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Abstract
Let f (x) = xd be a power mapping over Fn and Ud the maximum number of solutions
x ∈ Fn of �f,c(x) := f (x + c) − f (x) = a, where c, a ∈ Fn and c �= 0. f is said to
be differentially k-uniform if Ud = k. The investigation of power functions with low dif-
ferential uniformity over finite fields Fn of odd characteristic has attracted a lot of research
interest since Helleseth, Rong and Sandberg started to conduct extensive computer search
to identify such functions. These numerical results are well-known as the Helleseth-Rong-
Sandberg tables and are the basis of many infinite families of power mappings xdn, n ∈ N,

of low uniformity (see e.g. Dobbertin et al. Discret. Math. 267, 95–112 2003; Helleseth
et al. IEEE Trans. Inform Theory, 45, 475–485 1999; Helleseth and Sandberg AAECC, 8,
363–370 1997; Leducq Amer. J. Math. 1(3) 115–123 1878; Zha and Wang Sci. China Math.
53(8) 1931–1940 2010). Recently the crypto currency IOTA and Cybercrypt started to build
computer chips around base-3 logic to employ their new ternary hash function Troika, which
currently increases the cryptogrpahic interest in such families. Especially bijective power
mappings are of interest, as they can also be employed in block- and stream ciphers. In this
paper we contribute to this development and give a family of power mappings xdn with low
uniformity over Fn, which is bijective for p ≡ 3 mod 4. For p = 3 this yields a family
xdn with 3 ≤ Udn ≤ 4, where the family of inverses has a very simple description. These
results explain “open entries” in the Helleseth-Rong-Sandberg tables. We apply the multi-
variate method to compute the uniformity and thereby give a self-contained introduction to
this method. Moreover we will prove for a related family of low uniformity introduced in
Helleseth and Sandberg (AAECC, 8 363–370 1997) that it yields permutations.
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1 Introduction

We assume that the reader is familiar with basic facts on finite fields. Lidl et al. [13] is a
good reference. The finite field with pn elements is denoted by Fn. The cyclic group of
invertible elements is denoted by F

×
n and a generator ω of this group is called a primitive

element. Throughout this paper p denotes an odd prime.

Definition 1.1 Let f be a mapping f : Fn → Fn.

1. For c ∈ Fn the �-mapping of f with respect to c is defined as
�f,c(x) := f (x + c) − f (x).

2. Nf (c, a) is defined as #�−1
f,c(a) for a, c ∈ Fn, i.e. the number of solutions of f (x +

c) − f (x) − a = 0.
3. The family

(
Nf (c.a)

)
c,a∈Fn

is called the difference spectrum.
4. We say that two mappings f and g have the same difference properties if the difference

spectrum is equal up to a permutation, i.e. for all a, c ∈ Fn there exist b, d ∈ Fn with
Nf (c, a) = Ng(d, b) and vice versa.

5. The (differential) uniformity of f is Uf := max{Nf (c, a)|a, c ∈ Fn, c �= 0}.
6. A mapping f is called (differentially) k-uniform if Uf = k.
7. If f is a power mapping xd we will use the notation �d,c(x),Nd(c, a) and Ud .

Remark 1.1 If k = 1, then f is called perfect nonlinear (PN) or planar. It is well-known
that such functions exist only over finite field of odd characteristic. For an example see e.g.
[4]. If k = 2, then f is called almost perfect nonlinear (APN). This is the best that can be
achieved for even characteristic (see e.g. [7]).

When classifying mappings according to the above properties it is common to focus
on the difference properties. The following equivalence relation from [2] is the most com-
mon and general known equivalence relation preserving the difference properties of two
functions f and g.

Definition 1.2 Two mappings f, g from Fn to itself are called Carlet-Charpin-Zinoviev-
equivalent (CCZ-equivalent) if for some affine permutation L of F2

n the graph L(�f ) is
equal to �h, where the graph is defined as �M := {(x, f (x))|x ∈ Fn} for a mapping M .

For power mappings we have the following simplification by Dempwolff [5].

Theorem 1.3 Let Fn be a finite field of characteristic p and xk and xl be power functions
on Fn. Then xk and xl are CCZ-equivalent, if and only if there exists a positive integer
0 ≤ m < n, such that l = pmk mod (pn − 1) or kl = pm mod (pn − 1).

Remark 1.2 It is well-known that a power mapping xd is a permutation over Fn iff
gcd(d, pn −1) = 1. The inverse is given by xd−1

, where d−1 is s.t. d−1 ·d = 1 mod pn −1.
Note, that the latter condition in the above theorem means that xpn−mk and xl are inverse to
each other. Moreover the theorem states that if xd is a permutation with inverse xd−1

then
these mappings have the same difference properties.

The following lemma is well-known (see e.g. [7])
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Lemma 1.4 For a power mapping xd over Fn the difference spectrum is completely

determined by considering �d,1

(
x − 1

2

)
= a, a ∈ Fn.

Classifying mappings of low uniformity up to CCZ-equivalence is of interest in cryp-
tography since differential and linear cryptanalysis exploit weaknesses of the uniformity
of the functions which are used in AES and many other block ciphers. Helleseth, Rong
and Sandberg conducted extensive computer search in the 90s to classify k-uniform power
mappings. These numerical results are well-known as the Helleseth-Rong-Sandberg tables
(H-R-S tables). Several inifinite families of mappings have been discovered since then and
their uniformity determined in a series of papers thereby explaining some of these entries
(see e.g. [7, 9, 10, 14, 15]).

For applications in cryptography, one would like to employ mappings f for which Uf

is as small as possible. The proprietary hash function Curl employed in the cryptocurrency
IOTA for example makes use of ternary S-Boxes and is vulnerable to differential cryptanal-
ysis. After being broken the IOTA foundation developed in cooporation with Cybercrypt the
ternary hash function Troika as its substitute and initiated a crypto challenge over 200.000
e. As the foundation is currently developing new computer chips built around base-3 logic,
mappings with low uniformity over F3n have become cryptographically relevant (see [11]).
In this context research on bijective power mappings with low uniformity over Fn and F3n

in particular is of interest as they can be also employed in SPN- or stream ciphers. As men-
tioned before planar functions have the lowest possible uniformity of one and therefore
cannot be bijective. Thus bijective mappings have necessarily a uniformity of at least two.
That these can be still cryptograhically strong is well demonstrated for characteristic 2 by
the block cipher AES.

1.1 Our contribution

In this paper we contribute to this development and give a family of power mappings xdn

with low uniformity over Fn, which is bijective for p ≡ 3 mod 4 and n odd. In case of
p = 3 we get a bijective family xdn of uniformity Udn ≤ 4, where the family xd−1

n of
inverses has a very simple description and is thus of particular interest for this new direction
in cryptography. As a side result we will get that the mapping xdn, dn = pn−1

2 +2 is bijective
for p ≡ 3 mod 4 and n odd. Its uniformity was computed in [10].

1.2 Organization

This paper is organized as follows. In the next section we will introduce our results. Then we
will give the mathematical background required for the proofs. In Section 4 we will intro-
duce the multivariate method from [8] and compute the uniformity as well as the bijectivity
in several subsections. In the final section we will discuss further research.

2 New powermappings of low uniformity

In this paper, we prove the following theorems.

Theorem 2.1 Let xdn, dn = pn−1
2 + p

n+1
2 + 1 be a power function from Fn to Fn, p �= 3

an odd prime and n odd. Then

Cryptography and Communications (2020) 12: 41– 578 8 843



1. xdn is a permutation for p ≡ 3 mod 4.
2. Udn = 3, if p ≡ 1 mod 4 and either p �= 17 or n > 1,
3. Udn = 2, if p = 17 and n = 1,
4. Udn ∈ {4, 6} otherwise.

Remark 2.1 Since pn−1
2 is even for p ≡ 1 mod 4 the exponent dn is even and thus xdn =

(−x)dn . Therefore xdn cannot be a permutation in this case.

For p = 3 we have

Theorem 2.2 The family xdn, dn = 3n−1
2 + 3

n+1
2 + 1 is bijective with inverse xd ′

n , where

d ′
n =

⎧
⎨

⎩

3
n+1
2 −1
2 , n ≡ 1 mod 4

3n−1
2 + 3

n+1
2 −1
2 , n ≡ 3 mod 4

and Udn = Ud ′
n

∈ {3, 4} for n > 1.
It is Udn = 3 for n = 1.

The uniformity for p = 5 in theorem 2.1 and for the family in theorem 2.2 was already
proven in [8], whereas the explicit and simple description of the family of inverses in the-
orem 2.2 is new. Note that swapping n ≡ 1 mod 4 and n ≡ 3 mod 4 in the definition
of d ′

n gives the mapping introduced in [7] proven to be APN in [14]. This mapping is no
longer bijective. Statement 4 of theorem 2.1 cannot be narrowed in general and this theorem
explains the following open entries in the H-R-S tables as Table 1 shows.

d in Table 1 is the cyclotomic cosetleader defined as

min
(
{d · pi mod (pn − 1)|0 ≤ i ≤ n − 1}

)
.

As this family explains open entries in the H-R-S table it is not CCZ-equivalent to known
ones. It can also be seen as a generalization for odd n of the family xdn, dn = pn−1

2 + 2
treated in [10]. Therefore it is not surprising that we will also prove the following theorem

Theorem 2.3 The family of power mappings xdn, dn = pn−1
2 + 2 is bijective for p ≡

3 mod 4 and n odd.

It was shown in [10] that its uniformity is 4.

Table 1 Open cases

p n d uniformity H-R-S entry

7 1 5 4 no H-R-S table

7 3 179 4 open H-R-S entry

7 5 8453 6 no H-R-S table

7 7 412115 6 no H-R-S table

11 1 7 2 no H-R-S table

11 3 677 4 open H-R-S entry

11 5 80647 6 no H-R-S table
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In [8] it was shown that the family from theorem 2.2 is not CCZ-equivalent to known
ones.

3 Preliminaries

The univariate polynomial ring over a finite field is denoted by Fn[x]. The polynomial ring
in two variables x, y over Fn is denoted by Fn[x, y]. We will need the following facts about
quadratic characters. A detailed treatment on the theory of characters can be found in [12]
or [13].

The quadratic character over Fn is the mapping χpn : Fn → {−1, 0, 1} ⊂ C which can

be by common abuse of language represented by the power mapping χpn(x) = x
pn−1

2 . This
mapping has the following properties

χpn(α) =
⎧
⎨

⎩

0, if α = 0,
1, iff x2 − α = 0 has a solution in F×

n ,

−1 otherwise.

The following two propositions play a central role in this paper.

Proposition 3.1 1. We have χpn(−1) = 1 iff pn−1
2 is even.

2. If n is odd then χpn(−1) = 1 iff p ≡ 1 mod 4.
3. χpn(a · b) = χpn(a)χpn(b) for all a, b ∈ Fn.

If p is clear from the context we will just write χn.

Proposition 3.2 If the equation xp−1 = a, a ∈ F
×
n has a p − 1-th root α over Fn then it

has exactly p − 1 roots. These are given by ωiα, i = 0, . . . , p − 2, ω a primitive element
of Fp× .

Proof As a �= 0 the same is true for the solution α. Obviously ωiα, i = 0, . . . , p − 2
are p − 1 pairwise different solutions of xp−1 = a or xp−1 − a = 0 respectively. As a
polynomial of degree p − 1 has at most p − 1 zeros the assertion follows.

The Weil estimate (see [13], p. 225, [1], p. 183) on character sums given in the next
theorem is particularly useful to prove that certain character sums are non-zero, which are
often encountered when computing the uniformity of power mappings.

Theorem 3.3 Let f (x) ∈ Fn[x] be a polynomial with m distinct zeros in its splitting field,
which is not a square of another polynomial, then

∣
∣∣∣
∣∣

∑

α∈Fn

χn(f (α))

∣
∣∣∣
∣∣
≤ (m − 1)

√
pn.

If f (x) has degree 2 it is ∣
∣∣∣
∣∣

∑

α∈Fn

χn(f (α))

∣
∣∣∣
∣∣
≤ 1.
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With T rn we denote the trace function from Fn onto Fp , which is given by

T rn(x) = xpn−1 + · · · + xp + x.

The trace is linear and its kernel, which will be of interest here, has been parametrized by
Hilbert in its famous theorem Hilbert 90 which is given below.

Theorem 3.4 It is T rn(γ ) = 0 iff γ = αp − α, α ∈ Fn.

Remark 3.1 Note that the mapping xp − x is p−to−1 over Fn, because it is linear with
kernel Fp.

The proof based on the multivariate method requires to determine the zeros of multivari-
ate equations in two unknowns which explains its name. Systematic methods for solving
such equations are given in e.g. classical elimination theory. An important algebraic tool in
this theory is the well-known resultant of f (x, y) and g(x, y), f, g ∈ Fn[x, y] with respect
to y, which we denote by res(f, g, y). We will make use of the next proposition which
states how the resultant can be used for determining the solutions of a system of polynomial
equations.

Proposition 3.5 Given f (x, y), g(x, y) ∈ Fn[x, y] \ {0}.
1. res(f, g, y) ∈ Fn[x].
2. There are polynomials p, q ∈ Fn[x, y] such that

pf + qg = res(f, g, y)

and therefore the system of equations

f (x, y) = 0
g(x, y) = 0

has a solution (α, β) over a proper field extension only if res(f, g, y)(α) = 0.

For further reading on the resultant and elimination theory we refer to [3].

4 Themultivariate method: Proof of Theorem 2.1

In this section we prove theorem 2.1 and thereby giving a simple and self-contained
introduction to the multivariate method.

4.1 Themultivariate representation

Recall that by theorem 1.3 and lemma 1.4 we can restrict to consider

�dn,1

(
x − 1

2

)
= a.

The first step is to express this equation as a system of multivariate equations.

To this end we denote the conjugation (Galois automorphism) x 	→ xp
n+1
2 by x∗ and set

y := x∗. Then it is
y∗ = xp
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over Fn and

y = x

over Fp . The latter property will be very useful later. Analogously we set a∗ = b.
We get

xdn = χn(x)yx

and the �-mapping can be represented by

F1 : χn

(
x + 1

2

) (
y + 1

2

) (
x + 1

2

)
− χn

(
x − 1

2

)(
y − 1

2

)(
x − 1

2

)
= a. (1)

By conjugation of F1 with ∗ we get

F2 : χn

(
x + 1

2

)(
y + 1

2

)(
xp + 1

2

)
− χn

(
x − 1

2

)(
y − 1

2

)(
xp − 1

2

)
= b (2)

as χn

(
x ± 1

2

)∗ = χn

(
x ± 1

2

)
.

We make a case distinction according to the 4 possible values of χn(x + 1
2 ), χn(x − 1

2 )

to get the sought for representation.

Case 1: χn

(
x − 1

2

)
= 1, χn

(
x + 1

2

)
= 1

F11 : x + y − a = 0 (3)

F12 : xp + y − b = 0

Case 2: χn

(
x − 1

2

)
= −1, χn

(
x + 1

2

)
= 1

F21 : xy − 1

2
a + 1

4
= 0 (4)

F22 : xpy − 1

2
b + 1

4
= 0

Case 3: χn

(
x − 1

2

)
= 1, χn

(
x + 1

2

)
= −1

F31 : xy + 1

2
a + 1

4
= 0 (5)

F32 : xpy + 1

2
b + 1

4
= 0

Case 4: χn

(
x − 1

2

)
= −1, χn

(
x + 1

2

)
= −1

F41 : x + y + a = 0 (6)

F42 : xp + y + b = 0

The above case distinction does not capture the cases x = ± 1
2 as χn

(
1
2 − 1

2

)
=

χn

(
− 1

2 + 1
2

)
= 0. We have

χn

(
1

2
+ 1

2

)(
1

2
+ 1

2

)(
1

2
+ 1

2

)
−χn

(
1

2
− 1

2

)(
1

2
− 1

2

)(
1

2
− 1

2

)
=χn(1)·1=1

(7)
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and

χn

(
−1

2
+ 1

2

) (
−1

2
+ 1

2

)(
−1

2
+ 1

2

)
− (8)

χn

(
−1

2
− 1

2

)(
−1

2
− 1

2

)(
−1

2
− 1

2

)
= −χn(−1) = ±1.

by proposition 3.1. This gives the exceptional cases a = ±1. We will see that
a = ± 1

2 will lead to exceptional cases as well. These lie all in the base field Fp .
From now on we assume a ∈ Fn \ Fp and treat a ∈ Fp in Section 4.4.

The principle of the multivariate method is now to compute the solutions of Fi1, Fi2, i =
1, . . . , 4 with elementary elimination theory. Thereby we are only interested in solutions of
the form (α, α∗). We call Fi1, Fi2, i = 1, . . . , 4 fundamental equations and the above solu-
tions suitable in the sequel as exactly these yield solutions of �dn,1(x − 1

2 ) = a when the
corresponding character condition is fulfilled. In this case the solution is called an actual
solution. It will turn out that identifying suitable solutions for this type of power mappings
can be done by uniform techniques and usually gives a tight upper bound on the uniformity.
This makes the multivariate method to a powerful universal tool to study the uniformity. The
problem of determining if the corresponding character condition is fulfilled for a suitable
solution, i.e. if it is an actual solution, is much harder in general. The corresponding under-
lying mathematical problem to do so is easier described by the notion of a suitable solution
as we will see. This explains why we distinguish between these types of solutions (see also
Section 5).

One possibility to determine suitable solutions is to compute the resultant
res(Fi,1, Fi,2, y) (by abuse of language) of the left hand side of the fundamental equations
with respect to y. This can be seen as follows.

By proposition 3.5 the equation �dn,1(x − 1
2 ) = a has a suitable solution α only if

α is a zero of one of the above res(Fi,1, Fi,2, y). Then one shows which of the zeros α

yield suitable solutions. Moreover as long as we do not encounter an exceptional case for
the quadratic character any solution belongs exactly to one of the four cases. Therefore
the above resultants are called fundamental polynomials. In general the resultant can be
computed very easily with the help of computer algebra systems like magma.

Note that all suitable solutions (α, α∗) of Fi1, Fi2, when considered as a system of mul-
tivariate equations yield a zero α of the resultant but not the other way around. There might
exist zeros α of the resultant which do not extend to solutions of Fi1, Fi2 at all. All other
zeros α extend to a solution (α, β) of Fi1, Fi2 but β is not necessarily equal to α∗. There-
fore not all zeros of res(Fi,1, Fi,2, y) yield suitable solutions and not all suitable solutions
result in actual solutions. In principle any univariate polynomial φi(x) with φi(α) = 0 for
all actual solutions (α, α∗) of Fi1 can be employed in the multivariate method. Therefore
we call φi(x) a fundamental polynomial in the sequel. Here we compute such a φi(x) by
hand e.g.

φ1(x) = F12 − F11 and φ2(x) =
⎛

⎝ 1
(
− 1

2a + 1
4

)
(
xp−1 · F21 − F22

)
⎞

⎠ .

The latter computation is defined as long as a �= 1
2 , which we excluded. The exceptional

case a = − 1
2 comes into play by computing φ3 in the same vein. We get
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Case 1: χn

(
x − 1

2

)
= 1, χn

(
x + 1

2

)
= 1

φ1(x) := xp − x + a − b (9)

Case 2: χn

(
x − 1

2

)
= −1, χn

(
x + 1

2

)
= 1

φ2(x) :=
(

xp−1 − b − 1
2

a − 1
2

)

, a �= 1

2
(10)

Case 3: χn

(
x − 1

2

)
= 1, χn

(
x + 1

2

)
= −1

φ3(x) :=
(

xp−1 − b + 1
2

a + 1
2

)

, a �= −1

2
(11)

Case 4: χn

(
x − 1

2

)
= −1, χn

(
x + 1

2

)
= −1

φ4(x) := xp − x − a + b (12)

4.2 The contribution of φ1 and φ4, a ∈ Fn \ Fp

By 3.4 and remark 3.1 the fundamental polynomials φ1(x), φ4(x) split over Fn as
T rn(±(b − a)) = 0 and the zeros of φ1 and φ4 can be represented as

α + β and − (α + β) respectively,

where φ1(α) = 0 and β ∈ Fp . We will show that φ1 contributes exactly one suitable
solution. To do so we prove at first that φ1 contributes at most one suitable solution. Assume
the contrary. Then there exist β1, β2 ∈ Fp with

α + β1 + α∗ + β∗
1 = a

and
α + β2 + α∗ + β∗

2 = a.

Subtracting both equations gives

β1 − β2 + (β1 − β2)
∗ = 0.

As β1 − β2 ∈ Fp it is (β1 − β2)
∗ = (β1 − β2). Consequently

β1 − β2 + (β1 − β2)
∗ = 2 · (β1 − β2) = 0.

It follows β1 − β2 = 0 and thus β1 = β2, which contradicts our assumption.
Now consider the linear mapping L : x 	→ x + x∗ over Fn. Any element α in the

preimage of L−1(a), a ∈ Fpn \ Fp yields a suitable solution of x + y = x + x∗ = a and
vice versa. It follows that #L−1(a) ≤ 1. Moreover the mapping is equal to 2x over Fp as
in this case x∗ = x.. Thus the mapping is injective over the whole field Fn and therefore L

is a permutation. From this it follows that φ1 contributes exactly one suitable solution (over
the whole field Fn).

A direct consequence is that the fundamental (6) has exactly one suitable solution as
well, which is equal to − (α + β) where α + β denotes the suitable solution of (3). We have

χn

(
−x − 1

2

)
= χn(−1)χn

(
x + 1

2

)
and χn

(
−x + 1

2

)
= χn(−1)χn

(
x − 1

2

)
.

From this it follows together with proposition 3.1 and the fact that the suitable solutions of
(3) and (6) differ by a sign:
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1. If p ≡ 3 mod 4 then for all a ∈ Fn \ Fp there exists exactly one α + β0, β0 ∈ Fp of
φ1(x), which yields a suitable solution of the fundamental (3) and the corresponding
− (α + β0) extends to the only suitable solution of the fundamental (6).

Moreover it is χn(−1) = −1 and therefore α + β0,− (α + β0) yield 2 actual
solutions iff χn(α + β0 − 1

2 ) = χn(α + β0 + 1
2 ) = 1 and 0 otherwise.

2. If p ≡ 1 mod 4 then for all a ∈ Fn \ Fp there exists exactly one zero α + β0 of
φ1(x), which yields a suitable solution of the fundamental (3) and the corresponding
− (α + β0) extends to the only suitable solution of the fundamental (6).

Here χn(−1) = 1 and therefore either α + β0 or − (α + β0) yields to 1 actual
solution iff either χn(α + β0 − 1

2 ) = χn(α + β0 + 1
2 ) = 1 or χn(α + β0 − 1

2 ) =
χn(α + β0 + 1

2 ) = −1 and 0 otherwise.

4.3 The contribution of φ2 and φ3, a ∈ Fn \ Fp

We have that p
n+1
2 − 1 is always divisible by p − 1 which follows directly from the general

identity pl − 1 = (p − 1)
∑l−1

i=0 pi, l ∈ N. Therefore for a ∈ Fn

(
a − 1

2

) p
n+1
2 −1

p−1

is a (p − 1)-th root of
b− 1

2

a− 1
2
. By proposition 3.2 φ2 splits over Fn as follows

φ2(x) =
⎛

⎜
⎝x − ω0

(
a − 1

2

) p
n+1
2 −1

p−1

⎞

⎟
⎠ · · · · ·

⎛

⎜
⎝x − ωp−2

(
a − 1

2

) p
n+1
2 −1

p−1

⎞

⎟
⎠ , ω ∈ F

×
p . (13)

Analogously we have

φ3(x) =
⎛

⎜
⎝x − ω0

(
a + 1

2

) p
n+1
2 −1

p−1

⎞

⎟
⎠ · · · · ·

⎛

⎜
⎝x − ωp−2

(
a + 1

2

) p
n+1
2 −1

p−1

⎞

⎟
⎠ , ω ∈ F

×
p . (14)

Plugging ωi
(
a − 1

2

) p
n+1
2 −1

p−1
into the left hand side of the fundamental (4) and making use

of xy = x2 over Fp gives

ω2i
(

a − 1

2

) p
n+1
2 −1

p−1 ·
(

p
n+1
2 +1

)

= ω2i
(

a − 1

2

) (p−1)·pn+pn−1
p−1

= ω2i
(

a − 1

2

)(
a − 1

2

) pn−1
p−1 = ω2i

(
a − 1

2

) pn−1
p−1

(
a − 1

2

)
. (15)

Thus fundamental (4) is fulfilled iff ω2i
(
a − 1

2

) pn−1
p−1 = 1

2 i.e.

ω2i = 1

2

(
a − 1

2

)− pn−1
p−1

, (16)
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for a proper chosen 0 ≤ i ≤ p − 2 as by assumption
(
a − 1

2

)
�= 0. We have

((
a − 1

2

)− pn−1
p−1

)p−1

= 1 and conclude that the right hand side of (16) lies in Fp . Since

the quadratic character is a homomorphism with respect to multiplication (see proposition

3.1) and pn−1
p−1 = ∑n−1

j=0 pj is odd we get χn

((
a − 1

2

) pn−1
p−1

)

= χn(a − 1
2 ). Therefore such

an i exists iff χn

(
1
2

(
a − 1

2

))
= 1 as ω2i runs through all squares in Fp for 0 ≤ i ≤ p − 2.

Moreover since x2 is 2-to-1 over Fp (16) has exactly two solutions. These are denoted by
±ωin . It follows that the possible suitable solutions of the fundamental (4) are

± ωin

(
a − 1

2

) p
n+1
2 −1

p−1

(17)

Analogously one shows that the fundamental (5) has two suitable solutions iff

χn

(
− 1

2

(
a + 1

2

))
= 1. In this case the two suitable solutions of the fundamental (5) are

± ωin

(
a + 1

2

) p
n+1
2 −1

p−1

, (18)

where in ∈ {0, . . . , p − 2} is s.t.

ω2in =
(

−1

2

)(
a + 1

2

)− pn−1
p−1

.

Recall that χn

(
−x − 1

2

)
= χn(−1)χn

(
x + 1

2

)
and χn

(
−x + 1

2

)
= χn(−1)χn

(
x − 1

2

)
.

Thus we get in dependence of p mod 4 :
1. If p ≡ 3 mod 4 then the fundamental (4) has exactly two suitable solutions iff

χn

(
1
2

(
a − 1

2

))
= 1.

We have χn(−1) = −1 and therefore the suitable solutions yield actual solutions iff
additionally the character condition is fulfilled for one and thus both solutions given in
(17) and 0 actual solutions otherwise.

Analogously one gets that the fundamental (5) has 2 actual solutions iff

χn

(
− 1

2

(
a + 1

2

))
= 1 and the character condition is fulfilled for one and thus both of

the 2 solutions given in (18) and 0 otherwise.
2. If p ≡ 1 mod 4 then the fundamental (4) has two suitable solutions iff

χn

(
1
2

(
a − 1

2

))
= 1 as in the other case.

We have χn(−1) = 1 and therefore at most one of the two suitable solutions given
in (17) fulfills the character condition.

Thus (4) has exactly 1 actual solution iff χn

(
1
2

(
a − 1

2

))
= 1 and the character

condition is fulfilled for one of the two suitable solutions given in (17) and 0 solutions
otherwise.

Analogously one gets that (5) has exactly 1 actual solution iff χn

(
− 1

2

(
a + 1

2

))
= 1

and the character condition is fulfilled for one of the two possible zeros given in (18)
and 0 solutions otherwise.
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4.4 Exceptions a ∈ Fp

Over the base field Fp it is b = a. Applying the multivariate method by taking this into
account yields

Case 1: χ(x − 1
2 ) = 1, χ(x + 1

2 ) = 1

F11 : x + y − a = 0 (19)

F12 : xp + y − a = 0 (20)

Case 2: χ(x − 1
2 ) = −1, χ(x + 1

2 ) = 1

F21 : xy − 1

2
a + 1

4
= 0 (21)

F22 : xpy − 1

2
a + 1

4
= 0

Case 3: χ(x − 1
2 ) = 1, χ(x + 1

2 ) = −1

F31 : xy + 1

2
a + 1

4
= 0 (22)

F32 : xpy + 1

2
a + 1

4
= 0

Case 4: χ
(
x − 1

2

)
= −1, χ

(
x + 1

2

)
= −1

F41 : x + y + a = 0 (23)

F42 : xp + y + a = 0

We get
φ1(x) = φ4(x) = xp − x,

φ2(x) = xp−1F21 − F22 = −1

2
a + 1

4

(
xp−1 − 1

)

and

φ3(x) = xp−1F31 − F32 = 1

2
a + 1

4

(
xp−1 − 1

)
.

Obviously all zeros of φ1, . . . , φ4 lie in Fp . Note that for a = ±1 we enter the exceptional
cases for the character conditions treated in (7) and (8). We conclude that if a ∈ Fp then the
preimage

�1,dn

(
x − 1

2

)−1

(a) ⊂ Fp .

Thus we can restrict to consider xdn over Fp. As xdn = χ1(x)x2 over Fp we can apply
theorem 3 and the remark on p. 368 of [10], which together state that

Udn =
⎧
⎨

⎩

4, if p ≡ 3 mod 4 and p �= 3,
3, if p ≡ 1 mod 4 and either p �= 17 or n > 1,
2, if p = 17.

over the base fields.

4.5 Combining all results

From what we have proven so far we get:
If p ≡ 3 mod 4 then
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1. if a ∈ Fn \ Fp then �1,dn(x − 1
2 ) = a has either 0 or 2 actual solutions coming from

the fundamental (3) and (6).
2. if a ∈ Fn \ Fp it has 0, 2 or 4 actual solutions from the fundamental (4) and (5).
3. if a ∈ Fp, p �= 3 then �1,dn(x − 1

2 ) = a has at most 4 actual solutions and the value 4
is assumed.

It follows that Udn ∈ {4, 6} for p �= 3.
If p ≡ 1 mod 4 then

1. if a ∈ Fn \ Fp then �1,dn(x − 1
2 ) = a has 0 or 1 actual solution from the fundamental

(3) and (6).
2. if a ∈ Fn \ Fp it has 0, 1 or 2 actual solutions from (4) and (5).
3. if a ∈ Fp then �1,dn(x − 1

2 ) = a has at most 3 actual solutions if either p �= 17 or
n > 1 and the value 3 is assumed in these cases.

4. if a ∈ Fp, p = 17 then �1,dn(x − 1
2 ) = a has at most 2 actual solutions and the value

2 is assumed.

It follows that Udn = 2 if p = 17 and n = 1 and Udn = 3 otherwise. This ends the proof of
the uniformity part of theorem 2.1.

4.6 Proof of the permutation property for p ≡ 3 mod 4 and Theorem 2.3

By remark 1.2 the mapping xdn, dn = pn−1
2 +p

n+1
2 +1 is a permutation iff gcd(dn, p

n−1) =
1, which is what we will show now.

As pn−1
2 is odd also dn odd. Thus any element dividing dn and pn−1 is odd and therefore

divides pn−1
2 . Hence it also divides dn − pn−1

2 = p
n+1
2 + 1. It follows that

gcd(dn, p
n − 1) = gcd

(
p

n+1
2 + 1,

pn − 1

2

)
=

gcd
(
p

n+1
2 + 1, pn − 1

)

2
. (24)

We will show that gcd
(
p

n+1
2 + 1, pn − 1

)
equals 2. From this the assertion follows.

Multiplying p
n+1
2 + 1 by p

n−1
2 − 1 and subtracting p(pn − 1) gives −p + 1. Therefore

the above gcd divides p − 1. It is

p
n+1
2 + 1 = p

n+1
2 − 1 + 2 = (p − 1)

n−1
2∑

i=0

pi + 2.

As the gcd divides p − 1 it also divides (p − 1)
∑ n−1

2
i=0 pi and consequently the difference

(p − 1)

n−1
2∑

i=0

pi + 2 − (p − 1)

n−1
2∑

i=0

pi = 2.

Thus gcd(p
n+1
2 +1, pn−1) = 2 and from the identity given in (24) the permutation property

follows.
In the same vein Theorem 2.3 is proved.
This ends the proof of the Theorem 2.1 and Theorem 2.3.
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4.7 Proof of Theorem 2.2

4.7.1 Proof of the permutation property

At first we will show that xd ′
n , where

d ′
n =

⎧
⎨

⎩

3
n+1
2 −1
2 , n ≡ 1 mod 4

3n−1
2 + 3

n+1
2 −1
2 , n ≡ 3 mod 4

is the inverse of xdn . We will prove the case n ≡ 3 mod 4 by showing that dn · d ′
n =

1 mod 3n − 1. From this the assertion follows for this case. We have

3
n+1
2 − 1

2
=

n−1
2∑

i=0

3i ,

which is even as n−1
2 is odd for n ≡ 3 mod 4. Therefore d ′

n is odd.
We have

dn · d ′
n =

(
3n−1
2

) (
3n−1
2 + 3

n+1
2 −1
2

)
+

(
3

n+1
2 + 1

)(
3n−1
2 + 3

n+1
2 −1
2

)
mod 3n − 1.

As d ′
n is odd it is x

3n−1
2 d ′

n = χn(x)d
′
n = χn(x). We get that

3n − 1

2
d ′
n = 3n − 1

2
mod 3n − 1.

The second term of the sum is equal to

(
3

n+1
2 + 1

)(
3n − 1

2

)
+ 1 + 3n − 1

2
mod 3n − 1. (25)

We have that 3
n+1
2 + 1 is even and therefore

x

(
3

n+1
2 +1

)(
3n−1
2

)

= χn (x)3
n+1
2 +1 = 1 = x0

over F×
n . Thus (25) simplifies to 1+ 3n−1

2 mod 3n − 1. The addition of both simplifications
gives

dn · d ′
n = 1 + 3n − 1

2
+ 3n − 1

2
= 1 mod 3n − 1

as requested.
The case n ≡ 1 mod 4 is proven analogously.

4.7.2 Proof of 3 ≤ Udn ≤ 4

A direct computation shows that the Ud1 = 3.
The proof for n > 1 is exactly as in the general case. Therefore we restrict to prove that

φ2 and φ3 never contribute a suitable solution at the same time. Then from what we have
proven in Sections 4.3 and 4.4 adapted to p = 3 it follows that 3 ≤ Udn ≤ 4.
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In the case p = 3 the zeros of φ2 and φ3 are the roots

± (a + 1)
3

n+1
2 −1
2

and

± (a − 1)
3

n+1
2 −1
2 .

From Section 4.3 we get that the two roots of φ2(x) yield suitable solutions of fundamental
(4) only if χ(−a−1) = 1 which simplifies to χ(a+1) = −1 since χ(−1) = −1. Moreover
the suitable solutions fulfill the character condition χ(x + 1) = −1, χ(x − 1) = 1 only if

χn

((

± (a + 1)
3

n+1
2 −1
2 + 1

)

·
(

± (a + 1)
3

n+1
2 −1
2 − 1

))

=

χn

(
b + 1

a + 1
− 1

)
= χn

(
b − a

a + 1

)
= −1.

Therefore φ2 contributes two actual solutions only if χn(b − a) = 1. Similarly one shows,

that φ3 contributes two actual solutions only if χn(a − 1) = 1 and χn

(
b−a
a−1

)
= −1, which

leads to χn(b − a) = −1. We conclude that φ2 and φ3 never contribute actual solutions at
the same time as long as a �= ±1. This case is covered by the above direct computation as
again we have that �dn,1(x − 1

2 )
−1(a) ⊂ F3 for a ∈ F3. As the mapping has uniformity 3

over F3 it follows that Udn ∈ {3, 4}. This proves the corollary.
A question arising is if we are able to compute the exact uniformity for n > 1. In [8] it

was shown that from what we have proven so far we get that Udn = 4 for F3n , n > 1 iff the
following character sum is non-zero.

1

25
∑

α∈Fn

(1 + χn(α + 1))(1 + χn(α − 1))(1 − χn(α)) ·
⎛

⎜
⎝1 + χn

⎛

⎜
⎝

(
α + α3

n+1
2 + 1

) 3
n+1
2 −1
2 − 1

⎞

⎟
⎠

⎞

⎟
⎠ · (26)

⎛

⎜
⎝1 − χn

⎛

⎜
⎝

(
α + α3

n+1
2 + 1

) 3
n+1
2 −1
2 + 1

⎞

⎟
⎠

⎞

⎟
⎠

Standard techniques to prove that such a character sum is non-zero make use of the
Weil bound (see theorem 3.3). This bound is useless as the degree of the conjugation x 	→
x3

n+1
2 is to high. It is an open problem how to evaluate such kind of character sums. It is

conjectured that this sum is non-zero.

5 Further research

In this paper we gave a general family of low uniformity which is bijective for p ≡ 3 mod 4.
If p = 3 the family has uniformity of at most 4 and its inverse family has a simple and closed
description. To compute the uniformity we made use of the multivariate method and showed
that it is a universal tool to do so. The advantage of this approach is that it yields concrete

paramterizations for the solutions of �dn,1

(
x − 1

2

)
= a. This is particularly useful if one

Cryptography and Communications (2020) 12: 41– 578 8 855



wants to compute the cross-correlation. An example is the proof given in [6] for ternary
decimations of Welch and Niho type. Many families of low uniformity can be represented

as in this paper by power mappings, where a conjugation of the form p
n+1
2 or p

n
2 is involved

as well as the quadratic character χpn . Computing good upper bounds the uniformity by
the multivariate method is often an almost routine matter whereas determining the exact
uniformity leads to the problem of showing that a character sum as given in (26) is nonzero.
Standard techniques to do so make use of the Weil bound. This is very often not applicable
for the character sums arising from that kind of power mappings. An approach to show that
such kind of character sums are non-zero would be an enormous step forward in the theory
of computing the uniformity of power mappings in odd characteristic. Another approach to
compute the exact uniformity for the mappings given in theorem 2.2 could be to analyze if
the technique to treat the �-mapping in the proof given in [6] for the ternary decimations of
Welch and Niho type can be adapted. This proof made extensively use of the fact that these
decimations yield permutations xdn with a simple description for the inverse.

For applications in cryptography it is also of interest to analyze if the mappings presented
here are strong against linear cryptanalysis and related attacks when employed in a block-
or stream cipher. To compute the cross-correlation would be a fruitful next step in this
direction.
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