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Abstract
In this paper, we consider an interpolation-based decoding algorithm for a large family of
maximum rank distance codes, known as the additive generalized twisted Gabidulin codes,
over the finite field Fqn for any prime power q. This paper extends the work of the con-
ference paper Li and Kadir (2019) presented at the International Workshop on Coding and
Cryptography 2019, which decoded these codes over finite fields in characteristic two.
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1 Introduction

Error correction codes with the rank metric have found applications in space-time coding
[27], random network coding [44] and cryptography [12]. Many important properties of
rank metric codes including the Singleton like bound were independently studied by Del-
sarte [9] , Gabidulin [13] and Roth [38]. Codes that achieve this bound were calledmaximum
rank distance (MRD) codes. The most famous sub-family of MRD codes are Gabidulin
codes which is the rank metric analog of Reed-Solomon codes. They have been extensively
studied in the literature [9, 12, 13, 25, 36, 38].

Finding new families of MRD codes has been an interesting research topic since the
invention of Gabidulin codes. In [20, 39], the Frobenious automorphism in the Gabidulin
codes were generalized to arbitrary automorphism and generalized Gabidulin (GG) codes
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were proposed. In the past few years, a considerable amount of work has been done onMRD
codes. In [40], Sheekey twisted the evaluation polynomial of a Gabidulin code and proposed
a large family of MRD codes termed twisted Gabidulin (TG) codes. Using the same idea
for generalizing Gabidulin codes, arbitrary automorphism was employed to construct gen-
eralized twisted Gabidulin (GTG) codes. This family of MRD codes were first described
in [40, Remark 9] and later comprehensively studied in [26]. Otal and Özbudak [30] later
introduced a large family of MRD codes, known as additive generalized twisted Gabidulin
(AGTG) codes, which contains all the aforementioned linear MRD codes as sub-families
and new additive MRD codes. There are also some new families of MRD codes which are
not equivalent to AGTG codes nor its subfamilies [5, 8, 42, 47]. Recent constructions of
linear and nonlinear MRD codes were lately summarized in [31, 41].

MRD codes with efficient decoding algorithm are of great interest in practice. In his
pioneering work [13], Gabidulin gave a decoding algorithm based on extended Euclidean
algorithm. Subsequently, Richter and Plass in [36], and Loidreau [25] proposed modified
version of Berlekamp-Massey andWelch-Berlekamp algorithms to decode Gabidulin codes.
Some of the aforementioned algorithms were further optimized in [45, 48]. Nevertheless,
the known decoding algorithms for Gabidulin codes cannot be directly applied to those new
MRD codes with twisted evaluation polynomials, especially when the MRD codes are only
linear over the ground field Fq or its subfield. By modifying the decoding algorithm in [19]
for subspace codes, Randrianarisoa and Rosenthal in [37] proposed a decoding method for
the twisted Gabidulin codes, which works only for a limited option of parameters. Randri-
anarisoa later proposed an interpolation approach to decoding twisted Gabidulin codes in
[35] , where he gave a brief discussion on the case when the rank of the error vector reaches
the unique error-correcting radius of the twisted Gabidulin codes.

In this paper, we apply the interpolation approach by Randrianarisoa [35] in decoding
additive generalized twisted Gabidulin (AGTG) codes, which contain (generalized) twisted
Gabidulin codes and (generalized) Gabidulin codes as special cases. For AGTG codes with
minimum rank distance d , if an error vector has rank strictly less than d−1

2 , the decod-
ing process can be directly converted to the decoding of generalized Gabidulin codes, for
which existing decoding algorithms in [25, 36, 48] can be applied. On the other hand, when
the error vector has rank exactly d−1

2 (with d being odd), a new problem arises and one
needs an efficient way to solve a quadratic polynomial. Solving a given quadratic poly-
nomial over finite fields in general is a challenging problem. The quadratic polynomial
derived from the decoding of AGTG codes has a close connection to a projective polyno-
mials P(x). Different from the short discussion in [35], we study the projective polynomial
P(x) in greater depth. We start with the discussion on the number of roots of P(x) accord-
ing to its coefficients and the characteristic of the finite field Fqn , propose methods to find
roots of P(x) for each case, and finally adopt the result in the decoding algorithm for
AGTG codes.

The remainder of this paper is structured as follows. Section 2 introduces some prelim-
inaries, where we particularly recall some properties of linearized polynomial and recently
constructed twisted MRD codes. Section 3 summarizes the interpolation decoding approach
for additive generalized twisted Gabidulin codes and identifies the crucial quadratic poly-
nomial when the rank of error reaches d−1

2 (with d being odd). Section 4 is dedicated to the
study of the quadratic polynomial and to finding roots of the corresponding projective poly-
nomial P(x). Section 5 integrates the interpolation decoding procedure and the result of
Section 4 into an explicit algorithm and discusses the complexity of the proposed algorithm.
Section 6 concludes the work of this paper.
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2 Preliminaries

Let q be a power of a prime p. Throughout this paper we denote by Fqr the finite field with
qr elements for an arbitrary positive integer r .

2.1 Linearized polynomial

A polynomial of the form L(x) = ∑k−1
i=0 lix

qi
over Fqn is known as a q-polynomial [29].

Define a set

Lk(Fqn) =
{

L(x) =
k−1∑

i=0

lix
qi |L(x) ∈ Fqn [x]/(xqn − x)

}

. (1)

It is easy to verify that
(
Lk(Fqn),+, ◦) forms a non-commutative Fq -algebra, where +

denotes the conventional polynomial addition and ◦ denotes the symbolic product given by
a(x) ◦ b(x) = a(b(x)). Note that symbolic product is associative and distributive, but non-
commutative in general. For a nonzero L(x) = ∑k−1

i=0 lix
qi

over Fqn , its q-degree is given
by degq(L(x)) = max{0 ≤ i < k|li �= 0}.

When q is fixed or the context is clear, it is also customary to speak of a linearized
polynomial as it satisfies the linearity property: L(c1x + c2y) = c1L(x) + c2L(y) for any
c1, c2 ∈ Fq and any x, y in an arbitrary extension Fqn . Hence a linearized polynomial
L(x) ∈ Ln(Fqn) indicates an Fq -linear transformation L from Fqn to itself.

Known MRD codes in the literature are mostly given in the terms of linearized
polynomials. Some relevant definitions and auxiliary results are recalled below.

Definition 1 For a nonzero linearized polynomial L(x) = ∑k−1
i=0 lix

qi
over Fqn , its rank is

given by

Rank(L) := dimFq
(Img(L)) = n − dimFq

(Ker(L)),

where Img(L) = {
L(x)|x ∈ Fqn

}
and Ker(L) = {x ∈ Fqn |L(x) = 0}.

For a linearized polynomial L(x) = ∑k
i=0 lix

qi
with q-degree k, i.e., lk �= 0, it is clear

that Ker(L) has at most qk elements. From the definition, the linearized polynomial L(x)

has

Rank(L) = n − dimFq
(Ker(L)) ≥ n − k.

Sheekey in [40] characterizes a necessary condition for L(x) to have rank n − k as below.

Lemma 1 [40] Suppose a linearized polynomial L(x) = l0x + l1x
q + · · · + lkx

qk
, lk �= 0,

in Ln(Fqn) has qk roots in Fqn . Then

Normqn/q(lk) = (−1)nkNormqn/q(l0), (2)

where Normqn/q(x) = x1+q+···+qn−1
is the norm function from Fqn to Fq .

Furthermore, the necessary and sufficient condition for L(x) with q-degree k to have qk

roots in Fqn was independently characterized recently in [28, Theorem 7] and [7, Theorem
1.2], where all coefficients of L(x) are involved.

Below we recall two interesting matrices, of which properties and connection are critical
for the decoding algorithm in this paper.
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Definition 2 [24, 49] Given a vector a = (a0, . . . , an−1) over Fqn , the Dickson matrix
associated with a is given by

Da =
(

a
qj

i−j(modn)

)

n×n
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 a
q

n−1 . . . a
qn−1

1

a1 a
q

0 . . . a
qn−1

2
...

...
. . .

...

an−1 a
q

n−2 . . . a
qn−1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3)

and the Moore matrix associated with a is given by

Ma =
(

a
qj

i

)

n×n
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 a
q

0 . . . a
qn−1

0

a1 a
q

1 . . . a
qn−1

1
...

...
. . .

...

an−1 a
q

n−1 . . . a
qn−1

n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (4)

The Dickson matrix and Moore matrix have the following properties:

Lemma 2 For two vectors a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) over Fqn ,

i) DT
a = Da′ with a′ = (a0, a

q

n−1, . . . , a
qn−1

1 );

ii) Da · Db = Du, where u = (u0, . . . , un−1) with ui = ∑n−1
j=0 a

qj

i−j (mod n)bj ;

iii) MT
a · Mb = Dv , where v = (v0, . . . , vn−1) with vi = ∑n−1

j=0 a
qi

j bj ;

iv) Ma · Db = Mw , where w = (w0, . . . , wn−1) with wi = ∑n−1
j=0 a

qj

i bj .

The proof follows from direct calculations and is thus omitted here.
Let Dn(Fqn) be the set of all n × n Dickson matrices over Fqn . It is shown in [49] that

Dn(Fqn) forms an Fq -algebra and there is an isomorphism ϕ betweenLn(Fqn) andDn(Fqn)

given by

ϕ

(
n−1∑

i=0

lix
qi

)

= D(l0,...,ln−1) =
(
l
qj

i−j (mod n)

)

n×n
. (5)

A Dickson matrix D will be said to be associated with a linearized polynomial L(x) if
ϕ(L(x)) = D.

Proposition 1 [49]. Let L be the linear transformation induced by a linearized polynomial
L(x) ∈ Ln(Fqn) and D be the Dickson matrix associated with L(x). Then

Rank(L) = Rank(D) and det(L) = det(D).

It is well known [24] that given a linearized polynomial L(x) = ∑n−1
i=0 lix

qi
over Fqn ,

it is a permutation of Fqn , i.e., Rank(L) = n, if and only if its associated Dickson matrix
is non-singular; or equivalently its associated Moore matrix is non-singular. It follows from
the fact that the determinant of a Moore matrix vanishes if and only if the entries of its first
column are linearly dependent. In fact, more interesting connections between a linearized
polynomial L(x) in Ln(Fqn) and its associated Dickson matrix can be established.
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Proposition 2 [35, Theorem 3] Assume a linearized polynomial L(x) = ∑n−1
i=0 lix

qi
over

Fqn has rank k. Then its associated Dickson matrix D in (5) has rank k over Fqn . Moreover,
any k × k submatrix formed by k consecutive rows and k consecutive columns in D is
invertible.

Remark 1 Let σ = qs with gcd(s, n) = 1. The σ -polynomial

Lσ (x) = l0x + l1x
σ + · · · + ln−1x

σn−1
, li ∈ Fqn ,

which reduces to a q-polynomial over Fqn for s = 1, is a generalization of q-polynomial.
The aforementioned properties of q-polynomials can be similarly obtained as for σ -
polynomials. For instance, the σ -polynomial Lσ (x) = ∑k

i=0 lix
σ i

with lk �= 0 also has
Rank(L) = n − dimFq

(Ker(L)) ≥ n − k [15]. When q is replaced by σ in the definition
of the Dickson and Moore matrices, they are called the σ -version Dickson matrix and the
σ -version Moore matrix, respectively. The σ -version Dickson and Moore matrices have the
same properties as characterized in Lemma 2 and Proposition 2.

2.2 Maximum rank distance (MRD) codes

Let n and m be two positive integers. The rank of a vector a = (a1, a2, . . . , an) over Fqm

is defined as the dimension of spanFq
〈a1, a2, . . . , an〉 which is the vector space spanned by

ai’s over Fq . The rank distance between two vectors a, b ∈ Fqm is defined as dR(a, b) =
Rank(a − b).

Definition 3 A rank metric (n,M, d)-code over Fqm is a subset of Fn
qm with size M and

minimum rank distance d . Furthermore, it is called a maximum rank distance (MRD) code
if it attains the Singleton-like bound M ≤ qmin{m(n−d+1),n(m−d+1)}.

The Gabidulin codes are the most well-known MRD codes [13]. This family of MRD
codes were further generalized in [20, 39], where the Frobenius automorphism of Fqn was
replaced by a generic automorphism x 
→ xσ with σ = qs and gcd(s, n) = 1. The gen-
eralized Gabidulin (GG) code GGn,k over Fqm with length n and dimension k is defined
by

GGn,k =
{

(f (α0), f (α1), . . . , f (αn−1))|f (x) =
k−1∑

i=0

fix
σ i

and fi ∈ Fqm

}

, (6)

where α0, α1, . . . , αn−1 in Fqm are linearly independent over Fq . When σ = q, i.e.,
s = 1, the code GGn,k reduces to the original Gabidulin code [13]. The choice of
independent points α0, α1, . . . , αn−1 does not affect the rank property. Hence it is cus-
tomary to express generalized Gabidulin codes without the evaluation points as GGn,k ={
f (x) = ∑k−1

i=0 fix
σ i |fi ∈ Fqm

}
. We will also omit the evaluation points α0, α1, . . . , αn−1

in the following introduction of recent twisted MRD codes [26, 30, 40]. For consistency
with the parameters of MRD codes in [26, 30, 40], throughout what follows we always
assume n = m.

Recent constructions of MRD codes largely depend on the number of roots of certain
linearized polynomials. From Lemma 1 it is readily seen that a linearized polynomial L(x)

of q-degree k has rank at least n − k + 1 if the condition (2) is not met. In [40] Sheekey
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adopted Lemma 1 to construct twisted Gabidulin (TG) codes and described the generalized
twisted Gabidulin (GTG) codes, which was intensively studied by Lunardon et al. [26].

Proposition 3 [26, 40] Let n, k, s be positive integers such that k < n and gcd(s, n) = 1.
Let η be a nonzero element in Fqn satisfying Normqsn/qs (η) �= (−1)nk . Then the set

Hk,s(η, h) =
{

k−1∑

i=0

fix
qsi + ηf

qh

0 xqsk |fi ∈ Fqn

}

(7)

is an MRD code with minimum rank distance d = n − k + 1.

The idea of manipulating some terms of linearized polynomials to construct new MRD
codes was further extended in [30, 31, 33]. Below we recall from [30] the additive gener-
alized twisted Gabidulin (AGTG) codes , for which we will propose an interpolation-based
decoding algorithm in the next section.

Proposition 4 [30] Let n, k, s, h ∈ Z
+ satisfying gcd(s, n) = 1 and k < n. Let q = qu

0 and
η ∈ Fqn such that Normqsn/qs

0
(η) �= (−1)nku. Then the set

Hk,s,q0(η, h) =
{

k−1∑

i=0

fix
qsi + ηf

qh
0

0 xqsk |fi ∈ Fqn

}

(8)

is an Fq0 -linear (but not necessarily Fq -linear) MRD code of size qnk and minimum rank
distance n − k + 1.

The above AGTG codes reduce to GTG codes when q0 = q and to GG codes when η = 0
or q0 = 2. Very recently, Sheekey in [42] showed the existence of a new family of MRD
codes which is not equivalent to AGTG codes and Trombetti-Zhou codes in [47]. Recent
MRD codes that are constructed based on Lemma 1 were formulated in a united manner in
[41] and [22].

3 Encoding and decoding for AGTG codes

Throughout this section we will denote [i] := σ i = qsi for i = 0, . . . , n − 1 , where
(s, n) = 1, for simplicity.

Below we briefly describe the encoding process of the AGTG codes, which provides the
notational conventions and a reference for the interpolation decoding process.

3.1 Encoding AGTG codes

For an AGTG code with evaluation points α0, α1, . . . , αn−1 that are linearly independent
over Fq , the encoding of a message f = (f0, . . . , fk−1) is the evaluation of the following
linearized polynomial at points α0, α1, . . . , αn−1:

f (x) =
k−1∑

i=0

fix
[i] + ηf

qh
0

0 x[k].
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Let f̃ = (f0, . . . , fk−1, ηf
qh
0

0 , 0, . . . , 0) be a vector of length n over Fqn and M be the
σ -version Moore matrix generated by αi’s, where 1 ≤ i, j ≤ n − 1, i.e.,

M =
(
α

[j ]
i

)

n×n
=

⎛

⎜
⎜
⎜
⎜
⎝

α0 α
[1]
0 . . . α

[n−1]
0

α1 α
[1]
1 . . . α

[n−1]
1

...
...

. . .
...

αn−1 α
[1]
1 . . . α

[n−1]
n−1

⎞

⎟
⎟
⎟
⎟
⎠
. (9)

Then the encoding of AGTG codes can be expressed as

(f0, . . . , fk−1) 
→ c = (f (α0), . . . , f (αn−1)) = f̃ MT . (10)

Here it is worth noting that in encoding process, one actually only needs to calculate the

multiplication of the (k + 1)-tuple (f0, . . . , fk−1, ηf
qh
0

0 ) and the first k + 1 row of M . Here
we express it as in (10) for being consistent with the decoding procedure.

3.2 Decoding AGTG codes with an error-interpolation polynomial g(x)

For a received word r = c + e with an error e added to the codeword c during transmission,
when the error e has rank t ≤ � n−k

2 , the unique decoding task is to recover the unique
codeword c such that dR(c, r) ≤ � n−k

2 .
When the rank t of the error is strictly smaller than n−k

2 , the decoding of AGTG codes
Hk,s,q0(η, h) can be converted to the decoding of GG codes GGn,k+1. More concretely, one
can use the existing decoding algorithms, e.g., [25, 36, 48], for (generalized) Gabidulin
codes to establish a system of n− (k +1)− t independent affine equations and t unknowns,
which is uniquely solvable since 2t ≤ n − (k + 1). However, when the rank t achieves the
unique error-correcting radius, i.e., (n − k) is even and t = n−k

2 , one needs more equa-
tion(s) on the unknowns and new techniques are required. In the interpolation decoding for
the TG codes by Randrianarisoa [35], the problem was converted to certain quadratic equa-
tions. However, how to efficiently solve the corresponding quadratic equations was little
considered in [35].

Below we shall extend Randrianarisoa’s idea to the larger family of AGTG codes and
investigate the quadratic equations in greater depth. For self-completeness, we briefly
describe the process of interpolation decoding and how it is transformed to solving certain
quadratic equation for the case that 2t = n − k.

Suppose g(x) = ∑n−1
i=0 gix

[i] is an error interpolation polynomial such that

g(αi) = ei = ri − ci, i = 0, . . . , n − 1. (11)

It is clear that the error vector e is uniquely determined by the polynomial g(x). Denote a
vector g = (g0, . . . , gn−1). From (10) and (11) it follows that

r = c + e = (f̃ + g)MT .

This is equivalent to

r · (MT )−1 = (f0 + g0, . . . , fk−1 + gk−1, ηf
qh
0

0 + gk, gk+1, . . . , gn−1). (12)

Letting γ = (γ0, . . . , γn−1) = r · (MT )−1, we obtain

(gk+1, . . . , gn−1) = (γk+1, . . . , γn−1) and − ηg
qh
0

0 + gk = γk − ηγ
qh
0

0 (13)

since ηf
qh
0

0 + gk = γk, and f0 + g0 = γ0.
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Therefore, the task of correcting error e is equivalent to reconstructing g(x) from the
available information characterized in (13). This reconstruction process heavily depends on
the property of the associated σ -version Dickson matrix of g(x) and will be discussed in
Section 3.3.

3.3 Reconstructing the interpolation polynomial g(x)

Similarly to the definition in (3), the σ -version Dickson matrix associated with g(x) can be
given by

G =
(
g

[j ]
i−j (mod n)

)

n×n
= (

G0 G1 . . . Gn−1
)

(14)

where the indices i, j run through {0, 1, . . . , n − 1} and Gj is the j -th column of G.
According to Proposition 2, the matrix G has rank t and any t × t matrix formed by t

successive rows and columns in G is nonsingular. Then G0 can be expressed as a linear
combination of G1, . . . , Gt , namely, G0 = λ1G1 + λ2G2 + · · · + λtGt , where λ1, . . . , λt

are elements in Fqn . This yields the following recursive equations

gi = λ1g
[1]
i−1 + λ2g

[2]
i−2 + · · · + λtg

[t]
i−t , 0 ≤ i < n, (15)

where the subscripts in gi’s are taken modulo n. Recall that the elements gk+1, . . . , gn−1 are
known from (13). Hence we obtain the following linear equations with known coefficients
and variables λ1, . . . , λt :

gi = λ1g
[1]
i−1 + λ2g

[2]
i−2 + · · · + λtg

[t]
i−t , k + t + 1 ≤ i < n. (16)

The above recurrence gives a generalized version of q-linearized shift register as described
in [43], where (λ1, . . . , λt ) is the connection vector of the shift register. It is the key equation
for the decoding algorithm in this paper, by which we shall reconstruct g(x) in two major
steps:

Step 1. derive the coefficients λ1, . . . , λt from (13) and (16);
Step 2. use λ1, . . . , λt to compute gk−1, . . . , g0 recursively from (15).

Note that Step 1 is the critical and challenging step in the decoding process, and Step 2 is
simply a recursive that can be done fast. The following discussion shows how the procedure
of Step 1 works.

As discussed in the beginning of this section, for an error vector with Rank(e) = t ≤
� n−k

2 , i.e., 2t + k ≤ n, we can divide the discussion into two cases.

Case 1: 2t + k < n. In this case, (16) contains n − k − t − 1 ≥ t affine equa-
tions in variables λ1, . . . , λt , which has rank t . Hence the variables λ1, . . . , λt

can be uniquely determined. Here we assume the code has high code rate, for
which the Berlekamp-Massey (BM) algorithm is more efficient [14]. Another
reason for choosing the BM algorithm is that it outputs the intermediate poly-
nomial B(n−k−1)(x) which will be used in Case 2. Although the recurrence
(16) is a generalized version of the ones in [36, 43], the modified BM algo-
rithm [36, 43] can be applied here to recover the coefficients λ1, . . . , λt . For
self-completeness we recall the modified BM algorithm in Algorithm 1. The
coefficients of �(n−k−1)(x) are the desired λi’s.
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Case 2: 2t + k = n. In this case (16) gives n − k − t − 1 = t − 1 independent affine
equations in variables λ1, . . . , λt . For such an under-determined system of linear
equations, we will have a set of solutions (λ1, . . . , λt ) that has dimension 1 over
Fqn . Namely, the solutions will be of the form

λ + ωλ′ = (λ1 + ωλ′
1, . . . , λt + ωλ′

t ),

where λ, λ′ are fixed elements in F
t
qn and ω runs through Fqn . As shown in [43,

Th. 10], the solution can be derived from the modified BM algorithm with a
free variable ω. Next we will show how the element ω is determined by other
information in (13).

Observe that in (15), by taking i = 0 and i = k + t and substituting the solution λ+ωλ′,
one gets the following two equations

g0 = (λ1 + ωλ′
1, . . . , λt + ωλ′

t ) · (g
[1]
n−1, . . . , g

[t]
n−t )

T

gk+t = (λ1 + ωλ′
1, . . . , λt + ωλ′

t ) · (g
[1]
k+t−1, . . . , g

[t]
k )T

Re-arranging the equations gives

g0 = c0 + c1ω

gk+t = c2 + c3ω + (λt + λ′
tω)g

[t]
k ,

(17)
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where c0, c1, c2, c3 are derived from λ, λ′ and the known gi’s. Furthermore, from (13) we

have −ηg
qh
0

0 + gk = γk − ηγ
qh
0

0 . Denoting c4 = γk − ηγ
qh
0

0 and substituting gk = c4 + ηg
qh
0

0
into (17) gives

(λt + λ′
tω)(c4 + η(c0 + c1ω)q

h
0 )[t] − gk+t + (c2 + c3ω) = 0.

This equation can be re-arranged as

u0ω
qv
0+1 + u1ω

qv
0 + u2ω + u3 = 0. (18)

where q = qu
0 , v = h + ust , u0, . . . , u3 are derived from c0, . . . , c5 and η.

Since the error e with rank t = n−k
2 = d−1

2 can be uniquely decoded, the polynomial

P(x) = u0x
qv
0+1 + u1x

qv
0 + u2x + u3

should have roots w in Fqn that lead to solutions λ + ωλ′ in (16) and (g0, gk) in (17).
With the coefficients λ1, . . . , λt in Step 1 and the initial state gn−1, . . . , gn−t , one can

recursively compute g0, . . . , gk−1 according to (15) in Step 2. Note that not all solutions of
P(x) lead to correct coefficients of the error interpolation polynomial. In fact, by the expres-
sion of Dickson matrix of g(x), correct g(x) should have the sequence (gn−1, . . . , gn−t , . . .)

generated from (15) has period n. In other words, if the output sequence has period n, we
know that the corresponding polynomial g(x) = ∑n−1

i=0 gix
[i] is the desired error interpola-

tion polynomial. From the above discussion, the remaining task of decoding is to efficiently
find roots of P(x) in Fqn , which will be discussed in the next section.

4 Finding roots of the polynomialP(x)

This subsection is dedicated to finding solutions to the following equation in Fqn = Fqnu
0
:

P(x) = u0x
qv
0+1 + u1x

qv
0 + u2x + u3 = 0. (19)

When q = qu
0 = q0, the polynomial P can be reduced to P(x) in [35, Page 10]. In [35],

the author converted solving P(x) = 0 to the factorization of the linearized polynomial
xq2l + axql + bx. Nevertheless, factoring xq2l + axql + bx is not necessarily easy and
there’s no efficient algorithm, as far as we know, for factoring this linearized polynomial.
Therefore, it’s important to further investigate how to efficiently solve P(x).

Assume d = (v, un). We start with the simplest case that u0 = 0. In this case, (19) is
reduced to an affine equation u1x

qv
0 + u2x + u3 = 0. Furthermore,

i) if (u1, u2) = (0, 0), then P(x) has no zero if u3 �= 0 and every element in Fqn as a
zero otherwise;

ii) if u1 = 0, u2 �= 0, then P(x) has a unique zero x = −u3/u2;
iii) if u1 �= 0, u2 = 0, then P(x) has a unique zero x = (−u3/u1)

qnu−v
0 .

iv) if u1u2 �= 0, u3 = 0, then P(x) = 0 has qd
0 zeros in Fqn , if −u2/u1 is a (qd

0 − 1)
power of an element in Fqn ; otherwise, P(x) = 0 has a single zero x = 0.
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When u0 �= 0, we transform the equation P(x) = 0 into

P(x) = 1

u0
P(x − u1u

−1
0 ) = xqv

0+1 + ax + b = 0, (20)

where

a = u2

u0
+
(

−u1

u0

)qv
0

andb = u3

u0
− u1u2

u20

+ u1

u0

(

−u1

u0

)qv
0 +

(

−u1

u0

)qv
0+1

.

The polynomial P(x) can be seen as a reduced version of the original polynomial P(x). It
is clear that if a = 0, then P(x) = 0 has either no solution or

m = gcd(qv
0 + 1, qnu

0 − 1) =

⎧
⎪⎨

⎪⎩

qd
0 + 1, if nu

gcd(un,v)
is even,

2, if nu
gcd(un,v)

and q0 are odd,

1, if nu
gcd(un,v)

is odd, and q0 is even

solutions, depending on whether −b is an m-th power; and that if b = 0, P(x) = 0 has
either zero as its unique solution or qd

0 solutions.
When ab �= 0, the polynomial P(x) = xqv

0+1 + ax + b over Fqun
0

has a variety of
applications in the construction of different sets with Singer parameters [10], construction
error correcting codes [3], APN functions [4] and computing cross-correlation between m-
sequences [11, 16].

The polynomial P(x) is a type of projective polynomials [1], which in general has the
form

a0 + a1x + a2x
(2) + · · · + alx

(l) ∈ Fqn [x],

where x(i) = x
qi−1
q−1 . Bluher in [2] showed that the projective polynomial

P(x) = xqr+1 + ax + b, a, b ∈ F
∗
qn , (21)

where q is any prime power and r, n are arbitrary two positive integers, has exactly
0, 1, 2, qr0 + 1 possible number of zeros in Fqn with r0 = gcd(r, n). Before the discussion
on finding roots of P(x), it is important to know the possible number of roots and the corre-
sponding conditions on the coefficients of P(x). In the following we will discuss different
ways to find and express the zeros of P(x).

First, we present a relations among roots of P(x), which is inspired by [11, Lemma 22]
and generalized for any prime power q.

Proposition 5 For positive integers r, n and a prime power q, the projective polynomial

P(x) = xqr+1 + ax + b, a, b ∈ F
∗
qn

has 0,1,2 or qr0 + 1 roots x ∈ Fqn , where r0 = gcd(r, n). Moreover, if P has three different
roots x0, x1 and x2 ∈ Fqn , then all the roots can be characterized as

xA0,A1,A2 = −x0x1x2

A0
x0

+ A1
x1

+ A2
x2

A0x0 + A1x1 + A2x2
(22)
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where (A0, A1, A2) �= (0, 0, 0) and A0 + A1 + A2 = 0.

Proof Suppose P(x0) = 0 for an element x0 in Fqn . For a nonzero λ ∈ F
∗
qn , one has

P(λ + x0) = (λ + x0)
qr+1 + a(λ + x0) + b

= (λqr+1 + x0λ
qr + λx

qr

0 + x
qr+1
0 ) + λa + ax0 + b

= (λqr+1 + x0λ
qr + (x

qr

0 + a)λ) + P(x0)

= λqr+1(1 + x0/λ + (x
qr

0 + a)/λqr

).

Thus P(λ+x0) = 0 if and only if 1
λ
is a solution of the affine equation L′

0(z) = L0(z)+1 =
0, where

L0(z) = (x
qr

0 + a)zqr + x0z.

Depending on x0, L0(z) may have a single solution if x
qr

0 + a = 0 or qr0 solutions if

x0(x
qr

0 + a)−1 is a (qr0 − 1)-th power in Fqn . Hence the affine equation L′
0(z) = 0 has

either 0, 1 or qr0 nonzero solutions in Fqn . For each nonzero solution z of L′
0(z) = 0, we

get a root x0 + 1
z
of the projective polynomial P(x).

On the other hand, when P(x) has three distinct roots x0, x1 and x2, we obtain two
different roots 1

x1−x0
and 1

x2−x0
of the affine equationL′

0(z) = 0 and their difference 1
x1−x0

−
1

x2−x0
is a root of the linearized polynomial L0(z) = 0, i.e.,

L′
0

(
1

x1 − x0

)

= L0

(
1

x1−x0

)
+ 1 = 0,

L′
0

(
1

x2 − x0

)

= L0

(
1

x2−x0

)
+ 1 = 0,

L′
0

(
1

x1 − x0

)

− L′
0

(
1

x2 − x0

)

= L0

(
1

x1+x0
− 1

x2+x0

)
= 0.

So y = 1
x1−x0

− 1
x2−x0

is a root of L0(z). Hence, z = 1
x1−x0

+ Ay runs through all roots of
L′
0(z). Consequently, assuming (A0, A1, A2) = (1, A,−(A + 1)),

x(A) = x0 + 1

z
= x0 + 1

1
x1−x0

+ Ay

= x0 + 1
1

x1−x0
+ A

x1−x0
− A

x2−x0

= x0 + (x1 − x0)(x2 − x0)

(x2 − x0) + A(x2 − x0) − A(x1 − x0)

= −x0x1x2.
1
x0

+ A
x1

− (A+1)
x2

x0 + Ax1 − (A + 1)x2

= −x0x1x2.
A0
x0

+ A1
x1

+ A2
x2

A0x0 + A1x1A2x2
= x(A0,A1,A2)

runs through all roots of P(x) different from x0, while A runs through Fqr0 .
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The above result gives a method to express all the roots of the projective polynomials
P(x) = xqr+1 + ax + b, a, b ∈ F

∗
qn in terms of the three known roots in Fqn . Moreover,

from its proof, a method to describe the roots of the projective polynomial P(x) in terms of
the roots of the affine polynomial L′

0(z). Nevertheless, the condition that characterizes the

exact number of solutions to the affine equation L′
0(z) = (x

qr

0 +a)zqr +x0z+1 is not clear.
In order to investigate the number of roots of P(x) = xqr+1 + ax + b in Fqn according

to its coefficients, we need to divide the discussion into two cases: q is even; or q is odd and
gcd(r, n) = 1.

4.1 Solving the equation P(x) = 0 over finite fields of characteristic 2

When the finite field Fqn has characteristic 2, the polynomial P(x) can be further converted
to Fc(x) = xqr+1 + x + c = 0, which was intensively studied in [17, 18, 21]. Helleseth
and Kholosha in [17, 18] explicitly gave the root of Fc(x) = 0 in terms of the coefficient c
when it has a single zero in Fqn and when it has two zeros in Fqn if gcd(r, n) is odd. Very
recently, Kim and Mesnager in [21] further studied the equation for the case q = 2 and
gcd(r, n) = 1 and explicitly calculated all possible zeros of Fc(x) in Fqn . Since for general
AGTG codes, the parameter q0 is always greater than 2. Below we shall recall the result
by Helleseth and Kholosha [18] and apply it to find the roots of the projective polynomial
P(x) in some cases.

Note that the AGTG codes are defined over Fqn with q a prime power. In this context,
we assume q is a power of 2. To avoid potential confusion of notations, below we recall the
result from [18] and treat the underlying finite field as F2m , where m is a positive integer.
Let l be a positive integer with d = gcd(l, m) and denote m1 = l/d. Define two sequences
of polynomials in recurrence as follows: C1(x) = C2(x) = Z1(x) = 1, and

Ci+2(x) = Ci+1(x) + x2il
Ci(x), Zi(x) = Ci+1(x) + xC2l

i−1(x) (23)

for i = 1, 2, . . . , m1 − 1.

Proposition 6 [18, Prop. 3-5] Gvien a polynomial

Fc(x) = x2l+1 + x + c, c ∈ F
∗
2m, (24)

i) it has exactly one zero in F2m if and only if Zm1(c) = 0 and Cm1(c) �= 0; and this

zero is given by x = (cC2l−1
m1

(c))2
m−1

;

ii) it has exactly two zeros F2m if and only if Zm1(c) �= 0 and Trd1(N
m
d (c)/Z2

m1
(c)) =

0, where the trace function Trd1(z) = ∑d−1
i=0 z2

i
and Nm

d (z) is the norm function

defined by Nm
d (z) = ∏m1−1

i=0 x2di
. Moreover, if d is odd, then these two zeros are

(W + μ)Zm1(c)/Cm1(c) for μ ∈ {0, 1}, where

W = Cm+1(c)

Zm+1(c)
+

d−1
2∑

i=0

(
Nm

d (c)

Z2
m1

(c)

)22i

;

iii) it has exactly 2d + 1 zeros in F2m if and only if Cm1(c) = 0.

As an illustration, we apply Proposition 6 i) to a general polynomial G(x) in the follow-
ing proposition, which will be used to explicitly give the zero of P(x) in F2m withm = nuw.
The second cases can be applied in a similar manner.
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Proposition 7 The polynomial

G(x) = x2l+1 + a1x
2l + a2x + a3

over F2m has exactly one zero in F2m if and only if one of the following conditions holds:

i) a2 = a2
l

1 and a3 = a2
l+1

1 ; or

ii) a2 = a2
l

1 , a3 �= a2
l+1

1 and m1 is odd; or

iii) a2 �= a2
l

1 , Zm1(c) = 0 and Cm1(c) �= 0 with c = (a1a2 + a3)
/
(a1 + a2

n−l

2 )2
l+1.

Moreover, for Cases (i) and (ii), the zero of G(x) is given by x = a1 + (a1a2 + a3)
1

2l+1 ; for
Case (iii), the unique zero is given by x = (a1 + a2

n−l

2 )(cC2l−1
m1

(c))2
n−1 + a1.

Proof It is relatively easy to verify Case i) and Case ii). In fact, when a2 = a2
l

1 , one obtains
the equation

G(x) = (x + a1)
2l+1 + (a1a2 + a3) = 0.

The statement of Case i) immediately follows; and for Case ii), it is easily seen that the equa-
tion has a single solution only if gcd(2l + 1, 2n − 1) = 1, equivalently, m1 = n/ gcd(l, n)

is odd.
For Case iii), the equation G(x) = 0 can be reduced to a polynomial of the form Fc(y) =

y2l+1 + y + c = 0 by the following substitution

Fc(y) = s−(2l+1)G(sy + a1)

= s−(2l+1)
(
(sy + a1)

2l+1 + a1(sy + a1)
2l + a2(sy + a1) + a3

)

= s−(2l+1)
(
s2

l+1y2l+1 + s(a2
l

1 + a2)y + a1a2 + a3

)

= y2l+1 + y + c,

where

s = (a2
l

1 + a2)
2m−l = (a1 + a2

m−l

2 ) and c = a1a2 + a3

s2
l+1

= a1a2 + a3

(a1 + a2
m−l

2 )(2
l+1)

.

It is clear that y is a zero of Fc(y) = y2l+1 + y + c if and only if x = sy + a1 is a zero of
G(x). The desired statement follows from Proposition 6.

Corollary 1 Let q0 = 2w for a positive integer w, l = wv, m = wun and m1 =
m/ gcd(l, m). Let Ci(x), Zi(x) be defined as in (23) respectively. Then the polynomial
xqv

0+1 + a1x
qv
0 + a2x + a3 over Fqn has exactly one solution in Fqn given by

i) x = a1 if a2 = a
qv
0

1 and a3 = a1a2;

ii) x = a1 + (a1a2 + a3)
1

qv
0+1 if a2 = a

qv
0

1 , a3 �= a1a2 and m1 is odd;

iii) x = (a1 + a
qn−v
0

2 )(cC
qv
0−1

m1 (c))2
m−1 + a1 if a2 �= a

qv
0

1 , Zm1(c) = 0 and Cm1(c) �= 0 with

c = (a1a2 + a3)
/
(a1 + a

qn−v
0

2 )q
v
0+1.
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4.2 Solving the equation P(x) = 0 over Fqn when gcd(r, n) = 1

For the projective polynomial P(x) = xqr+1 + ax + b with gcd(r, n) = 1, McGuire and
Sheekey recently in [28] gave a complete criteria on the coefficients a, b for P(x) = 0 to
have 0, 1, 2 and q + 1 solutions in Fqn by the analysis of the companion matrix of P(x).

Let σ = qr and define a sequence of 2 × 2 matrices as follows:

C0 = I2, C = C1 =
(
0 −b

1 −a

)

, and Ck = Ck−1C
σk−1 = CCσ

k−1, (25)

where C1 is termed the companion matrix of P(x), and Cσi

k is the matrix obtained from Ck

by applying to each of its entries the automorphism x 
→ xσ i
. Furthermore, define a matrix

AP = Cn = CCσ · · · Cσn−1
. (26)

Since det(C1) = b and N(b) = b1+σ+···+σn−1
, one can easily verify det(AP ) = N(b).

Denote

X =
(

b/a 0
0 1

)

, Zn =
(

a(n−1) 0
0 a(n)

)

and Ym =
(−Gσ

n−2 −Gσ
n−1

Gn−1 Gn

)

, (27)

where a(i) = a
σi−1
σ−1 and Gn can be computed using the recursive relation

Gσ 2

n − Gn = Gσ
n−1 − Gσ 2

n−1. (28)

Then it follows that

AP = Cn = XYnZn. (29)

Hence one can express AP associated with P(x) in terms of Gn as follows:

AP = N(a)

(
−uq−1

.Gσ
n−2 − b

a
.Gσ

n−1
1

aσ−1 .Gn−1 Gn

)

where N(a) denotes the field norm of a ∈ Fqn from Fqn to Fq and u = bq/aq+1. Note that
if Gn−1 = 0 then AP will be a diagonal matrix.

Theorem 1 [28] The number of roots of the projective polynomial P(x) in Fqn is given by

∑

λ∈Fq

qnλ − 1

q − 1
,

where nλ is the dimension of the eigenspace of AP corresponding to the eigenvalue λ. The
number of roots of L(x) in Fqn is given by qn1 . In other words, the dimension of the kernel
of L(x) is 2 − Rank(AL − I2).
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Theorem 2 [28] The polynomial P(x) has
qd − 1

q − 1
roots in Fqn if and only if

AP = λI2,

where d is the dimension of the eigenspace of the matrix AP .

The characteristic polynomial SP (x) ∈ Fq [x] of a 2 × 2 matrix AP is of the form

SP (x) = x2 − Tr(AP )x + det(AP ), (30)

where Tr(AP ) is the trace of the matrix AP and it is defined as the sum of its diagonal
elements and det(AL) is the determinant of the matrix AP . The polynomial SP (x) can have
0,1 or 2 roots in Fq . For odd prime power q, the discriminant
S of the quadratic polynomial
SP (x) is of the form


S = Tr(AP )2 − 4 det(AP ). (31)

Case 1) if 
S is a non-square in Fq , SP (x) has no solutions in Fq , then P(x) has no
solution in Fqn .

Case 2) If 
S = 0, SP (x) has a unique solution λ in Fq , then P(x) has 1 or q+1 solutions
in Fqn .

i) If the dimension of the eigenspace corresponding to λ is two, then P(x) has
q + 1 solutions in Fqn . Due to Theorem 2, this will happen if and only if
AP = λI2 i.e. Gn−1 = 0 and Gn ∈ Fq .

ii) If the dimension of the eigenspace corresponding to λ is one, then P(x) has
one solution in Fqn . Due to Theorem 2, this will happen if and only if AP is
not a multiple of I2 i.e. Gn−1 �= 0.

Case 3) If 
S is a non-zero square in Fq , SP (x) has two distinct roots (eigenvalues) in Fq .
If dimension of the eigenspaces corresponding to each eigenvalue is one, due to
Theorem 1, P(x) has two solutions in Fqn .

Note that the projective polynomial P(x) = xqr+1+ax+b associates with the following
linearized polynomial

L(x) = xP (xqr−1) = xq2r + axqr + bx, a, b ∈ Fqn .

It is readily seen that if we can efficiently solve the linearized polynomial L(x), the roots of
P(x) can be obtained accordingly. In [28] the authors also applied companion matrices to
study the number of roots of the above linearized polynomial. Further works on the roots of
linearized polynomials can be found in [7, 32, 46].

Below we provide another way of studying the roots of the linearized polynomials L(x)

via the Dickson matrix directly.

Theorem 3 Let α0, α1, . . . , αn−1 be a basis of Fqn over Fq and L(x) = ∑n−1
i=0 lix

qi
a

linearized polynomial in Ln(Fqn) with rank r . Let D be the associate Dickson matrix of
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L(x). Suppose D0,D1, . . . , Dn−1 are the n rows of D and Dr = z0D0 + z1D1 + · · · +
zr−1Dr−1, where z0, . . . , zr−1 in Fqn . Then the elements

βi =
r−1∑

j=0

α
qn−j

i z
qn−j

j − α
qn−r

i , i = 0, 1, . . . , n − 1,

are roots of L(x). Moreover, the kernel of L(x) in Fqn is given by

ker(L) = spanFq
〈β0, β1, . . . , βn−1〉.

Proof From Proposition 2 it is clear that the r-th row Dr can be expressed by a linear
combination of D0,D1, . . . , Dr−1 as Dr = ∑r−1

t=0 ztDt . That is to say, the vector z =
(z0, . . . , zn−1) = (z0, . . . , zr−1,−1, 0, . . . , 0) satisfies z · D = (0, . . . , 0). Define

DT
z = D

(z0,z
q
n−1,...,z

qn−1

1 )
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[c]z0 . . . zr−1 −1 0 . . . 0
0 z

q

0 . . . z
q

r−1 −1 . . . 0
...

. . .
. . . . . .

. . .
. . .

...

0 . . . 0 z
qn−r−1

0 . . . z
qn−r−1

r−1 −1
. . .

. . .
. . .

. . .
. . .

z
qn−1

1 . . . z
qn−1

r 0 . . . 0 z
qn−1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It follows from the pattern of the Dickson matrix D that DT
z · D = 0n×n, where 0n×n is the

n × n all zero matrix.
According to the definition of Dz, it is clear that it has rank at least n − r . On the

other hand, since the Dickson matrix D has rank r and all rows of Dz are solution of
(y0, . . . , yn−1)D = (0, . . . , 0), the rank of Dz is at most n− r . This means that Dz has rank
exactly n − r .

Let Mα be the Moore matrix associated with the basis α0, . . . , αn−1. It follows from
Lemma 2 i) and iv) that

MαDT
z = MαDz′ = Mβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

β0 βq

0 . . . βqn−1

0

β1 βq

1 . . . βqn−1

1
...

...
. . .

...

βn−1 βq

n−1 . . . βqn−1

n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where z′ = (z0, z
q

n−1, . . . , z
qn−1

1 ) = (z0, 0, . . . , 0,−1, zqn−(r−1)

r−1 , . . . , z
qn−1

1 ) and

βi =
n−1∑

j=0

α
qj

i z
qj

n−j =
n−1∑

j=0

α
qn−j

i z
qn−j

j =
r−1∑

j=0

α
qn−j

i z
qn−j

j − α
qn−r

i
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for i = 0, 1, . . . , n − 1. Recall that DT
z · D = 0n×n. It immediately follows that

0n×n = Mβ · D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

β0 βq

0 . . . βqn−1

0

β1 βq

1 . . . βqn−1

1
...

...
. . .

...

βn−1 βq

n−1 . . . βqn−1

n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

l0 l
q

n−1 . . . l
qn−1

1

l1 l
q

0 . . . l
qn−1

2
...

...
. . .

...

ln−1 l
q

n−2 . . . l
qn−1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Hence L(βi ) = 0 for i = 0, 1, . . . , n − 1. Moreover, since the Moore matrix Mα is nonsin-
gular, the rank of Mβ is the same as that of the rank of Dz, which implies that the rank of
β0, . . . , βn−1 over Fq is equal to n − r . Thus the linear combination of β0, . . . , βn−1 over
Fq yields all the solution of L(x) in Fqn . The desired conclusion follows.

From Theorem 3, we see that finding solutions of a linearized polynomial can be
converted to the task of computing the rank of its associated Dickson matrix D =
(D0, . . . , Dn−1)

T and of finding a solution of Dr = x0D0 + · · · + xr−1Dr−1. In general,
calculating the rank of a Dickson matrix D is nontrivial. Recently Csajbók in [6] proposed
an interesting characterization of the rank of D.

Theorem 4 [6] Let D be the associated Dickson matrix of a linearized polynomial L(x) =
∑n−1

i=0 lix
qi
over Fqn . Denote by Dt the submatrix of D by removing the first t rows and the

last t columns. Then L(x) has rank r if and only if

|D0| = · · · = |Dn−r−1| = 0 and |Dn−r | �= 0.

By Theorem 4, in order to determine the rank of the Dickson matrix associated with
L(x), we need to calculate the determinant of D0,D1 and D2. The calculation for the case
D2 is trivial. We only need to consider D0 and D1. To this end, we need the following result.

Theorem 5 The determinant of the Dickson matrix

D0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b 0 0 . . . 0 1 aqr(n−1)

a bqr
0 . . . 0 0 1

1 aqr
bq2r 0 0

0 1 aq2r
...

...
...

. . .
. . .

. . . aqr(n−3)
bqr(n−2)

0

0 . . . 1 aqr(n−2)
bqr(n−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32)

associated with the linearized polynomial L(x) = xq2r + axqr + bx can be calculated
using the recursive relation

|D0| = (−1)n+1 · aqr(n−1) |Mn−1| + 2bqr(n−1) |Mn−2| + N(a) + 1, (33)

where N(a) denotes the field norm of a ∈ Fqn from Fqn to Fq , Mn is a tridiagonal matrix
of order n and Mn−1 = D1.
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Note that D2 is a lower triangular matrix and its determinant can be directly computed
|D2| = 1. In order to prove Theorem 5 we need the following observation.

Lemma 3 The determinant of the tridiagonal matrix

(34)

is given by the recurrence relation

|Mn| = aqn−1 |Mn−1| − bqn−1 · cqn−2 |Mn−2|, (35)

where |M0| = 1 and |M−1| = 0.

Proof Using Laplace expansion on the last column for n ≥ 2 gives

Proof of Theorem 5. The proof follows immediately by applying Laplace expansion and
Lemma 3. Note that the determinant of an upper (lower) triangular matrix is the product of
the elements in its main diagonal.

Theorem 5 characterizes the conditions for the associated Dickson matrix of L(x) =
xq2r +axqr +bx to have rank n, n−1 and n−2. According to Theorem 3, one can obtain the
roots of L(x) by finding the coefficients in the linear combination of the first n − 1 rows of
D when D has rank n − 2 and coefficients in the linear combination of all rows of D when
D has rank n − 1. Here the modified BM algorithm [43] will be employed, which requires
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O(n2) operations in Fqn for these two cases. With the coefficients, the roots of L(x) are
given by Theorem 3.

Instead of using Theorem 3 to compute the roots of the linearized polynomial L(x), one
may use the probabilistic method given in [46]. The problem of finding the root space of
the linearized polynomial L(x) is reduced to find the image space of another linearized
polynomial K(x) derived from

xqn − x = W(x) ◦ K(x),

where W(x) = gcd(L(x), xqn − x). The idea is to randomly choose yi ∈ Fqn and calculate
K(yi) until the base elements for the image space of K(x) are obtained. Since L(x) has σ -
degree 2, we need to find two basis elements K(y1),K(ys) for the image space of K(x).
According to [46], the algorithm has complexity in the order of O(n) operations in Fqn . In
general the expected number of yj ∈ Fqn that need to be evaluated in order to find n linearly
independent basis elements K(y0), . . . , K(yn−1) is given by 1

1−qj−n [46].

5 The decoding algorithm of AGTG codes

With the discussion in Sections 3.2–4, we summarize the interpolation polynomial decoding
algorithm of AGTG codes in Algorithm 2, and analyze its complexity accordingly.

Recall that reconstruction the error interpolation polynomial g(x) is to solve (15) based
on the available information in (13). For the case that t = n−k

2 with even n−k, according to
Algorithm 1, �(n−k−1)(x) is the linearized polynomial obtained after n − k iteration and its
coefficients are the desired vector (λ1, . . . , λt ). L is the linear complexity of �(n−k−1)(x)

and B(n−k−1)(x) is the auxiliary linearized polynomial which is used to store the value of
�(i)(x) with the largest degree Li such that Li < L. Hence one can obtain from Algorithm
1 two t-dimensional vectors λ and λ′ over Fqn . Then the solution of (15) is given as

λ + ωλ′ = (λ1 + ωλ′
1, . . . , λt + ωλ′

t ),

from which the coefficients g0, . . . , gk can be calculated recursively. The relation of g0 and
gk in (13) leads to a quadratic equation

P(x) = u0x
qv
0+1 + u1x

qv
0 + u2x + u3 = 0.

If u0 = 0 calculate its zeros by cases i)-iv) after (19) or use Theorem 5, Berlekamp Massey
Algorithm 1, Theorem 3 and Corollary 1 otherwise. The above process therefore can be
integrated into the explicit Algorithm 2.

Remark 2 In the proposed Algorithm 2, we reconstruct the error interpolation polynomial
g(x) by two major steps: calculate the coefficients λ1, . . . , λt by the modified BM algo-
rithm, and deal with the case t = �(n − k)/2 by investigating the zero of the established
polynomial P(x). Section 4 investigates the solutions to P(x) = 0 In the process, the cal-
culation of the characterized conditions in Theorem 2 dominates the overall complexity. In
Line 1 of Algorithm 2, the calculation of the interpolation polynomial γ (x) at points (αi, ri)

for 1 ≤ i ≤ n. It has complexity in the order of O(n3) operations over Fqn , which can be
further optimized by the method in [34]. For the remaining steps in Algorithm 2, the modi-
fied BM algorithm dominates the overall complexity. Since the modified BM algorithm has
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operations in the order of O(n2) over Fqn , the overall complexity of Algorithm 2 is in the
order of O(n2) over Fqn when normal bases are used in the interpolation step.

6 Conclusion

This paper further investigates the interpolation-based decoding algorithm for additive
generalized twisted Gabidulin codes over finite fields with any characteristic. The main con-
tribution of this paper includes the discussion of efficiently finding the roots of the involved
project polynomials and their corresponding linearized polynomials.
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