Skip to main content
Log in

Experimental and numerical analysis for optimal design parameters of a falling film evaporator

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Present study exhibits an experimental examination of mass transfer coefficient and evaporative effectiveness of a falling film evaporator. Further, a statistical replica is extended in order to have optimal controlling parameters viz. non-dimensional enthalpy potential, film Reynolds number of cooling water, Reynolds number of air and relative humidity of up-streaming air. The models not only give an optimal solution but also help in establishing a correlation among controlling parameters. In this context, response surface methodology is employed by aid of design of experiment approach. Later, the response surface curves are studied using ANOVA. Finally, the relations established are confirmed experimentally to validate the models. The relations thus established are beneficent in furtherance of designing evaporators. Additionally, the present study is among the first attempts to reveal the effect of humidity on the performance of falling film evaporator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abraham R and Mani A 2014 Experimental studies on thermal spray-coated horizontal tubes for falling film evaporation in multi-effect desalination system. Desalination Water Treatment (ahead-of-print): 1–12

  2. Bustamante J G 2014 Falling-film evaporation over horizontal rectangular tubes

  3. Christians M and Thome J R 2012 Falling film evaporation on enhanced tubes, part 1: Experimental results for pool boiling, onset-of-dryout and falling film evaporation. Int. J. Refrigeration 35(2): 300–312

    Article  Google Scholar 

  4. Chyu M-C and Bergles A 1987 An analytical and experimental study of falling-film evaporation on a horizontal tube. J. Heat Transfer 109(4): 983–990

    Article  Google Scholar 

  5. Fernández-Seara J and Pardiñas Á Á 2014 Refrigerant falling film evaporation review: Description, fluid dynamics and heat transfer. Appl. Therm. Eng. 64(1): 155–171

    Article  Google Scholar 

  6. Gonda A, Lancereau P et al 2014 Water falling film evaporation on a corrugated plate. Int. J. Therm. Sci. 81: 29–37

    Article  Google Scholar 

  7. Gong L, Shen S et al 2015 Three-dimensional heat transfer coefficient distributions in a large horizontal-tube falling film evaporator. Desalination 357: 104–116

    Article  Google Scholar 

  8. Monnier H, Portha J-F et al 2012 Intensification of heat transfer during evaporation of a falling liquid film in vertical microchannels—Experimental investigations. Chem. Eng. Sci. 75: 152–166

    Article  Google Scholar 

  9. Ribatski G and Jacobi A M 2005 Falling-film evaporation on horizontal tubes—A critical review. Int. J. Refrigeration 28(5): 635–653

    Article  Google Scholar 

  10. Sharma S, Rangaiah G et al 2012. Multi-objective optimization using MS Excel with an application to design of a falling-film evaporator system. Food Bioproducts Process. 90(2): 123–134

    Article  Google Scholar 

  11. van Rooyen E and Thome J 2014 Flow boiling data and prediction method for enhanced boiling tubes and tube bundles with R-134a and R-236fa including a comparison with falling film evaporation. Int. J. Refrigeration 41: 60–71

    Article  Google Scholar 

  12. Yang L, Xu Z et al 2014 Characterization of the microscopic mechanics in falling film evaporation outside a horizontal tube. Desalination Water Treatment (ahead-of-print): 1–6.

  13. Zeng X, Quek C X et al 2014 Falling film evaporation characteristics of microalgae suspension for biofuel production. Appl. Therm. Eng. 62(2): 341–350

    Article  Google Scholar 

  14. Yang L and Shen S 2008. Experimental study of falling film evaporation heat transfer outside horizontal tubes. Desalination 220(1): 654–660

    Article  MathSciNet  Google Scholar 

  15. Myers R H, Montgomery D C et al 2009 Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons

  16. Alhusseini A A, Tuzla K et al 1998 Falling film evaporation of single component liquids. Int. J. Heat Mass Transfer 41(12): 1623–1632

    Article  Google Scholar 

  17. Armbruster R and Mitrovic J 1998 Evaporative cooling of a falling water film on horizontal tubes. Exp. Thermal Fluid Sci. 18(3): 183–194

    Article  Google Scholar 

  18. Weiland P S 1994 National Environmental Policy Act of 1969. U.S.C. 42: 102–105

    Google Scholar 

  19. Kim D and Infante Ferreira C 2009 Flow patterns and heat and mass transfer coefficients of low Reynolds number falling film flows on vertical plates: Effects of a wire screen and an additive. Int. J. Refrigeration 32(1): 138–149

    Article  Google Scholar 

  20. Di Natale F and R Nigro 2012 A critical comparison between local heat and mass transfer coefficients of horizontal cylinders immersed in bubbling fluidised beds. Int. J. Heat Mass Transfer 55(25): 8178–8183

    Article  Google Scholar 

  21. Rana R, Charan V et al 1986 Heat and mass transfer from a horizontal tube of an evaporative heat dissipator. Int. J. Heat Mass Transfer 29(4): 555–562

    Article  Google Scholar 

  22. Prost J, González M et al 2006 Determination and correlation of heat transfer coefficients in a falling film evaporator. J. Food Eng. 73(4): 320–326

    Article  Google Scholar 

  23. Webb R L 1981 The evolution of enhanced surface geometries for nucleate boiling. Heat Transfer Eng. 2(3–4): 46–69

    Article  Google Scholar 

  24. Webb R L and Kim N-H 1994 Principl of enhanced heat transfer, New York, Wiley

    Google Scholar 

  25. Habert M 2009 Falling film evaporation on a tube bundle with plain and enhanced tubes.

  26. Kumar R 2014 Enhancement in evaporative effectiveness of an evaporative tubular heat dissipator using experimental design approach. Heat Transfer—Asian Research

  27. Baldeaux J and Gnewuch M 2014 Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. SIAM J. Numer. Anal. 52(3): 1128–1155

    Article  MathSciNet  MATH  Google Scholar 

  28. Cardinal R N and Aitken M R 2013 ANOVA for the behavioral sciences researcher, Psychology Press

  29. Gu C 2013 Smoothing spline ANOVA models, Springer

  30. Kang E L and Cressie N 2013 Bayesian hierarchical ANOVA of regional climate-change projections from NARCCAP Phase II. Int. J. Appl. Earth Observation Geoinformation 22: 3–15

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the infrastructure and test facility provided by the National Institute of Technology, Kurukshetra, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Kaushal.

Appendices

Nomenclature

EE :

evaporative effectiveness

EP :

enthalpy potential

K :

mass transfer coefficient, kg/m2s

m:

mass flow rate, kg/s

Re :

Reynolds number

t:

temperature, °C

Greek symbols

ϕ:

relative humidity, %

Subscripts

a:

air

av:

average

c:

tube surface

dl:

non-dimensional

h:

hot water

w:

cooling water

1:

inlet

2:

outlet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, R., Kumar, R. & Vats, G. Experimental and numerical analysis for optimal design parameters of a falling film evaporator. Sādhanā 41, 643–652 (2016). https://doi.org/10.1007/s12046-016-0502-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0502-y

Keywords

Navigation