Skip to main content
Log in

Influence of NH3/CO2 Modification on the Characteristic of Biochar and the CO2 Capture

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This paper was aimed to study the influence of modification of biochar on the performance of CO2 adsorption. Biochar, obtained from cotton stalk pyrolysis in a fixed bed reactor, was modified with ammonia and CO2. The physicochemical properties of biochars were characterized by the Fourier transform infrared spectroscopy and automatic adsorption equipment (Micromeritics, ASAP 2020, USA). CO2 adsorption of biochar was performed in thermogravimetric analyzer. The results showed that the surface area of char was increased significantly by CO2 modification, while N-contained compound on char surface was enriched obviously by NH3 modification. CO2 adsorption of biochar increased greatly with CO2 and NH3 modification. CO2 adsorption was mainly attributed to physical adsorption at 20 °C, and the adsorption quantity (maximum = 99 mg/g) was proportional to the micropore volume of the char. However, at 120 °C, molecular thermal motion increase, chemical adsorption start to play a dominated role, and the adsorption was directly proportional to the N content of this char.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brunner G (2009) Near critical and supercritical water, Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluids 47(3):373–381

    Article  CAS  Google Scholar 

  2. Drage TC, Arenillas A, Smith KM, Pevida C, Piippo S, Snape CE (2007) Preparation of carbon dioxide adsorbents from the chemical activation of urea–formaldehyde and melamine–formaldehyde resins. Fuel 86(1):22–31

    Article  CAS  Google Scholar 

  3. Li W, Choi S, Drese JH, Hornbostel M, Krishnan G, Eisenberger PM, Jones CW (2010) Steam-stripping for regeneration of supported amine-based CO2 adsorbents. Chem Sus Chem 3(8):899–903

    Article  CAS  Google Scholar 

  4. Plaza M, Pevida C, Arenillas A, Rubiera F, Pis J (2007) CO2 capture by adsorption with nitrogen enriched carbons. Fuel 86(14):2204–2212

    Article  CAS  Google Scholar 

  5. Arenillas A, Smith K, Drage T, Snape C (2005) CO2 capture using some fly ash-derived carbon materials. Fuel 84(17):2204–2210

    Article  CAS  Google Scholar 

  6. Liang Z, Marshall M, Chaffee AL (2009) CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuel 23(5):2785–2789

    Article  CAS  Google Scholar 

  7. Plaza M, Pevida C, Arias B, Casal M, Martín C, Fermoso J, Rubiera F, Pis J (2009) Different approaches for the development of low-cost CO2 adsorbents. J Environ Eng 135(6):426–432

    Article  CAS  Google Scholar 

  8. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energ Fuels 16(6):1463–1469

    Article  CAS  Google Scholar 

  9. Plaza M, Rubiera F, Pis J, Pevida C (2010) Ammoxidation of carbon materials for CO2 capture. Appl Surf Sci 256(22):6843–6849

    Article  CAS  Google Scholar 

  10. Yang RT (1986) Gas separation by adsorption processes. Butterworth, Stoneham

    Google Scholar 

  11. Rodriguez-Reinoso F, López-González JD, Berenguer C (1984) Activated carbons from almond shells—II: characterization of the pore structure. Carbon 22(1):13–18

    Article  CAS  Google Scholar 

  12. Rodriguez-Reinoso F, Molina-Sabio M (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30(7):1111–1118

    Article  CAS  Google Scholar 

  13. Liu WJ, Zeng FX, Jiang H, Zhang XS (2011) Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour Technol 102(17):8247–8252

    Article  PubMed  CAS  Google Scholar 

  14. Swiatkowski A, Pakula M, Biniak S, Walczyk M (2004) Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(II) ions. Carbon 42(15):3057–3069

    Article  CAS  Google Scholar 

  15. Bagreev A, Bashkova S, Bandosz TJ (2002) Adsorption of SO2 on activated carbons: the effect of nitrogen functionality and pore sizes. Langmuir 18(4):1257–1264

    Article  CAS  Google Scholar 

  16. Adib F, Bagreev A, Bandosz TJ (2000) Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons. Langmuir 16(4):1980–1986

    Article  CAS  Google Scholar 

  17. Maroto-Valer MM, Tang Z, Zhang Y (2005) CO2 capture by activated and impregnated anthracites. Fuel Process Technol 86(14):1487–1502

    Article  CAS  Google Scholar 

  18. Mercedes Maroto-Valer M, Lu Z, Zhang Y, Tang Z (2008) Sorbents for CO2 capture from high carbon fly ashes. Waste Manag 28(11):2320–2328

    Article  PubMed  CAS  Google Scholar 

  19. Pevida C, Plaza M, Arias B, Fermoso J, Rubiera F, Pis J (2008) Surface modification of activated carbons for CO2 capture. Appl Surf Sci 254(22):7165–7172

    Article  CAS  Google Scholar 

  20. Plaza M, Pevida C, Arias B, Fermoso J, Arenillas A, Rubiera F, Pis J (2008) Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture. J Therm Anal Calorim 92(2):601–606

    Article  CAS  Google Scholar 

  21. Przepiorski J, Skrodzewicz M, Morawski A (2004) High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl Surf Sci 225(1):235–242

    Article  CAS  Google Scholar 

  22. Biniak S, Szymański G, Siedlewski J, Światkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12):1799–1810

    Article  CAS  Google Scholar 

  23. Bota KB, Abotsi GMK (1994) Ammonia: a reactive medium for catalysed coal gasification. Fuel 73(8):1354–1357

    Article  CAS  Google Scholar 

  24. Boehm HP, Mair G, Stoehr T, De Rincón AR, Tereczki B (1984) Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions. Fuel 63(8):1061–1063

    Article  CAS  Google Scholar 

  25. Jansen R, Van Bekkum H (1994) Amination and ammoxidation of activated carbons. Carbon 32(8):1507–1516

    Article  CAS  Google Scholar 

  26. Meldrum BJ, Rochester CH (1990) In situ infrared study of the surface oxidation of activated carbon in oxygen and carbon dioxide. J Chem Soc Faraday Trans 86(5):861–865

    Article  Google Scholar 

  27. Vinke P, Van der Eijk M, Verbree M, Voskamp A, Van Bekkum H (1994) Modification of the surfaces of a gas activated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia. Carbon 32(4):675–686

    Article  CAS  Google Scholar 

  28. Stöhr B, Boehm H, Schlögl R (1991) Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon 29(6):707–720

    Article  Google Scholar 

  29. Grant KA, Zhu Q, Thomas KM (1994) Nitrogen release in the gasification of carbons. Carbon 32(5):883–895

    Article  CAS  Google Scholar 

  30. Jansen R, Van Bekkum H (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33(8):1021–1027

    Article  CAS  Google Scholar 

  31. Chen Y, Wang X, Chen H, Yang H, Zhang S (2012) Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresour Technol 107:411–418

    Article  PubMed  CAS  Google Scholar 

  32. Plaza M, Pevida C, Arias B, Fermoso J, Rubiera F, Pis J (2009) A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia 1(1):1107–1113

    Article  CAS  Google Scholar 

  33. Shafeeyan MS, Daud WMAW, Houshmand A, Arami-Niya A (2011) Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation. Appl Surf Sci 257(9):3936–3942

    Article  CAS  Google Scholar 

  34. Moreno-Castilla C, Ferro-Garcia M, Joly J, Bautista-Toledo I, Carrasco-Marin F, Rivera-Utrilla J (1995) Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11(11):4386–4392

    Article  CAS  Google Scholar 

  35. Chen JP, Wu S (2004) Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir 20(6):2233–2242

    Article  PubMed  CAS  Google Scholar 

  36. Pradhan BK, Sandle N (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37(8):1323–1332

    Article  CAS  Google Scholar 

  37. Plaza M, Pevida C, Martín C, Fermoso J, Pis J, Rubiera F (2010) Developing almond shell-derived activated carbons as CO2 adsorbents. Sep Purif Technol 71(1):102–106

    Article  CAS  Google Scholar 

  38. Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrol 89(2):143–151

    Article  CAS  Google Scholar 

  39. Lazar G, Lazar I (2003) IR characterization of a-C:H:N films sputtered in Ar/CH4/N2 plasma. J Non-Cryst Solids 331(1):70–78

    Article  CAS  Google Scholar 

  40. Mangun CL, Benak KR, Economy J, Foster KL (2001) Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon 39(12):1809–1820

    Article  CAS  Google Scholar 

  41. Hontoria-Lucas C, Lopez-Peinado A, López-González JD, Rojas-Cervantes M, Martin-Aranda R (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11):1585–1592

    Article  CAS  Google Scholar 

  42. Kapoor A, Ritter J, Yang R (1989) On the Dubinin–Radushkevich equation for adsorption in microporous solids in the Henry’s law region. Langmuir 5(4):1118–1121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to express her sincere thanks to the financial support from National Natural Science Foundation of China (51276075 and 51021065) and National Key Technology R&D Program in the 12th Five-Year Plan of China (2011BAD15B05-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Haiping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Z., Shihong, Z., Haiping, Y. et al. Influence of NH3/CO2 Modification on the Characteristic of Biochar and the CO2 Capture. Bioenerg. Res. 6, 1147–1153 (2013). https://doi.org/10.1007/s12155-013-9304-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9304-9

Keywords

Navigation