519 (in Chinese)
- Espie A A. Obstacles to the storage of CO₂ through EOR operation in the North Sea. Greenhouse Gas Control Technologies. 2003. 20(9): 68-70
- Ferreira S L C, Bruns R E and Ferreira H S. Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta. 2007. 597: 179-186
- Gao Y L, Wang Y X and Jiang H H. Optimization of conditions to sterilize staphylococcus aureus by ultra-high hydrostatic pressure using response surface methodology. Chinese Journal of High Pressure Physics. 2004. 18(3): 273-278 (in Chinese)
- Hendriks C, Graus W and Van Bergen F. Global carbon dioxide storage potential and costs. Utrecht: Ecofys. 2004
- Jiang H Y and Shen P P. The relationship between CO₂ storage and oil recovery enhancing. Petroleum Geology and Recovery Efficiency. 2008. 15(6): 52-55 (in Chinese)
- Kovseek A R. Screening criteria for CO₂ storage in oil reservoir. Petroleum Science and Technology. 2003. 20(7-8): 841-866
- Li S L, Guo P, Dai L, et al. Strengthen gas injection for enhanced oil recovery. Journal of Southwest Petroleum Institute. 2000. 22(3): 41-45 (in Chinese)
- Li Z W and Dong M Z. CO₂ sequestration in depleted oil and gas reservoirs — Cap rock characterization and storage capacity. Energy Conversion and Management. 2006. 47: 1372-1382
- Mo S and Akervoll I. Modeling long-term CO₂ storage in aquifer with a black-oil reservoir simulator. Paper SPE 93951 presented at SPE/ EPA/DOE Exploration and Production Environmental Conference held in Galveston, Texas, USA, 7- 9 March 2005
- Qiang W, Li Y L, Wen D G, et al. Advances and problems of geological disposal of greenhouse gas. Geological Science and Technology Information. 2006. 25(2): 83-88 (in Chinese)
- Shen P P, Liao X W and Liu Q J. Methodology for estimation of CO₂ storage capacity in reservoir. Petroleum Exploration and Development. 2009. 36(2): 216-220 (in Chinese)
- Stevens S H, Kuuskraa VA and Gale J. Sequestration of CO₂ in depleted oil and gas fields: Global capacity, costs and barriers. In: Greenhouse Gas Control Technologies: Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies. Edited by Williams D J, Durie R A, Mcmullan P, et al. Collingwood: CSIRO Publishing. 2001. 278-283
- Wang T, Yao Y D and Li X F. Studies of driving effects by CO₂ injection in reservoir. China Petroleum and Chemical Industry. 2008. 24: 30-33 (in Chinese)

- Winter E M. Availability of depleted oil and gas reservoirs for disposal of carbon dioxide in the United States. Energy Conversion and Management. 2001. 34(6): 1177-1187
- Wood D J, Lake L W and Johns R T. A screening model for CO₂ flooding and storage in Gulf Coast reservoirs based on dimensionless groups.
 Paper SPE 100021 presented at SPE/DOE Symposium on Improved Oil Recovery held in Tulsa, Oklahoma, USA, 22-26 April 2006
- Xiong Y, Sun L, Li S L, et al. Experimental evaluation of carbon dioxide injection for enhanced oil recovery in Liaohe light oil district. Journal of Southwest Petroleum Institute. 2001. 23(2): 30-32 (in Chinese)
- Yao Y D and Li X F. Studies of sequestration and driving effects by CO₂ injection in reservoirs. Xinjiang Petroleum Geology. 2009. 30(4): 493-495 (in Chinese)
- Zeng R S, Sun S, Chen D Z, et al. Decrease carbon dioxide emission into the atmosphere — Underground disposal of carbon dioxide. Bulletin of National Natural Science Foundation of China. 2004. 18(4): 196-200 (in Chinese)
- Zhang L H and Yang J. Optimizing evaluation of CO₂ storage and flooding effect under different injection-production modes. Natural Gas Industry. 2008. 28(8): 102-104 (in Chinese)

(Edited by Sun Yanhua)