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Abstract
This paper presents encoding and decoding algorithms for several families of optimal rank 
metric codes whose codes are in restricted forms of symmetric, alternating and Hermitian 
matrices. First, we show the evaluation encoding is the right choice for these codes and 
then we provide easily reversible encoding methods for each family. Later unique decoding 
algorithms for the codes are described. The decoding algorithms are interpolation-based 
and can uniquely correct errors for each code with rank up to ⌊(d − 1)/2⌋ in polynomial-
time, where d is the minimum distance of the code.

Keywords  Rank metric codes · Hermitian matrices · Symmetric matrices · Alternating 
matrices · Linearized polynomials · Interpolation-based decoding · Berlekamp-Massey 
algorithm

Mathematics Subject Classification (2010)  94B35 · 15B99

1  Introduction

Rank metric codes were introduced first by Delsarte in [2], and independently by Gabidulin 
in [12] and Roth in [27]. They have been extensively investigated because of their applica-
tions in crisscross error correction [27], cryptography [6] and network coding [35]. The 
coding-theoretic properties of these codes have been studied in detail, and constructions 
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of optimal codes with respect to a Singleton-like bound, known as MRD codes, have been 
found. An interested reader may refer to [8, 32] for more details.

Known decoding algorithms for MRD codes can be generally classified in two dif-
ferent approaches: syndrome-based decoding as in [5, 7, 25, 27] and interpolation-
based decoding as in [9, 10, 13, 14, 16, 24]. Gabidulin in [5] solves the key equation 
in the decoding process by employing the linearized version of extended Euclidean 
(LEE) algorithm, while in [25], the key equation was solved by a linearized version 
of Berlekamp-Massey (BM) algorithm. The error values in both decoding algorithms 
in [5] and [25] are computed by an algorithm called Gabidulin algorithm. Loidreau in 
[16] proposed the first interpolation-based decoding approach for MRD codes and con-
sidered the analogue of Welch-Berlekamp (WB) algorithm, which was originally used 
to decode Reed-Solomon codes [38]. The algorithm directly gives the code’s interpola-
tion polynomial and computing the error vector is not required in the decoding process.

In [31], Sheekey proposed the first family of MRD codes over �qn which is linear 
over �q (instead of �qn as the well-known Gabidulin codes) and his idea were used later 
to introduce new MRD codes that are linear over a sub-field of �qn [18, 20–22, 36]. 
When the rank of the error vector reaches the maximum unique decoding radius, the 
syndrome-based decoding approach works only for MRD codes that are linear over the 
main extension field. Randrianarisoa in [24, 26], gave an interpolation based decoding 
algorithm for twisted Gabidulin codes. Later this idea was adopted to decode additive 
generalized twisted Gabidulin codes and Trombetti-Zhou rank metric codes [10, 11]. 
Again BM algorithm is involved in the process of solving the key equations in [10] 
and [11] and it reduces the decoding problem to the problem of solving the projective 
polynomial equation xqv+1 + ax + b = 0 and quadratic polynomial equation x2 + cx + d 
= 0 over �qn , respectively. A similar idea is also used in [9] to decode Gabidulin codes 
beyond half the minimum distance. All the decoding algorithms described above have 
polynomial-time complexities. The result in [34] shows that when low-complexity nor-
mal basis are used, the complexity can be reduced even further. Solving the key equa-
tions carried out by BM or LEE algorithm are the most expensive steps in the above 
decoding algorithms.

Besides the aforementioned new MRD codes, there are also some restricted rank 
metric codes that are linear over a subfield of �qn which are not defined based on 
Sheekeys’ idea. The study of subsets of restricted matrices equipped with rank metric 
was started in 1975 by Delsarte and Goethals in [3], in which they considered sets of 
alternating bilinear forms. The theory developed in [2] and [3] found applications also 
in the classical coding theory. Indeed, the evaluations of the forms found in [3] give 
rise to subcodes of the second-order Reed-Muller codes, including the Kerdock code 
and the chain of Delsarte–Goethals codes; see also [28].

Using the theory of association schemes, bounds, constructions and structural prop-
erties of restricted rank metric codes have been investigated in symmetric matrices 
[17, 29, 39], alternating matrices [3] and Hermitian matrices [30, 37].

In this paper we will present both encoding and decoding algorithms for several 
optimal symmetric, alternating and Hermitian rank metric codes. Since the targeted 
codes are not linear over the extension field, syndrome-based decoding algorithms in 
[5] is not applicable. We choose interpolation-based decoding approach which is able 
to decode errors up to half of the minimum distance in polynomial time for all the 
aforementioned codes. A part of our work in this paper responds to a suggestion in [1], 
where the authors suggested studying the decoding of Hermitian rank metric codes.
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2 � Preliminaries

Let �� denote a finite field of ϱ elements and � n×n
�

 be the set of the square matrices of order 
n defined over �� . We can equip � n×n

�
 with the following metric

 where rk(A − B) is the rank of the difference matrix A − B. If C is a subset of � n×n
�

 with the 
property that

 then C is called a rank metric code with minimum distance d, or that C is a d-code, see e.g. 
[28]. A rank metric code C is said to be additive if it is closed under the classical matrix 
addition + and said to be linear over a subfield � of �� if it is closed under both matrix 
addition and scalar multiplication by any element in �.

Let Ln,� denote the quotient ��-algebra of all ϱ-polynomials over ��n with degree smaller 
than n , namely,

 It is well known that the ��-algebra Ln,� is actually isomorphic to the ��-algebra � n×n
�

 . 
Hence many rank metric codes C ⊆ �

n×n
𝜚

 are expressed in terms of ϱ-polynomials in Ln,� . 
If ϱ is fixed or the context is clear, we can use the term linearized polynomials instead of 
ϱ-polynomials.

Here we recall one important property of the Dickson matrix associated with 
ϱ-polynomials which is critical for the decoding in this paper.

Proposition 1  Let L(x) =
n−1∑
i=0

aix
�i over ��n be a ϱ-polynomial with rank t. Then its associ-

ated Dickson matrix

has rank t over ��n and any t × t submatrix formed by t consecutive rows and t consecutive 
columns in D is non-singular.

For the first part of the above result see [4, 19], whereas for the last part we refer to [24].
Below we shall introduce three families of rank metric codes whose codewords have 

restrictive forms. The first two consist of symmetric and alternating matrices over �q , 
respectively, and the third one consists of Hermitian matrices defined over �q2 , where q is a 
prime power.

Recall that a matrix A ∈ �
n×n
q

 is said to be symmetric if AT = A and is said to be alter-
nating if AT = −A, where AT is the transpose matrix of A. Let Sn(q) and An(q) be the set of 
all symmetric matrices and alternating matrices of order n over �q , respectively. Following 
the connection given in [17], the set Sn(q) can be identified as

dr(A,B) = rk(A − B),

d = min{rk(A − B)∶ A,B ∈ C,A ≠ B},

Ln,� =

{
n−1∑
i=0

aix
�i ∶ ai ∈ ��n

}
.

(1)D =
�
a
�i

i−j(modn)

�
n×n

=

⎛
⎜⎜⎜⎜⎝

a0 a
�

n−1
⋯ a

�n−1

1

a1 a
�

0
⋯ a

�n−1

2

⋮ ⋮ ⋱ ⋮

an−1 a
�

n−2
⋯ a

�n−1

0

⎞
⎟⎟⎟⎟⎠
,
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 The set An(q) can be identified as

Consider the conjugation map ⋅ from �q2 to itself: x ↦ x = xq . For a matrix A ∈ �
n×n
q2

 , 
we denote by A* the conjugate transpose of A, which is obtained by applying the conjugate 
map to all entries of AT. Recall that a matrix A ∈ �

n×n
q2

 is said to be Hermitian if A = A*. Let 
Hn(q2) be the set of all Hermitian matrices of order n over �q2 . Similarly, it can be identified 
as

 where the indices are taken modulo n. Note that if n is odd then c(n+ 1)/2 belongs to �qn.
It can be easily verified that these three sets, together with the classical sum of matrices 

and the scalar multiplication by elements in �q , are �q-vector spaces with dimensions

 A subset of Sn(q), An(q) or Hn(q2) endowed with the rank distance will be termed a sym-
metric, alternating or Hermitian rank metric code, respectively, or symmetric, alternating 
or Hermitian d-code if d is the minimum distance of the considered code. With the iso-
morphism between � n×n

�
 and Ln,� , ϱ ∈{q,q2}, the codewords in these restricted rank metric 

codes will be represented in polynomials throughout this paper. For simplicity, we will 
denote by x[i] ∶= xq

i and x[[i]] ∶= xq
2i for any non-negative integer i.

2.1 � Optimal symmetric and alternating d‑codes

For symmetric and alternating rank metric codes, the following bounds on their size have 
been established [3, 29].

Theorem 2  [29, Theorem 3.3] Let C be a symmetric d-code in � n×n
q

 . If d is even, suppose 
also that C is additive. Then

Theorem 3  [3, Theorem 4] Let m = ⌊ n

2
⌋ . Let C be an alternating 2e-code in � n×n

q
 . Then

A symmetric (resp. alternating) d-code is said to be optimal if its parameters satisfy the 
equality in Theorem 2 (resp. Theorem 3). The following theorems present some instances 

Sn(q) =

{
n−1∑
i=0

cix
qi ∶ cn−i = c

qn−i

i
for i ∈ {0,… , n − 1}

}
⊆ Ln,q.

An(q) =

{
n−1∑
i=0

cix
qi ∶ cn−i = −c

qn−i

i
for i ∈ {0,… , n − 1}

}
⊆ Ln,q.

Hn(q
2) =

{
n−1∑
i=0

cix
q2i ∶ cn−i+1 = c

q2n−2i+1

i
for i ∈ {0,… , n − 1}

}
⊆ Ln,q2 ,

dim
�q
(Sn(q)) =

n(n + 1)

2
, dim

�q
(An(q)) =

n(n − 1)

2
, dim

�q
(Hn(q

2)) = n2.

#C ≤

{
qn(n−d+2)∕2 ifn − dis even,

q(n+1)(n−d+2)∕2 ifn − dis odd.

#C ≤ q
n(n−1)

2m
(m−e+1)

.
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of optimal symmetric (resp. alternating) d-codes, where Trqn∕q(x) = x + xq +⋯ + xq
n−1 is 

the trace function from �qn to �q.

Theorem 4  [29, Theorem 4.4] Let n and d be two positive integers such that 1 ≤ d ≤ n 
and n − d is even. The symmetric forms S ∶ �qn × �qn → �q given by S(x, y) = Trqn∕q(yL(x)) 
with

as b0,… , b n−d

2

 range over �qn , form an additive optimal d-code in Sn(q).

In [29, Theorem  4.1] it has been shown that constructions of optimal symmetric 
d-codes with n − d odd in Sn(d) can be obtained by puncturing the examples of optimal 
symmetric d-codes found in [29, Theorem 4.4].

Theorem  5  [3, Theorem  7] Let n and e be two positive integers such that n is odd 
and 1 ≤ 2e ≤ n − 1, and let d = 2e. The alternating forms A ∶ �qn × �qn → �q given by 
A(x, y) = Trqn∕q(yL(x)) with

as be,… , b n−1

2

 range over �qn , form an additive optimal d-code in An(q).

2.2 � Optimal Hermitian d‑codes

Schmidt characterized the upper bound on the size of Hermitian d-codes as follows [30, 
Theorem 1].

Theorem 6  [30, Theorem 1] An additive Hermitian d-code C in � n×n
q2

 satisfies

 Moreover, when d is odd, this upper bound holds also for non-additive Hermitian d-codes.

A Hermitian d-code is called a optimal Hermitian d-code if it attains the above 
bound. Schmidt in [30] also gave constructions for optimal Hermitian d-codes for all 
possible value of n and d, except if n and d are both even and 3 < d < n. There are some 
examples of optimal Hermitian d-codes, see [30, 37]. We recall two examples given in 
[30, Theorems 4 and 5], where Trq2n∕q2 is the trace function from �q2n to �q2.

Theorem 7  [30, Theorem 4] Let n and d be integers of opposite parity satisfying 1 ≤ d ≤ 
n. The Hermitian forms H ∶ �q2n × �q2n → �q2 given by H(x, y) = Trq2n∕q2 (y

qL(x)) with

(2)L(x) = b0x +

n−d

2∑
j=1

(
bjx

qj + (bjx)
qn−j

)
,

(3)L(x) =

n−1

2∑
j=e

(
bjx

qj − (bjx)
qn−j

)
,

#C ≤ qn(n−d+1).
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as b1,… , b n−d+1

2

 range over �q2n , form an additive optimal d-code in Hn(q2).

Theorem 8  [30, Theorem 5] Let n and d be odd integers satisfying 1 ≤ d ≤ n. The Hermi-
tian forms H ∶ �q2n × �q2n → �q2 given by H(x, y) = Trq2n∕q2 (y

qL(x)) with

as b0 ranges over �qn and b1,… , b n−d

2

 range over �q2n , form an additive optimal d-code in 
Hn(q2).

3 � Encoding

In the literature, no encoding method has been given for symmetric, alternating and Her-
mitian d-codes. This section is dedicated to the encoding of these three types of restricted 
d-codes. As a matter of fact, the encoding of an optimal d-code C is mainly concerned with 
setting up a one-to-one correspondence between a message space of size #C and the code C 
in an efficient way, which ideally also allows for an efficient decoding algorithm.

3.1 � Encoding of symmetric d‑codes

We start with the encoding of the optimal symmetric d-codes of size qn(n−d+ 2)/2 in Theo-
rem 4, where n − d is even. The family of codes is linear over �q and the message space is 
naturally a vector space over �q with dimension n(n − d + 2)/2. But we can represent each 
message in the form of a k-dimensional vector over �qn where k = (n − d + 2)/2 and the set 
of all the message vectors are closed under �q-linear operations.

In order to present a polynomial-time decoding algorithm for the optimal symmetric 
d-codes in Theorem  4, we shall express their codewords as evaluations of certain poly-
nomials at linearly independent points over �q . For this reason, we need to employ a pair 
of dual bases in �qn over �q . Recall that given an ordered �q-basis (α1,…,αn) of �qn , its dual 
basis is defined as the ordered �q-basis (β1,…,βn) of �qn such that

 where δij denotes the Kronecker delta function. Note that a dual basis always exists for a 
given order basis (α1,…,αn) of �qn [15, Definition 2.30].

Let (α1,…,αn), (β1,…,βn) be a pair of dual bases of �qn over �q . We will write Trqn∕q(x) 
as Tr(x) for simplicity when the context is clear. Let L(x) be a linearized polynomial as in 
Theorem 4. For the symmetric form we have

(4)L(x) =

n−d+1

2∑
j=1

(
(bjx)

q(2n−2j+2) + b
q

j
xq

(2j)
)
,

(5)L(x) = (b0x)
q(n+1) +

n−d

2∑
j=1

(
(bjx)

q(n+2j+1) + b
q

j
xq

(n−2j+1)
)
,

Trqn∕q(�i�j) = �ij for i = 1, 2,… , n,

S(x, y) = Tr(xL(y)).
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Now, we denote the associated matrix of S with respect to the ordered �q-basis (α1,…
,αn) by S , of which the (i,j)-th entry S(i, j) is given by

Furthermore, the codewords of the additive d-code in Theorem 4 can be expressed in 
the symmetric matrix form as follows: let x, y ∈ �qn , then x =

n∑
i=1

xi�i and y =
n∑
j=1

yj�j for 

some xi, yj ∈ �q and

where S(i, j) is the (i,j)-th entry in S.
In the following we show that the evaluation of the corresponding linearized polyno-

mial at linearly independent elements α1,…,αn is a proper encoding method.
Define an n-dimensional vector over �q as

 Since the i-th row of S is given by (Tr(α1L(αi)),…,Tr(αnL(αi))) and since each L(αi) can be 
written as 

∑
tct�t for some ct ∈ �q , we can write si as

since Tr(x) is linear over �q and (β1,…,βn) is the dual basis of (α1,…,αn). From the 
equality si = L(αi), we see that the encoding of symmetric d-codes given by Tr(yL(x)), 
as in Theorems 4 and 5, can be seen as the evaluation of L(x) at the basis (α1,…,αn) of 
�qn.

With the above preparation, we are now ready to look at the encoding of the optimal 
symmetric d-codes in Theorem 4 more explicitly.

Let (ω0,…,ωn− 1) be a basis of �qn over �q . For optimal symmetric d-codes in Theo-
rem 4, the linearized polynomial can be expressed as

 where k = (n − d + 2)/2. Then the encoding of a message f = (f0,… , fk−1) ∈ �
k
qn

 for the 
symmetric codes in Theorem  4 can be expressed as the evaluation of the following lin-
earized polynomial at points ω0,…,ωn− 1:

S(i, j) = S(�i, �j) = Tr(�jL(�i)).

S(x, y) = Tr

��
∑
j

yj�j

�
∑
i

xiL(�i)

�
= Tr

�
∑
i,j

xiyj�jL(�i)

�

=
∑
i,j

xiyjTr
�
�jL(�i)

�
=
∑
i,j

xiS(i, j)yj = (x1,… , xn) ⋅ S ⋅

⎛⎜⎜⎜⎝

y1
y2
⋮

yn

⎞⎟⎟⎟⎠
,

s = (s1,… , sn) = (�1,… , �n) ⋅ S
T
.

si =
∑
j

�jS(i, j) =
∑
j

�jTr(�jL(�i))

=
∑
j

�jTr

�
�j
∑
t

ct�t

�
=
∑
j

�j
∑
t

ctTr(�j�t)

=
∑
j

�jcj = L(�i)

L(x) = b0x +

k−1∑
j=1

(
bjx

[j] + (bjx)
[n−j]

)
,
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 where

Let N =
(
�
[j]

i

)
n×n

 be the n × n Moore matrix generated by ωi’s. So the encoding of 
optimal symmetric and optimal alternating d-codes can be expressed as

where f̃ =
(
f̃0,… , f̃n−1

)
 and NT is the transpose of the matrix N. Note that the first k and the 

last k − 1 elements of f̃  are nonzero. This means at most n − d + 1 columns of the matrix 
NT are involved in the encoding process.

3.2 � Encoding of alternating d‑codes

The encoding of alternating d-codes in Theorem 5 can be done similarly since the code-
words in A(x,y) has the same form Tr(yL(x)) as in Theorem 4.

For alternating d-codes in Theorem 5, the linearized polynomial can be expressed as

 Note that in Theorem 5, the parameters n is odd and d = 2e. The optimal alternating codes 
are �q-linear with dimension n(n − d + 1)/2. For simplicity, we again consider the message 
vectors in the form of vectors over �qn.

Let (ω0,…,ωn− 1) be a basis of �qn over �q . The encoding of a message 
f = (f0,… , fk−1) ∈ �

k
qn

 can be expressed as the evaluation of the following linearized poly-
nomial at points ω0,…,ωn− 1:

 where

Similarly, the encoding of optimal alternating d-code can be expressed as

where f̃ =
(
f̃0,… , f̃n−1

)
 and NT is the transpose of the matrix N. As shown in (8), at most 

n − d + 1 columns of the matrix N are involved in computation.

L(x) = f0x +

(
k−1∑
j=1

fjx
[j] + (fjx)

[n−j]

)
=

n−1∑
i=0

f̃ix
[i],

(6)
f̃ =

(
f̃0,… , f̃k−1, 0,… , 0, f̃n−k+1,… , f̃n−1

)
=

(
f0,… , fk−1, 0,… , 0, f

[n−k+1]

k−1
,… , f

[n−1]

1

)
.

(7)(f0,… , fk−1) ↦ (L(𝜔0),… , L(𝜔n−1)) = f̃ ⋅ NT ,

L(x) =

n−1

2∑
j=e

(
bjx

[j] − (bjx)
[n−j]

)
.

L(x) =

⎛⎜⎜⎝

n−1

2�
j=e

fj−ex
[j] − (fj−ex)

[n−j]
⎞⎟⎟⎠
=

n−1�
i=0

f̃ix
[i],

(8)
f̃ =

(
0,… , 0, f̃e,… , f̃ n−1

2

, f̃ n+1
2

,…, f̃n−e, 0,… , 0

)

=

(
0,… , 0, f0,… , fk−1,−f

[
n+1

2
]

k−1
,… ,−f

[n−e]

0
, 0,… , 0

)
.

(9)(f0,… , fk−1) ↦ (L(𝜔0),… ,L(𝜔n−1)) = f̃ ⋅ NT ,



1289Cryptography and Communications (2022) 14:1281–1300	

1 3

3.3 � Encoding of Hermitian d‑codes

This section is dedicated to the encoding of the optimal Hermitian d-codes of size qn(n−d+ 1) 
explained in Theorems 7 and 8. Given positive integers d,n with 1 ≤ d ≤ n, for encoding of 
optimal Hermitian d-codes we are going to set up a one-to-one correspondence between a 
message space of size qn(n−d+ 1), and a Hermitian optimal d-code, which later permits us to 
decode efficiently. Therefore, for a message space of size qn(n−d+ 1), we may assume its ele-
ments as vectors over �qn of dimension k = n − d + 1.

For the optimal Hermitian d-codes in Theorems 7 and 8, we shall express their codewords 
as evaluations of certain polynomials at linearly independent points over �q2 . For this reason, 
we need to introduce the Hermitian variant of a basis in �q2n over �q2 . Given an ordered �q2
-basis (α1,…,αn) of �q2n , its Hermitian dual basis is defined as the ordered �q2-basis (β1,…,βn) 
of �q2n such that

 where Trq2n∕q2 is the relative trace function from �q2n to �q2 , namely, Trq2n∕q2 (x) =
n−1∑
i=0

xq
2i and 

δij denotes the Kronecker delta function. Note that such a Hermitian dual basis always 
exists for a given order basis (α1,…,αn). Indeed, since there exist a dual basis (γ1,…,γn) for 
(α1,…,αn) satisfying Trq2n∕q2 (�i�j) = �ij , one can simply takes �j = �

q2n−1

j
 for j = 1, 2,… , n 

and then the above Hermitian dual property follows. We shall also write Trq2n∕q2 () as Tr() 
for simplicity whenever there is no ambiguity.

Let (α1,…,αn) be an �q2-basis of �q2n and (β1,…,βn) be its Hermitian dual as described above. 
Let x, y ∈ �q2n , then x =

n∑
i=1

xi�i and y =
n∑
i=1

yi�i , for some xi, yi ∈ �q2 . It is clear that 

Tr(xqy) =
n∑

i,j=1

x
q

i
yjTr(�

q

i
�j) =

n∑
i=1

x
q

i
yi = ⟨(xq

1
,… , x

q
n), (y1,… , yn)⟩.

Note that the Hermitian forms in Theorems 7 and 8 are of the form H(x,y) = Tr(xqL(y)). 
Now, we denote the associated matrix of H with respect to the ordered �q2-basis (α1,…,αn) by 
H , of which the (i,j)-th entry H(i, j) is given by

Furthermore, the codewords of the additive d-code in Theorem 8 can be expressed in the 
Hermitian matrix form as follows

where H(i, j) is an element in H . In the following we show that the evaluation of the corre-
sponding linearized polynomial at linearly independent elements α1,…,αn is a proper encoding 
method. Define an n-dimensional vector over �q2 as

Trq2n∕q2
(
�
q

i
�j
)
= �ij for i = 1, 2,… , n,

H(i, j) = H(�i, �j) = Tr

(
�
q

j
L(�i)

)
.

H(x, y) = Tr

��
∑
j

yj�j

�q ∑
i

xiL(�i)

�
= Tr

�
∑
i,j

xiy
q

j
�
q

j
L(�i)

�

=
∑
i,j

xiy
q

j
Tr

�
�
q

j
L(�i)

�
=
∑
i,j

xiH(i, j)y
q

j
= (x1,… , xn) ⋅H ⋅

⎛⎜⎜⎜⎝

y
q

1

y
q

2

⋮

y
q
n

⎞⎟⎟⎟⎠
,

h = (h1,… , hn) = (�1,… , �n) ⋅H
T
.
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 Since the i-th row of H is given by (Tr(�q

1
L(�i)),… , Tr(�

q
nL(�i))) and since each L(αi) can 

be written as 
∑

tct�t for some ct ∈ �q2 , we can write hi as

where the fourth and fifth equality signs hold because Tr(x) is linear over �q2 and 
(β1,…,βn) is the Hermitian dual basis of (α1,…,αn). From the equality hi = L(αi), we see 
that the encoding of Hermitian d-codes given by Tr(yqL(x)), as in Theorems 7 and 8, can 
be seen as the evaluation of L(x) at the basis (α1,…,αn) of �q2n.

With the above preparation, we are now ready to look at the encoding of the Hermi-
tian d-codes in Theorems 7 and 8 more explicitly.

Let � = ⌈ n−d

2
⌉ and H be the Hermitian form given in Theorem 7. The linearized poly-

nomial in (4) can be written as

 and assuming m =
n+1

2
 , similarly one can write the linearized polynomial in (5) as

Let {1,η} be an �qn-basis of �q2n . Let α0,α1,…,αn− 1 be a basis of �q2n over �q2 . Rais-
ing all the basis elements αi to the q2-th power will still give a linearly independent 
set of elements in �q2n . We use �q2

0
, �

q2

1
,… , �

q2

n−1
 as the evaluation points for optimal 

Hermitian d-codes in Theorem  7. The reason for this is to keep the consistent form 
L(x) = l0x

[[0]] + l1x
[[1]] +⋯ + ln−1x

[[n−1]] for the linearized polynomial representation 
(employing α0,…,αn− 1 as the evaluation points for this codes will obligate us to use the 
linearized polynomial of the form L(x) = l0x

[[1]] + l1x
[[2]] +⋯ + ln−1x

[[n]]).
The encoding of a message f = (f0,… , fk−1) ∈ �

k
qn

 can be expressed as the evaluation 
of the following linearized polynomial at points �q2

0
, �

q2

1
,… , �

q2

n−1
:

where

and k = 2κ. For the optimal Hermitian d-code in Theorem  8 and the evaluation points 
α0,α1,…,αn− 1, the encoding of a message f = (f0,… , fk−1) ∈ �

k
qn

 can be expressed as the 
evaluation of the following linearized polynomial at points α0,α1,…,αn− 1:

hi =
∑
j

�jH(i, j) =
∑
j

�jTr

�
�
q

j
L(�i)

�

=
∑
j

�jTr

�
�
q

j

∑
t

ct�t

�
=
∑
j

�j
∑
t

ctTr
�
�
q

j
�t

�

=
∑
t

�tct = L(�i),

L(x) =

�∑
j=1

(
(bjx)

[[n+1−j]] + b
q

j
x[[j]]

)
,

L(x) = (b0x)
[[m]] +

�∑
j=1

(
(bjx)

[[m+j]] + b
q

j
x[[m−j]]

)
.

(10)L(x) =

(
𝜅−1∑
j=0

(fj + 𝜂f𝜅+j)
qx[[n−1−j]] + (fj + 𝜂f𝜅+jx)

[[j]]

)
=

n−1∑
i=0

f̃ix
[[i]],

(11)
f̃ =

(
f̃0,… , f̃𝜅−1, 0,… , 0, f̃n−𝜅 ,… , f̃n−1

)
= ((f0 + 𝜂f𝜅)

[[0]],… ,

(f𝜅−1 + 𝜂f2𝜅−1)
[[𝜅−1]], 0,… , 0, (f𝜅−1 + 𝜂f2𝜅−1)

q,… , (f0 + 𝜂f𝜅)
q),
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where

and k = 2κ + 1. The first d+1
2

 and the last d−3
2

 coefficients of f̃  are zero.
Let Ml =

(
�
[[j+l]]

i

)
n×n

 be the n × n Moore matrix generated by �q2l

0
, �

q2l

1
,… , �

q2l

n−1
 where l 

∈{0,1}. We take l = 1 when we consider �q2

0
, �

q2

1
,… , �

q2

n−1
 as the evaluation points which is 

used in (10) and l = 0 when α0,α1,…,αn− 1 are the evaluation points in (12).
So the encoding of the optimal Hermitian rank metric codes can be expressed as

where f̃ =
(
f̃0,… , f̃n−1

)
 and MT

l
 is the transpose of the matrix Ml.

When n,d are integers with opposite parities as shown in (10), only the first κ and the 
last κ elements of f̃  are nonzero. Also in the case when n,d are both odd integers, as can be 
seen in (12), the first m − κ and the last m − κ − 2 elements of f̃  are zero. So we only use 
n − d + 1 columns of the Moore matrix in the encoding process.

In summary, the encoding of the optimal symmetric, alternating and Hermitian d-codes 
relies on converting the codewords of those codes to simplified linearized polynomials L(x) 
under carefully-chosen base of the extension fields, which enables us to treat encoding of 
those codes as evaluations of L(x) at linearly independent points.

4 � Decoding

In Section 3 the encodings of symmetric, alternating and Hermitian d-codes are in the form 
of polynomial evaluation. In this section we will present interpolation-based decoding of 
those codes, which make use of some nice properties of Dickson matrices in Proposition 1.

4.1 � Key equations for error interpolation polynomials

We start with the optimal symmetric and alternating d-codes in Theorems 4 and 5. Note 
that their codewords are in the form Tr(yL(x)) and can be deemed as n-dimensional vec-
tors (L(�0),… , L(�n−1)) over �qn . We assume errors that occur in transmission or storage 
medium are also vectors in � n

qn
.

Given a message f = (f0,… , fk−1) ∈ �
k
qn

 , its corresponding codeword c = f̃ ⋅ NT , where 
f̃  and NT are as given in Section 3. Let r = (r0,… , rn−1) over �qn be a received word when 
the codeword c ∈ �

n
qn

 is transmitted, namely, r = c + e for certain error vector e ∈ �
n
qn

 . Sup-

pose g(x) =
n−1∑
i=0

gix
[i] is the error interpolation polynomial such that

(12)
L(x) = (f0x)

[[m]] +

�
𝜅∑
j=1

�
fj + 𝜂f𝜅+j

�q
x[[m−j]] +

�
(fj + 𝜂f𝜅+j)x

�[[m+j]]
�

=
n−1∑
i=0

f̃ix
[[i]],

(13)
f̃ =

(
0,… , 0, f̃m−𝜅 ,… , f̃m−1, f̃m, f̃m+1,… , f̃m+𝜅 , 0,… , 0

)
= (0,… , 0, (f𝜅 + 𝜂f2𝜅)

q,… , (f1 + 𝜂f𝜅+1)
q, f

[[m]]

0
,

(f1 + 𝜂f𝜅+1)
[[m+1]],… , (f𝜅 + 𝜂f2𝜅)

[[m+𝜅]], 0,… , 0),

(14)(f0,… , fk−1) ↦
(
L
(
𝛼
q2l

0

)
,… , L

(
𝛼
q2l

n−1

))
= f̃ ⋅MT

l
,
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Clearly the error vector e is uniquely determined by the error interpolation polynomial 
g(x), and vice versa. Denote g̃ = (g0,… , gn−1) . Then it follows that

Denote by G the associated Dickson matrix of the q-polynomial g(x), i.e.,

 where the subscripts are taken modulo n. Suppose the error e has rank t, by Proposition 
1 we know that G has rank t and any t × t submatrix formed by t consecutive rows and 
columns in G has rank t. Furthermore, the first column of G can be expressed as a linear 
combination of G1,… ,Gt as

where G1,… ,Gt are linearly independent over �qn.
In the following we will make use of the pattern of L(x) in Theorems 4 and 5, which 

have consecutive d − 1 zero coefficients (up to a cyclic shift on the coefficients), and the 
properties of G in recovering the vector g̃.

4.1.1 � Optimal symmetric d‑codes in Theorem 4

For optimal symmetric d-codes, by (6) we can rewrite (16) as

where f̃0 = f
[0]

0
 , f̃j = fj and f̃j = f̃

[n−j]

n−j
 for j = 1,…,k − 1. Recall that k = (n − d + 2)/2 for 

symmetric d-codes in Theorem 4. Letting � = (�0,… , �n−1) = r ⋅
(
NT

)−1 , we obtain

where the subscripts are taken modulo n. Since the elements gk,…,gn−k are known, from 
(17) we can have the following system of linear equations:

which contains t unknowns λ1,…,λt in d − 1 − t linear equations.

4.1.2 � Optimal alternating d‑codes in Theorem 5

From (8) it follows that (16) is equivalent to

(15)g(�i) = ei = ri − ci, i = 0,… , n − 1.

(16)r = c + e = (f̃ + g̃)NT .

G =
�
g
[j]

i−j (mod n)

�
n×n

=
�
G0G1…Gn−1

�
=

⎡
⎢⎢⎢⎢⎣

g0 g
[1]

n−1
… g

[n−1]

1

g1 g
[1]

0
… g

[n−1]

2

⋮ ⋮ ⋱ ⋮

gn−1 g
[1]

n−2
… g

[n−1]

0

⎤
⎥⎥⎥⎥⎦
,

(17)G0 = �1G1 +⋯ + �tGt,

r ⋅
(
NT

)−1
=

(
f̃0,… , f̃k−1, 0,… , 0, f̃n−k+1,… , f̃n−1

)
+
(
g0,… , gk−1, gk,… , gn−k, gn−k+1,… , gn−1

)
.

(18)gi =

{
𝛽i for i = k,… , k + d − 2,

𝛽i − f̃i for i = n − k + 1,… , n − 2k + 1,

(19)gi = �1g
[1]

i−1
+ �2g

[2]

i−2
+⋯ + �tg

[t]

i−t
, k + t ≤ i ≤ n − k,
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where f̃j+e = fj and f̃n−e+j = −f
[n−e−j]

j
 for j = 0,…,k. Suppose we have 

� = (�0,… , �n−1) = r ⋅
(
NT

)−1 , similarly we obtain

where the subscripts are taken modulo n. Based on (20), we obtain the following linear 
system of equations

with t unknowns λ1.…,λt in 2e − 1 − t = d − 1 − t linear equations.
From the above analysis, one sees that the equations (19) and (21) are the key equations 

for decoding optimal symmetric and optimal alternating d-codes, respectively.

4.1.3 � Optimal Hermitian d‑codes

The approach of establishing the key equations in decoding Hermitian d-codes is similar to 
that for symmetric and alternating d-codes. Because Hermitian d-codes are defined over �q2 
instead of �q , we briefly describe the process in the sequel.

Suppose a Hermitian codeword c ∈ �
n

q2n
 is transmitted and a word r = c + e, with an 

error e with rank t added to the codeword c, is received. Suppose g(x) =
n−1∑
i=0

gix
[[i]] is an 

error interpolation polynomial with rank t such that

where we use l = 1 for the Hermitian d-codes in Theorem  7 and l = 0 for the codes in 
Theorem 8. It is clear that the error vector e = (e0,…,en− 1) is uniquely determined by the 
polynomial g(x). Denote by

 the Dickson matrix associated with g(x), then G has rank t and we can express

with unknown λi’s in �q2n.
Denote g̃ = (g0,… , gn−1) . From (14) and (22) it follows that

Case 1. This case considers the optimal Hermitian d-codes in Theorem 7. Recall that 
in Theorem 7 the Hermitian d-codes have parameters n,d with opposite parities and the 
message space was represented in k-dimensional vectors over �qn which are closed under �q
-linear operations. Denoting � = ⌈ n−d

2
⌉ , we can rewrite (24) as

r ⋅
(
NT

)−1
=

(
0,… , 0, f̃e,… , f̃n−e, 0,… , 0

)
+(g0,… , ge−1, ge,… , gn−e, gn−e+1,… , gn−1).

(20)gi =

{
𝛽i for i = n − e + 1,… , n + e − 1,

𝛽i − f̃i for i = e,… , n − e,

(21)gi = 𝜆1g
[1]

i−1
+ 𝜆2g

[2]

i−2
+⋯ + 𝜆tg

[t]

i−t
, n − e + 1 + t ≤ i < n + e mod n

(22)g
(
�
[[l]]

i

)
= ei = ri − ci, i = 0,… , n − 1 and l ∈ {0, 1},

G = (G0,… ,Gn−1) =
(
g
[[j]]

i−j (mod n)

)
,

(23)G0 = �1G1 +⋯ + �tGt,

(24)r = c + e = (f̃ + g̃)MT
l
.
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where for j = 0,1,…,κ − 1, f̃n−j−1 = (fj + 𝜂f𝜅+j)
q and f̃j = f̃

q2j+1

n−j−1
 , and {1,η} is an �qn-basis 

of �q2n.
Let � = (�0,… , �n−1) = r ⋅ (MT

1
)−1 . Since 2κ = n − d + 1, we have n − κ − 1 = κ + d − 2 

and

This together with (23) gives a system of d − 1 − t linear equations over �q2n with t 
unknowns λi’s in �q2n.

Case 2. This case considers the optimal Hermitian d-codes in Theorem 8. In this case 
n,d are both odd integers. Denote m = (n + 1)/2 and κ = (n − d)/2. Note that (24) is equiva-
lent to

where f̃m = f
[[m]]

0
 and for j = 1,2,⋯ ,κ, f̃m−j = (fj + 𝜂f𝜅+j)

q and f̃m+j = f̃
qn+2j

m−j
 . Denote 

� = (�0,… , �n−1) = r ⋅ (MT
0
)−1 . Since κ = (n − d)/2, we have n − 1 − (m + κ + 1) + 1 + (m 

− κ) = n − 2κ − 1 = d − 1 known gi’s and we can obtain

where the subscripts are taken modulo n. Similarly, this together with (23) gives a system 
of d − 1 − t linear equations over �q2n with t unknowns λi’s in �q2n.

4.2 � Reconstruction of the error polynomial

Recall that the error polynomials g(x) for symmetric and alternating d-codes are q-polyno-
mials over �qn and the one for Hermitian d-codes are q2-polynomials over �q2n . Despite the 
difference in representation, the approach used for recovering the coefficients will be the 
same for those error polynomials. This observation allows us to present the common proce-
dure of reconstructing g(x)’s in a unified manner.

Let ϱ ∈{q,q2}. Given an error polynomial g(x) =
n−1∑
i=0

∈ ��n [x] with rank t, its associate 

Dickson matrix given by

 also has rank t and G0 = λ1G1 + ⋯ + λtGt for t unknown λi’s in ��n , which gives rise to a 
linearized recurrence as

r ⋅
(
MT

1

)−1
=

(
f̃0,… , f̃𝜅−1, 0,… , 0, f̃n−𝜅 ,… , f̃n−1

)
+(g0,… , g𝜅−1, g𝜅 ,… , gn−𝜅−1, gn−𝜅 ,… , gn−1),

(25)gi =

{
𝛽i for i = 𝜅,… , 𝜅 + d − 2

𝛽i − f̃i for i = n − 𝜅,… , n + 𝜅 − 1.

r ⋅
(
MT

0

)−1
=

(
0,… , 0, f̃m−𝜅 ,… , f̃m+𝜅 , 0,… , 0

)
+(g0,… , gm−𝜅−1, gm−𝜅 ,… , gm+𝜅 , gm+𝜅+1,… , gn−1).

(26)gi =

{
𝛽i for i = m + 𝜅 + 1,… ,m + 𝜅 + d − 1

𝛽i − f̃i for i = m − 𝜅,… ,m + 𝜅,

G = (G0,G1,… ,Gn−1) =
(
g
�i

i−j(mod n)

)
n×n

(27)gL = �1g
�

L−1
+ �2g

�2

L−2
+⋯ + �tg

�t

L−t
for L = 0, 1,… , n − 1
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where the subscripts of gi’s are taken modulo n. For the optimal symmetric, alternating and 
Hermitian d-codes in Section 2, Section 4.1 has established a system of d − 1 − t linear 
equations over ��n in t unknowns �i ∈ ��n for each of them.

According to the pattern in G, we have the following major steps for recovering the 
coefficients gi’s:

Step 1. derive the unknowns λ1,…,λt from the d − 1 − t linear equations given in Sec-
tion 4.1 for each optimal d-code;
Step 2. use λ1,…,λt to recursively compute unknown gi’s in G.

Step 1 is the critical step in the decoding process. In Step 1 one has a system of d − 1 
− t linear equations for each optimal d-codes with t unknowns. There are two options 
for solving the unknowns. The first option is simply applying Gaussian elimination 
algorithm on the equations; and the second option is to apply the modified Berlekamp-
Massey algorithm in [33]. As a matter of fact, with the linearized recurrence in (27), the 
task of Step 1 becomes finding the coefficients of modified version of a linear shift reg-
ister as in [33] for given d − 1 consecutive inputs gi’s for each optimal d-codes.

For Step 2, with the recursive relation in (27), one can calculate the remaining 
unknown coefficients gi’s in a sequential order.

4.3 � Reconstruction of the original message

Recall that for each optimal d-code, it is assumed that a codeword c is transmitted and a 
word r = c + e is received. With the error polynomials g(x) obtained in Section 4.2, we 
are directly able to derive the codeword c = r − e. With the codeword c, we can obtain 

the coefficient vector f̃  of the interpolation polynomial f (x) =
n−1∑
i=0

f̃ix
qui where u ∈{1,2}. 

One can compute f̃ = (f̃0,… , f̃n−1) = c ⋅ (AT )−1 where A is the Moore matrix associated 
with the linearly independent evaluation points. When the f̃  is obtained, we can further 
reconstruct the original message f = (f0,…,fk− 1) according to the encoding for each opti-
mal d-code as follows:

•	 Symmetricd-codes.

•	 Alternatingd-codes.

•	 Hermitian d-codes.

–	 Case 1. When n,d have different parities: for j ∈{0,…,κ − 1} where k = 2κ we 
have the following equations

f = (f0,… , fk−1) =
(
f̃0,… , f̃k−1

)
.

f = (f0,… , fk−1) =
(
f̃e,… , f̃ n−1

2

)
.

(28)
{

f̃j = (fj + 𝜂f𝜅+j)
q2j

f̃n−j−1 = (fj + 𝜂f𝜅+j)
q.
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The unknown coefficients fj, fk+j ∈ �qn for j ∈{0,…,κ − 1} can be seen as the unique 
coordinate vector of f̃ q

−2j

j
 (or f̃ q

−1

n−j−1
 ) expressed with respect to the basis {1,η} of �q2n 

over �qn and can be computed directly.
–	 Case 2. When n,d are both odd: for j ∈ 1,…,κ − 1 where k = 2κ + 1 we have the fol-

lowing linear system of equations

	   The coefficient f0 can be computed from the first equation as f0 = f̃
q−2m

m  . Similar 
to the Case 1, the unknown coefficients fj,fj+κ can be seen as coordinate vector of 
f̃
q−1

m−j
 (or f̃ q

−2(m+j)

m+j
 ) written with respect to the basis {1,η}. So we can compute all the 

unknown coefficients f0,… , fk−1 ∈ �qn and recover the message.

4.4 � Summary

The decoding algorithms in Section 4 share some similarities and one can summarize the 
decoding algorithms for all the restricted codes as follows:

•	 Input: a received word r = (r0,…,rn− 1) with errors of t ≤ d−1

2
 rank and linearly inde-

pendent points 𝜃0,…,𝜃n− 1 in �qun where u ∈{1,2}.

•	 Idea: Reconstructing the code’s interpolation polynomial f (x) =
n−1∑
i=0

f̃ix
qui via the error 

interpolation polynomial g(x) =
n−1∑
i=0

gix
qui where f(𝜃i) + g(𝜃i) = ci + ei = ri.

•	 Output: The codeword c = r − e.

(1)	 Compute the coefficients βi of the polynomial �(x) =
n−1∑
i=0

�ix
qui where ri = β(𝜃i). This is 

equivalent to r ⋅ (MT )−1 , where M is the Moore matrix associated with 𝜃i’s.
(2)	 Specify the known coefficients (gj,…,gj+d− 2) = (βj,…,βj+d− 2), where the subscripts are 

taken modulo n, based on the code.
(3)	 Use the 2t known coefficients gi as the initial state in the BM algorithm and find the 

unique connection vector λ = (λ1,…,λt).
(4)	 Let G be the Dickson matrix associated with g(x) with rank t. Write the first column 

G0 as the linear combination of the columns G1,…,Gt which can be written as the fol-
lowing recursive equations

(5)	 Find the remaining coefficients gi using the recursive (30).
(6)	 Compute f̃ = (𝛽0,… , 𝛽n−1) − (g0,… , gn−1).
(7)	 Compute the codeword c = f̃ ⋅MT

−1

.

The lines (1) and (7) in the above procedure need O(n3) operations over �qun which can 
be optimized if one applies the ideas in [23]. The line (2) needs linear complexity while the 

(29)

⎧
⎪⎨⎪⎩

f̃m = f
q2m

0

f̃m+j = (fj + 𝜂f𝜅+j)
q2(m+j)

f̃m−j = (fj + 𝜂f𝜅+j)
q.

(30)gi = 𝜆1g
qu

i−1
+ 𝜆2g

q2u

i−2
+⋯ + 𝜆tg

qtu

i−t
, 0 ≤ i < n.



1297Cryptography and Communications (2022) 14:1281–1300	

1 3

line (3) dominates the complexity of the whole process. The BM algorithm has complexity 
in the order of O(n2) operations over �qun . The complexity of the the remaining steps can be 
neglected.

4.5 � Examples

Example 1 (Symmetric d‑Codes)  Let C be an optimal symmetric d-code with minimum 
distance d = 5 and length n = 7 defined over �27 . We consider a normal basis of �27 over �2 
with normal element w = z95 as the evaluation points. Here z is a primitive element in � ∗

27
.

Encoding: Suppose Alice wants to transfer the message f = (f0, f1) =
(
z7, z13

)
 to Bob 

via a noisy channel. The code’s evaluation polynomial would have the coefficient vector 
f̃ =

(
f0, f1, 0, 0, 0, 0, f

q6

1

)
=
(
z7, z13, 0, 0, 0, 0, z70

)
 which gives the codeword

in symmetric form.
Channel’s transmission: We assume that the noisy channel adds an error vector 
e =

(
z63, z126, z126, z63, z126, z126, z126

)
 with rank t = 2 to the codeword c and Bob receives 

the word

Decoding: Now Bob received r and he wants to recover the message f. He first com-
putes � = r ⋅ (MT )−1 =

(
z17, z51, z98, z124, z100, z83, z86

)
 and directly gets the coefficients 

(g2,g3,g4,g5) = (β2,β3,β4,β5) where g(x) =
6∑
i=0

gix
2i is the error interpolation polynomial 

and g̃ = (g0,… , g6) . Then he submits (g2,g3,g4,g5) in the BM algorithm and obtains the 
unique connection vector (�1, �2) =

(
z25, z126

)
 . Now he uses both (g2,g3,g4,g5) and 

(λ1,λ2) as inputs for modified version of LFSR described in [33] and get the vector

 Now he can rearrange the components of a and gets g̃ =
(
z115, z71, z98, z124, z100, z83, z55

)
 . 

Since he knows β and g̃ , he is able to compute f̃ = 𝛽 − g̃ =
(
z7, z13, 0, 0, 0, 0, z70

)
 and 

finally f =
(
f̃0, f̃1

)
=
(
z7, z13

)
.

Example 2 (Alternating d‑Codes)  Suppose D ∈ �29 be an alternating d-code with 
length n = 9 and minimum distance d = 6. Let w = z347 be the normal element for 
our normal basis which is used as the interpolation points. For the received word 
r =

(
z293, z389, z430, z227, z481, z445, z426, z404, z339

)
 containing error of t = ⌊(d − 1)/2⌋ = 2 

rank, we can compute 𝛽, (𝜆1, 𝜆2), a, g̃, f̃ , c and f similar to Example 1 as follows:

•	  � =
(
z486, z233, z334, z155, z167, z226, z483, z231, z88

)
,

c = f̃
�
M

T
�
=
�
z108, z36, z11, z12, z57, z24, z

�
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 1 0

0 0 1 0 0 1 0

1 1 0 0 1 0 1

1 0 0 0 0 0 1

1 0 1 0 1 0 1

1 1 0 0 0 0 0

0 0 1 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

r = c + e =
(
z4, z45, z124, z52, z37, z104, z13

)
.

a = (g2, g3, g4, g5, g6, g0, g1) =
(
z98, z124, z100, z83, z55, z115, z71

)
.



1298	 Cryptography and Communications (2022) 14:1281–1300

1 3

•	 (β0,β1,β2,β7,β8) = (g0,g1,g2,g7,g8).
•	 BM algorithm input (β7,β8,β0,β1,β2) gives (�1, �2) =

(
z154, z262

)
,

•	 modified LFSR input (β7,β8,β0,β1,β2) and (λ1,λ2) gives

•	  g̃ =
(
z486, z233, z334, z505, z113, z265, z425, z231, z88

)
,

•	  f̃ = 𝛽 − g̃ =
(
0, 0, 0, z77, z397, z440, z329, 0, 0

)
,

•	  c = f̃ ⋅ (MT ) =
(
z244, z412, z364, z400, z368, z161, z122, z59, z122

)
,

•	  f = (f0, f1) =
(
f̃3, f̃4

)
=
(
z77, z397

)
.

Example 3 (Hermitian d‑Codes)  Suppose C ∈ �
7

214
 be an optimal Hermitian d-code with 

length n = 7, minimum distance d = 5 and η = z. We use the normal basis W of �214 over �22 
with normal element w = z8591 as the evaluation points, where z is the primitive element in 
�
∗
210

 . Let r =
(
z3672, z2957, z1343, z3039, z10923, z9913, z1618

)
 be a received word with error of t = 

(d − 1)/2 = 2 rank. Then � = r ⋅ (MT )−1 =
(
z5036, z5234, z203, z840, z2939, z13080, z15830

)
 . Let 

g(x) =
6∑
i=0

gix
22i be the error interpolation polynomial. Due to the expected form of f̃  in 

optimal Hermitian d-codes we have (β0,β1,β2,β6) = (g0,g1,g2,g6). Now we submit 
(β6,β0,β1,β2) in the BM algorithm and get the output (�1, �2) =

(
z11141, z14283

)
 . using both 

(β6,β0,β1,β2) and (λ1,λ2) as the input for the modified version of linear feedback shift regis-
ter explained in [33], we get

 So g̃ =
(
z5036, z5234, z203, z12223, z9784, z1048, z15830

)
 and the code’s evaluation polynomial 

has the coefficient vector f̃ =
(
0, 0, 0, z4446, z11481, z15498, 0

)
 . Then the codeword is

where y is the primitive element in � ∗
22

 and the message is f = (f0,…,fk− 1) = (l89,l97,l32) 
where l is the primitive element in � ∗

27
.

5 � Conclusion

This work proposes the first encoding and decoding methods for three restricted families 
of rank metric codes including optimal symmetric, optimal alternating and optimal Her-
mitian rank metric codes. We showed that the evaluation encoding is a right choice for the 
aforementioned families and the proposed encoding methods are easily reversible and effi-
cient. We also introduce three interpolation-based decoding algorithms that are based on 

a = (�7, �8, �0, �1, �2, g3, g4, g5, g6)

=
(
z231, z88, z486, z233, z334, z505, z113, z265, z425

)
,

a = (�6, �0, �1, �2, g3, g4, g5) =
(
z15830, z5036, z5234, z203, z12223, z9784, z1048

)
.

c = f̃ ⋅MT =
�
z781, z1313, z4481, z5130, z1671, z9656, z1567

�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 y y2 1

0 1 0 y y y 1

0 0 1 0 y2 0 y2

1 y2 0 0 y2 y2 0

y2 y2 y y 1 y y2

y y2 0 y y2 1 1

1 1 y 0 y 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

,
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the properties of Dickson matrix associated with linearized polynomials. In the decoding 
process we reduced the rank decoding problem to the problem of solving a system of lin-
ear equations which can be solved by Gaussian elimination method or Berlekamp-Massey 
algorithm in polynomial time.
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