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Opposing roles of the oncogene Akt isoforms in tumour
progression: is there a dark side to Akt pathway inhibition?
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Since the discovery of the serine/threonine kinase Akt/PKB
two decades ago, it has been implicated in an increasing
number of physiological and pathological processes [24].
Many studies have shown that Akt hyperactivation is a com-
mon characteristic in a wide range of human tumours [2]. Akt
regulates diverse cellular processes such as apoptosis, cell
proliferation, differentiation, migration and angiogenesis. Fur-
thermore, a number of studies have shown that overexpression
and/or activation of Akt renders tumour cells resistant to
chemotherapeutic drugs and signalling pathway inhibitors
such as Gleevec, Iressa and Herceptin [21]. siRNA-mediated
knockdown of Akt significantly reduces tumor growth and
invasiveness and induces apoptosis [23]. These observations
have made it an attractive target for the development of
anticancer therapeutics, and it has been postulated that inhibi-
tion of Akt alone or in combination with standard cancer
chemotherapeutics will reduce the apoptotic threshold [12].
To date, three Akt family members have been identified in
mammals. These are transcribed from distinct genetic loci,
termed Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ. Akt fam-
ily members share a similar domain structure [26] and all three
proteins are expressed in all cells and tissues.

Oncogenic mutations in the phosphoinositide (PI) 3-kinase
(PI3-K) pathway lead to hyperactivation of all three Akt iso-
forms [27]. Akt can be activated by steroid hormones or
growth factors, downstream of constitutively active Ras and
Src pathways [18]. Properly regulated activation of Akt
depends on the integrity of the pleckstrin homology (PH)
domain, which mediates its membrane translocation and

subsequent phosphorylation at two regulatory sites, Thr308
in the kinase activation loop, and Ser473 in the C-terminal
domain of the Akt family, only AKT2 mRNA is frequently
overexpressed in human cancers [17]. Activation of Akt can
also result from a dominant mutation that was identified in
human tumours [3] and a point mutation of AKT2 has been
reported in familial diabetes [9]. Ectopic expression of consti-
tutively active Akt and even wild-type Akt2 results in onco-
genic transformation in vitro and in vivo [4]. For these reasons,
many clinical trials are underway using recently developed
small molecule inhibitors targeting the PI3K/Akt pathway.

To date, more than 200 Akt substrates have been identi-
fied. However, isoform specificity has been studied for only
a few, including the Akt1-specific targets p21 [13] and
SKP2 [8], and the Akt2-specific targets MDM2 and
AS160 [22]. Moreover, none of these targets can account
for the differential effects of Akt isoforms on invasive
migration [10]. A recent report raises concerns that Akt1
and Akt2 isoforms have opposing functions in the regulation
of carcinoma migration. Bae et al. reported the first evidence
for the different functions of Akt isoforms, from Akt1, Akt2
and Akt3 knockout mouse studies. Akt1 null mice displayed
growth retardation, Akt2 null mice developed insulin-
resistant diabetes (because of its dominant role in metabolic
signalling in the liver), and Akt3 null mice revealed a
reduced brain size. Other in vivo studies using isoform-
specific RNAi or inhibitors have highlighted the different
functions of the Akt isoforms, especially in modulating
motility in breast cancer [1, 6, 7].

In contrast, several in vitro studies of ectopic expression of
Akt proteins indicated that various Akt isoforms could stim-
ulate motility [25] and enhance migration [11]. Consistent
with the above study, other in vivo studies using Akt1 knock-
out mice resulted in fewer metastases, with the conclusion that
Akt1 signalling is positively associated with invasion leading
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to metastasis [16]. A study of constitutively active Akt1 in the
mouse mammary gland by Hutchinson et al. reported that
Akt1 suppresses mammary tumor invasion [14]. Another in
vitro assay also demonstrated that Akt1 suppresses breast
cancer cell migration by enhancing the proteasomal degrada-
tion of the nuclear factor of activated T cells transcription
factor, which in turn promotes the expression of invasion
genes such as COX2 [28]. More recent studies have shown
that Akt1 can block cell migration through tuberous sclerosis
complex 2 [19], its silencing induces epithelial-mesenchymal
transition in MCF10A cells and in the same cells Akt2 actu-
ally enhances this phenotype [15]. The specific substrates of
Akt2 responsible for enhancing cell migration have not yet
been identified. More recently, Chin et al. reported more
mechanistic insights as to how Akt isoforms differentially
control cell migration in breast cancer cells, showing that the
actin bundling protein palladin is an exclusive Akt1 substrate
that is not phosphorylated by Akt2 and is required for efficient
breast cancer cell migration [5]. A similar in vivo study from
Maroulakou et al. also showed a suppression of metastasis,
consistent with Akt1 functioning as a metastasis suppressor
[20]. This same study also noted that knockout of Akt2 in
mice decreased metastases, consistent with Akt2 functioning
as an enhancer of metastasis. Moreover, it has been shown that
the membrane recruitment of Akt2 in insulin-stimulated adi-
pocytes was faster than Akt1, and was dependent on the PH
domain and the Akt2 linker region [10]. Furthermore, Chin et
al. showed that the Akt1 linker region determines the selec-
tivity of Akt1 over Akt2 in the phosphorylation of palladin
[5]. Whether the linker region contains specific microdomains
or any other determinants that dictate Akt isoform substrate
selectivity is not known. Regardless, specific substrates of Akt
isoforms that are responsible for transducing distinct pheno-
types clearly do exist. These new data have cast Akt itself as
the lead role in the already crowded stage of Akt signalling.

In summary, there is now overwhelming evidence that
Akt1 and Akt2 have opposing functions in modulating
phenotypes associated with migration and invasion. Even-
though the inhibition of Akt signalling should foil local
tumor growth, it could promote invasion and metastasis in
certain settings. Emerging evidence that the three Akt iso-
forms have distinct substrates with distinct physiological
outcomes will require us to re-evaluate the aim of global
inhibition of Akt in cancer therapy.
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