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Abstract The homeobox gene (Hoxa13) codes for a

transcription factor protein that binds to AT-rich DNA

sequences and controls expression of many important

proteins during embryonic morphogenesis. We report

complete backbone NMR chemical shift assignments of

mouse Hoxa13 DNA binding domain bound to an 11-res-

idue DNA duplex (BMRB no. 16577).
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Biological context

Homeobox (Hox) genes encode a conserved family of tran-

scription factor proteins that are critically important in ver-

tebrate development (Krumlauf 1994). In humans, the Hox

genes are distributed into four linkage groups (HOXA, B, C,

D) comprising 39 genes located on chromosomes 7, 17, 12,

and 2. Recently, mutations in HOXA13 have been associated

with Hand-Foot-Genital (HFGS)- and Guttmacher syn-

dromes (GS), autosomal dominant disorders that profoundly

affect limb and genitourinary development causing defects

in the digits, carpal/tarsal bones, uterus, bladder, Mullerian

ducts, and the external genitalia (Innis et al. 2002; Jorgensen

et al. 2010; Mortlock and Innis 1997). Analysis of the DNA

sequences bound by HOXA13 revealed high affinity for

a unique duplex containing a consensus sequence of:

5-AAATAAAA-30 (Knosp et al. 2007). Characterization of

this high affinity sequence in mouse models confirmed that

HOXA13 binds to this sequence in vivo and regulates the

tissue-specific expression of factors such as bone morpho-

genetic proteins 2 and 7, to facilitate limb skeletal develop-

ment (Knosp et al. 2004, 2007).

While it is well-established that mutations affecting the

DNA binding domain of HOXA13 cause HFGS and GS, less

is known about the amino acids that facilitate HOXA13 DNA

binding and/or sequence specificity (Innis et al. 2002;

Mortlock and Innis 1997). To gain insight into the molecular

basis for the phenotypes present in HFGS and GS, an atomic-

resolution structure of HOXA13 bound to duplex DNA is

needed to define which amino acids facilitate HOXA13 DNA

binding and DNA sequence specificity. Here we report the

NMR assignments of the mouse HOXA13 DNA binding

domain bound to an 11-residue duplex, forming a complex

called, A13DBD-DNA. The NMR assignments of A13DBD-

DNA are an important first step toward elucidating the amino

acids necessary for sequence specific DNA binding and

provide a functional explanation for the loss of HOXA13

function in HFGS and GS.

Methods and experiments

Preparation of HOXA13 DNA binding domain bound

to duplex DNA (A13DBD-DNA)

Uniformly 15N-labeled and 13C, 15N-labeled A13DBD

were prepared as described previously (Zhang et al. 2009).
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Two complementary single strands of DNA (1: 50-CAA

ATAAAATC-30 and 2: 50-GATTTTATTTG-30 purchased

from Bioneer Inc.) were synthesized and HPLC purified.

For duplex DNA preparation, the two complementary

DNA single strands were dissolved in 1x TE buffer

(10 mM TrisHCl, 1 mM EDTA, pH 7.5), mixed in 1:1 M

ratio, and annealed at 95�C for 10 min, and then cooled

down to room temperature. An aliquot of duplex DNA was

added to a stock solution of A13DBD in a 1:1 M ratio and

incubated at 15�C for 1 h and the complex was further

purified by gel-filtration size-exclusion chromatography

(Superdex-75).

NMR spectroscopy

Samples of A13DBD-DNA for NMR analysis were pre-

pared as described above, and exchanged into a buffer

containing 20 mM sodium phosphate (pH 6.0) with 5 mM

Magnesium chloride and 95% H2O/5% D2O, and finally

concentrated to 0.3 ml giving a final protein concentration

of 0.5 mM. All NMR experiments were performed at

310 K on a Bruker Avance 800 MHz spectrometer equip-

ped with a four channel interface and triple resonance

cryogenic (TCI) probe. The 15N–1H HSQC spectrum

(Fig. 1) was recorded with 256 9 2048 complex points for
15N(F1) and 1H(F2). Assignment of backbone resonances

was obtained by analyzing the following spectra: HNCA,

HNCACB, CBCA(CO)NH, HNCO. The NMR data were

processed using NMRPipe and analyzed using Sparky.

Assignments and data deposition

Figure 1 presents the 15N–1H HSQC spectrum of A13DBD-

DNA at pH 6.0 to illustrate representative backbone reso-

nance assignments. NMR assignments were based on 3D

heteronuclear NMR experiments performed on 13C/15N-

labeled A13DBD (residues 1–73). The protein sample in this

study consists of 73 native residues without affinity tags or

cloning modification. Nearly all non-proline residues

exhibited strong backbone amide resonances with uniform

intensities in the HSQC spectrum, indicative of a

Fig. 1 Two-dimensional 15N–1H HSQC spectrum of A13DBD-DNA

at pH 6.0 recorded at 800-MHz 1H frequency. The protein sample was

uniformly labeled with nitrogen-15. Amide side-chain resonances are

connected by solid lines. Resonance assignments are indicated and

reported in BMRB accession no. 16577
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Fig. 2 Chemical shift

perturbation for A13DBD-

DNA. The weighted average

chemical shift differences were

calculated using DavðHNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DH2 þ DN=5ð Þ2
� �.

2

r

where

DH and DN are chemical shift

differences between free and

DNA-bound states for amide 1H

and 15N resonances,

respectively. Exposed residues

at DNA interface are

highlighted in bold. The

secondary structure based on

CSI is shown at the top (Helix 1:

residues 15–28, Helix 2: 34–45,

Helix 3: 48–68. A short b-sheet

is predicted from 31 to 33)
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well-defined three-dimensional protein structure. All back-

bone resonances (1HN, 15N, 13Ca, 13Cb, and 13CO) were

assigned except for the first two residues (G1 and S2) that

have very weak NMR intensities. The chemical shift index of

each amino acid residue was calculated as described previ-

ously (Wishart and Sykes 1994) and revealed three a-helices

(a1: T15–T28; a2: K34–N45; a3: E48–K68) and a short

b-strand (F31–T33). The protein secondary structure closely

resembles the canonical secondary structure and topology

seen in other homeobox proteins (Piper et al. 1999). The

chemical shift assignments (1H, 15N, 13C) of the A13DBD-

DNA complex have been deposited in the BioMagResBank

(http://www.bmrb.wisc.edu) under accession number

16577.

Figure 2 presents the chemical shift perturbation caused

by DNA binding to A13DBD. The weighted average

chemical shift difference (A13DBD-DNA vs. free protein)

was calculated for backbone amide 1H and 15N resonances

of each residue. N-terminal residues (K9, R11 and Y14)

and residues in the C-terminal helix show the largest

chemical shift differences, suggesting that these residues

may interact with duplex DNA. Residues I53, Q56, N57

and V60 are all on the same solvent exposed surface of the

C-terminal helix and are predicted to make direct

sequence-specific contacts inside the major groove analo-

gous to DNA contacts observed in the HoxB1-DNA com-

plex (Piper et al. 1999).
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