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Abstract
Circular RNAs (circRNAs) are emerging as a novel, yet powerful player in many human diseases. They are involved in several
cellular processes and are becoming a noteworthy type of biomarkers. Among other functions, circRNAs can serve as RNA
sponges or as scaffolds for RNA-binding proteins. Here, we investigated a microarray expression profile of circRNAs in
leukocyte samples from ALS patients and age- and sex-matched healthy controls to identify differentially expressed
circRNAs. We selected 10 of them for a qPCR validation of expression on a larger set of samples, identification of their
associations with clinical parameters, and evaluation of their diagnostic potential. In total, expression of 7/10 circRNAs was
significant in a larger cohort of ALS patients, compared with age- and sex-matched healthy controls. Three of them
(hsa_circ_0023919, hsa_circ_0063411, and hsa_circ_0088036) showed the same regulation as in microarray results. These three
circRNAs also had AUC > 0.95, and sensitivity and specificity for the optimal threshold point > 90%, showing their potential for
using them as diagnostic biomarkers.
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Abbreviations
ALS Amyotrophic lateral sclerosis
ALS-FRS-R ALS functional rating scale revised
AUC Area under the curve
circRNA Circular RNA
FALS Familial ALS
NFL Neurofilament light chain
PBMCs Peripheral blood mononuclear cells
pNFH Phosphorylated neurofilament heavy chain
RBP RNA-binding protein
ROC Receiver operating characteristics

SALS Sporadic ALS
snRNAs Small nucleolar RNAs

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-
erative disease that affects both upper and lower motor
neurons, resulting in muscle atrophy, speech difficulties,
and respiratory insufficiency [1]. The majority of patients
are classified as sporadic (SALS), while 10–15% of pa-
tients have known familial disease history (FALS) [2].
Current diagnosis of ALS is based mainly on clinical ex-
amination and it can take as much as 1 year to establish a
diagnosis after the initial symptoms appeared [3]. Since
patients have a mean life expectancy of 30 months [4],
establishing a diagnosis represents considerable part of
the disease duration. Unfortunately, approximately half of
the patients receive an alternative diagnosis beforehand the
ALS diagnosis [3]. Thus, reliable biomarkers are an abso-
lute necessity for earlier and more accurate diagnosis of
ALS, even more so for the diagnosis of patients with no
genetic mutations or familial background. Several fluid-
based biomarkers have been already proposed (for recent
review on this topic, see [5]). Among them, the most
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promising are two proteins, neurofilament light chain
(NFL) and phosphorylated neurofilament heavy chain
(pNFH), that can be detected by immunoassays in cerebro-
spinal fluid, serum, and plasma [5]. In cases with a muta-
tion in one of ALS-causing genes, diagnosis is confirmed
by genetic testing. These mutations are associated with
approximately 70% of FALS and 15% of SALS cases [2].
Mutated genes can perturb various biochemical pathways
in motor neurons and lead to cell death [6]. The reason for
motor neuron death in other cases remains elusive. Several
epigenetic mechanisms have been already implicated in the
disease development and progression [7]. Among them are
also non-coding RNAs with several distinct groups of
molecules—micro RNAs (miRNAs), long non-coding
RNAs (lncRNAs), and small nucleolar RNAs (snRNAs)
[8]. Circular RNAs (circRNAs) represent yet another class
of non-coding RNAs that lately gained quite some atten-
tion [9–11]. Supposedly arising from back-splicing events
during precursor mRNA processing, circRNAs are resis-
tant to RNA exonucleases and thus highly stable in cells
[12]. Among versatile functions of circRNAs are also
miRNA sponging and RNA-binding protein (RBP) seques-
tration, both linked to gene regulation [13]. In the process
of miRNA-sponging, each circRNA competitively binds
multiple miRNAs and reduces their mRNA silencing po-
tential [14]. Similarly, circRNAs can act as RBP-binding
sites and scaffolds for protein complexes [14]. Moreover,
circRNAs have been already implicated in several neuro-
logical and neurodegenerative diseases, such as glioma
[15–17], Alzheimer’s disease [18], and Parkinson’s disease
[19]. Here, circRNAs acted as miRNA sponges [16, 18,
19] or templates for protein translation [15, 17].

Considering the involvement of miRNAs in the ALS pro-
gression and potential role of circRNAs in their regulation, we
wanted to determine differential expression of selected
circRNAs in patients with SALS and assess their potential
use as novel blood-based biomarkers for disease evaluation.

Materials and Methods

Samples

Patients were diagnosed with ALS at the Institute of Clinical
Neurophysiology, University Medical Centre Ljubljana,
Slovenia. Sixty patients (30 females and 30 males) were in-
cluded in the study, as well as 15 age- and sex-matched
healthy controls. Detailed clinical characteristics are shown
in Table 1. The study was approved by the National Medical
Ethics Committee of Republic of Slovenia and a written in-
formed consent was obtained from all participants.

RNA Extraction

Peripheral blood mononuclear cells (PBMCs) were isolated
from fresh blood using Ficoll density centrifugation (GE
Healthcare, Sweden). Collected cells were stored in Qiazol
reagent (Qiagen, Germany) at − 80 °C. Total RNA was ex-
tracted from collected cells using miRNeasy Mini Kit
(Qiagen, Germany) according to the manufacturer’s instruc-
tions. The concentration and purity of total RNA were mea-
sured with NanoDrop ND-1000 (ThermoFisher, USA).

Table 1 Clinical characteristics of patients and healthy controls

Characteristics Samples Subset for microarray analysis

ALS (n = 60) Healthy controls (n = 15) ALS (n = 12) Healthy controls (n = 8)

Sex (M/F) 30/30 9/6 6/6 4/4

Age (years)a 67 (35–92) 58 (49–73) 61 (45–70) 53 (53–73)

Age at onset (years) 65 (35–92) / 59 (44–70) /

ALS onset (spinal/bulbar/mixed) 45/13/2 / 7/5/0 /

Disease duration (years)b 1.5 (0.0–5.5) / 1.5 (0.5–5.0) /

Survival time (years)c 2.0 (0.5–5.0) n = 27 / 2.0 (1.0–5.0) n = 9 /

Level of functional impairmentd 34 (20–48) / 35 (20–45) /

Rate of progressione − 1.11 (− 0.03 to – 4.19) / − 1.54 (− 0.09 to – 4.19) /

a Age at the time of blood collection
b Time from symptom onset to blood collection
c Time from symptom onset to death
dALS-FRS-R (ALS functional rating scale revised) points at the time of blood collection
e Slope of the linear regression line for ALS-FRS-R points
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Microarray Analysis of circRNA Expression

Microarray analysis of circRNA expression was performed on
a subset of 20 samples—12 patients (6 females, 6 males) and 8
age- and sex-matched controls. Total RNA from each sample
was prepared for the microarray analysis according to the
manufacturer’s protocol (Arraystar, USA). Briefly, total
RNA was digested with RNase R (Epicentre, Inc., USA) to
enrich circular RNAs. Enriched circular RNAswere amplified
and transcribed into fluorescent complimentary RNA utilizing
a random priming method (Arraystar Super RNA Labeling
Kit; Arraystar, USA) and then hybridized onto the Arraystar
Human circRNA Array V2 (8x15K, Arraystar, USA). Slides
were washed and the arrays were afterwards scanned by the
Agilent Scanner G2505C.

Acquired array images were analyzed using Agilent
Feature Extraction software (version 11.0.1.1). Quantile nor-
malization and subsequent data processing were performed
using the R software limma package. Differentially expressed
circRNAs with statistical significance between two groups
were identified through volcano plot filtering. Fold change
filtering was used to identify differentially expressed
circRNAs between two samples. Distinguishable circRNA
expression patterns among samples were identified through
hierarchical clustering.

Real-time Quantitative PCR Validation of circRNA
Expression

cDNA synthesis was performed on total RNA samples using
SuperScript VILO Master Mix (ThermoFisher, USA).
Expression levels of selected circRNAs were measured by
real-time quantitative PCR (qPCR) using Sybr Select Master
Mix (ThermoFisher, USA) on the Rotor Gene Q 5plex HRM
platform (Qiagen, Germany) in duplicate for each sample.
Primers for qPCR are shown in Table 2. Primers for
RPL13Awere synthesized by Qiagen (Germany) and all other
were synthesized by IDT (USA). RPS17 and RPL13A were
used as reference genes. The data were analyzed using the
comparative cycle threshold method (2ΔΔCt).

Statistical Analysis

All experimental data were analyzed using SPSS software
24.0 (SPSS, USA). Differences in expression levels between
patients and healthy controls were assessed using t test or
Mann-Whitney U test, as appropriate. The correlations be-
tween circRNA expression levels and clinical data were deter-
mined by Spearman’s rank correlation. ROC curve analysis
was performed to assess the diagnostic potential of statistically

Table 2 List of primers for qPCR
validation of microarray results Target RNA Primer sequence (5′–3′)

hsa_circ_0000567 F: AAACACAGCTCGACAGTACGC

R: TCCTTTGGTGACACAGTTGC

hsa_circ_0001173 F: TGCAAGGTGAAGTTCAGAGG

R: TCTGCTGGCAATTCAAACAC

hsa_circ_0005218 F: TACGCAACATTCAGGACACC

R: GCCATGGAAACCATTCTCTC

hsa_circ_0005896 F: TCAAGATTTTAAGGTCAAGATAGCA

R: CAATCTATTCAAACATTAGCTTACCA

hsa_circ_0023919 F: ATTTGCAGCAGCCAACTTTT

R: CCTGCTTGCAGCTGTAGAATC

hsa_circ_0035796 F: CAGGGTGTTTTGGTTTAGGC

R: GCCTGTTCTTCCATTTCAGC

hsa_circ_0043138 F: ATGATCAGCAGCATGATTCC

R: ATCAGTCGTTTGCCCATAGC

hsa_circ_0063411 F: CCGTGCAGCCACTAAATTCT

R: TCCTCCATCCTCCTCCTCTT

hsa_circ_0073647 F: AACACCACACAGAGGCACAG

R: CCCCAGCAAAGTGTAGCAGT

hsa_circ_0088036 F: TACGTCCGGGTACCAACTAC

R: CTCCATCTCAAGCAGGTTTC

RPS17 F: CCATTATCCCCAGCAAAAAG

R: GAGACCTCAGGAACATAATTG

RPL13A QuantiTect: Hs_RPL13A_1_SG (Cat. No. QT00089915)
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differentially expressed circRNAs. p value < 0.05 was consid-
ered to be statistically significant.

Results

Microarray Expression Profile

Microarray expression profile of circRNAs in ALS was per-
formed on blood samples from 12 ALS patients and 8 age-
and sex-matched healthy controls using Arraystar Human
circRNA Array Analysis. Hierarchical clustering and subse-
quent heatmap visualization of circRNA expression levels in
samples showed distinguishable expression patterns among
healthy controls and ALS patients (Fig. 1a). Moreover, we
analyzed differences in expression levels using volcano plot
(Fig. 1b) and identified 425 differentially expressed circRNAs
when comparing ALS patients and healthy controls
(circRNAs with fold change > 1.5 and p value < 0.05). Of
them, 274 were upregulated and 151 were downregulated in
ALS patients.

Following the initial microarray analysis, we selected 10
circRNAs for qPCR validation of their expression. Selection
criteria included, but were not limited to, p value (< 0.04), fold
change (> 1.8), genomic location (exonic), and function of the
hosting gene. We evaluated the function of the hosting gene
and its potential involvement in ALS through literature and
database search (ALSoD [20]: http://alsod.iop.kcl.ac.uk/;
Ensembl [21]: release 94). Summary of these criteria for
selected circRNAs is shown in Table 3.

qPCR Validation of circRNA Expression

Microarray expression results were validated with qPCR on
blood samples from 60 ALS patients and 15 age- and sex-
matched healthy controls. Of 10 selected circRNAs, we got
6 significantly upregulated circRNAs (hsa_circ_0000567,
hsa_circ_0005218, hsa_circ_0035796, hsa_circ_0043138,
hsa_circ_0063411, and hsa_circ_0088036) and 1 significantly
downregulated circRNA (hsa_circ_0023919) in ALS patients.
hsa_circ_0005896 and hsa_circ_0001173 showed no signifi-
cant difference in expression between ALS patients and

Fig. 1 Summary of microarray expression profile. a Hierarchical
clustering and heatmap visualization of circRNA expression levels. P,
ALS patient; C, healthy control. b Volcano plot representation of
differentially expressed circRNAs (red points; p value < 0.05 and fold

change > 1.5). Two hundred seventy-four of them were upregulated and
151 were downregulated when comparing ALS patients and healthy
controls
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healthy controls and expression levels of hsa_circ_0073647
were not detectable in either ALS patients or healthy controls
(Fig. 2). Among significantly dysregulated circRNAs,
hsa_circ_0063411 and hsa_circ_0088036 were upregulated
in bo th mic roa r r ay and qPCR ana lyse s , wh i l e
hsa_circ_0023919 was downregulated in both experiments.
Four circRNAs (hsa_circ_0000567, hsa_circ_0005218,
hsa_circ_0035796, and hsa_circ_0043138) showed discrep-
ancy between the results from the two experiments as they
were downregulated in microarray analysis and upregulated
in qPCR results.

Associations Between Clinical Variables and circRNA
Expression

The Spearman rank correlation test was performed to assess
potential associations between circRNA expression and clin-
ical variables. As shown in Table 4, the expression levels of
hsa_circ_0000567 and hsa_circ_0088036 were negatively as-
sociated with age, both at the time of blood collection and at
the time of disease onset. There was no association between
the expression of either of these two circRNAs and the age at
the t ime of blood collect ion in heal thy controls
(hsa_circ_0000567: Spearman’s rho = − 0.020, p = 0.944;
hsa_circ_0088036: Spearman’s rho = 0.263, p = 0.725).
Another negative association was found between the expres-
sion of hsa_circ_0023919 and the age, however, only at the
time of blood collection. Similarly, there was no association
between hsa_circ_0023919 expression and the age at the time
of blood collection in healthy controls (Spearman’s rho = −

0.059, p = 0.834). The expression levels of hsa_circ_0063411
and hsa_circ_0005218 were positively associated with the
level of functional impairment in patients and the expression
of hsa_circ_0063411 was negatively associated also with the
disease duration and survival time. Also, the expression levels
of several circRNAwere positively correlated with each other.

Determination of circRNADiagnostic Potential by ROC
Curve Analysis

We performed receiver operating characteristics (ROC) curve
analysis to evaluate the diagnostic potential of selected
circRNAs (Fig. 3). Of 7 circRNAs with statistical difference
in expression levels between cases and controls, three
(hsa_circ_0023919, red; hsa_circ_0088036, green;
hsa_circ_0063411, blue) had area under the curve (AUC) over
0.950 (Fig. 3a, b). These circRNAs also had outstanding spec-
ificity and sensitivity at the optimal threshold point—over
90% (Fig. 3c). AUC values for other circRNAs varied be-
tween 0.623 and 0.894 (dashed gray lines) (Fig. 3a, c).

Discussion

circRNAs are widely expressed in several human tissues [32,
33] and have been already implicated in numerous develop-
mental and physiological processes—myogenesis [34], synap-
togenesis [35], and cell growth [36]. Inevitably, they are impli-
cated also in pathological processes—tumorigenesis [16, 37],
abnormal mRNA splicing [38], and neurodegeneration [18,

Table 3 Selected circRNAs for qPCR validation, their microarray information, and reason for validation

circRNA p value (Benjamini-
Hochberg FDR)

Fold
change

Regulation Genomic
location

Reason for validation

hsa_circ_
0000567

0.007 4.00 Down SETD3 SETD3 is histone methyltransferase that regulates muscle
differentiation in mouse [22]

hsa_circ_
0001173

0.03 1.83 Down VAPB VAPB is ALS-associated gene [23]

hsa_circ_
0005218

0.004 2.63 Down FAM120A FAM120A interacts with HNRNPA1 (associated with ALS) [24]

hsa_circ_
0005896

0.04 2.82 Up SMN1 SMN1 is involved in mRNA processing and neurogenesis [25]

hsa_circ_
0023919

0.005 3.03 Down PICALM PICALM is involved in the clathrin-mediated endocytosis at the
neuromuscular junctions [26]

hsa_circ_
0035796

0.008 5.36 Down HERC1 HERC1 has an extensive role in the neurotransmission at the
neuromuscular junctions [27]

hsa_circ_
0043138

0.008 5.34 Down TAF15 TAF15 is ALS-associated gene [28]

hsa_circ_
0063411

0.002 3.32 Up TNRC6B TNRC6B guides Ago-mediated gene silencing [29]

hsa_circ_
0073647

0.002 9.64 Up SEMA6A SEMA6A is involved in axon guidance [30]

hsa_circ_
0088036

0.004 4.12 Up SUSD1 SUSD1 is potentially associated with ALS [31]
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19]. However, no ALS-associated circRNA has been identified
yet in human samples. Here, we present the first circRNA dif-
ferential expression analysis in leukocyte samples from patients
with amyotrophic lateral sclerosis. Muscle and nervous tissues
are the most affected tissues in ALS; however, blood samples
are easier to obtain and thus more suitable for diagnostics if
reliable biomarkers exist.

Microarray-based circRNA expression profiling on a repre-
sentative subset of samples revealed 274 upregulated and 151
downregulated circRNAs between ALS patients and healthy
controls. Based on the microarray results and our estimated rel-
evant function of a hosting gene in ALS, we selected 10
circRNAs for further validation of expression on a larger set of
samples. In total, expression of 7 of 10 selected circRNAs was
significant between ALS samples and healthy controls. Four of
them (hsa_circ_0000567, hsa_circ_0023919, hsa_circ_0063411,
and hsa_circ_0088036) showed the highest significance as well
as clinical relevance. In addition, 3 of them (hsa_circ_0023919,
hsa_circ_0063411, and hsa_circ_0088036) also showed identi-
cal regulation in both microarray and qPCR results.

hsa_circ_0000567 is located in SETD3 gene, product of
which is histone methyltransferase that regulates muscle

differentiation in mouse [22]. This circRNA was downregu-
lated in microarray analysis; however, qPCR results showed
significant upregulation in ALS cases. According to Morey
et al. [39], correlation of microarray and qPCR results is gene
specific and can vary considerably. Particularly in the cases
where microarray showed downregulation and qPCR valida-
tion failed to confirm that, the result discrepancy may be due
to variability in array spot intensity or due to increased sample
size in qPCR analysis.

hsa_circ_0023919 is located in PICALM gene that is in-
volved in clathrin-mediated endocytosis at neuromuscular
junctions [26] and single nucleotide polymorphism upstream
of the gene has been associated with Alzheimer’s disease [40].
This circRNAwas downregulated in microarray analysis and
qPCR results also confirmed this. hsa_circ_0023919 sequence
contains two binding sites for hsa-miR-9 (imperfect binding
site between 61 and 67 bp and 7mer-m8 binding site between
142 and 148 bp) [41]. Upregulation of miR-9 was confirmed
in both mouse model of ALS [42] and in human blood sam-
ples of ALS patients [43]. By all means, further functional
studies are necessary to investigate the potential association
between hsa_circ_0023919 and miR-9 in ALS.

Fig. 2 Expression of selected circRNAs in ALS patients and healthy
controls. Relative expression levels of each circRNA in ALS patients
(n = 60) and healthy controls (n = 15) are represented with box plot.
Upregulated circRNAs are shown in green, downregulated circRNAs in

red, and circRNAs with non-significant differences in expression in blue;
significant difference in expression levels is denoted as * (p < 0.05) or ***
(p < 0.001); n. s., non-significant
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hsa_circ_0063411’s host gene, TNRC6B, guides Ago-
mediated gene silencing [29]. This circRNA was upregulated
in both microarray and qPCR analyses. There is no evidence
yet on the role of this circRNA in any biological or pathological
process. However, it contains one binding site for hsa-miR-647
(7mer-m8 site between 680 and 686 bp) [41]. Some connection
between hsa-miR-647 and ALS was already detected in spinal
cord samples from ALS patients where miRNA-647 was found
downregulated [44]. In order to elucidate the potential associa-
tions between circ_0063411 and hsa-miR-647 expression in
ALS patients and their common roles in ALS disease initiation
and progression, further studies are necessary.

hsa_circ_0088036 is located in SUSD1 gene that is poten-
tially associated with ALS [31]. hsa_circ_0088036 was, like
hsa_circ_0063411, upregulated in microarray and qPCR ex-
periments. Previous study showed that hsa_circ_0088036 (al-
so known as hsa_circRNA_104871) was significantly upreg-
ulated in PBMCs from patients with rheumatoid arthritis and
may serve as a potential biomarker for its diagnosis [45].

Since this circRNAwas significantly upregulated also in this
study and diseases have no common cause, we could specu-
late that hsa_circ_0063411 might somehow be involved in the
immune response. Nevertheless, further studies are necessary
to confirm that.

All of selected circRNAs (Table 3) have one or more pre-
dicted binding sites for several RBPs. Two of them, AGO2
and EIF4A3, can bind to all of the selected circRNAs with the
exception of hsa_circ_0035796 that has binding sites only for
EIF4A3. Despite potential role of circRNA to serve as scaf-
folds for protein complexes [14], the variability in the number
of binding sites and presence in circRNAs of various origins
and functions indicate other potential explanations. As Chen
et al. [46] showed, RBPs are involved in discriminating be-
tween endogenous and exogenous circRNAs and abolishing
immune response to endogenous circRNAs. Origin discrimi-
nation is based on intronic sequences that are involved in
splicing and circularization and associated with splicing com-
plexes, part of which is also EIF4A3 [46].

Fig. 3 ROC curves for the circRNAs with statistically significant
difference in expression. Full colored lines represent circRNAs with
AUC > 0.950, dashed gray lines represent other circRNAs. a ROC
curves for upregulated circRNAs. b ROC curve for downregulated

circRNA. c Details of shown ROC curves. AUC, area under the curve,
SE, standard error for AUC, 95%C. I., 95% confidence interval for AUC.
Optimal threshold point was determined as the point on the curve with
minimal distance to the ideal point (sensitivity = 1 and specificity = 1)
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Another RNA-binding protein, fused in sarcoma (FUS),
has been recognized as an important modulator of circRNA
expression [47]. Errichelli et al. observed an overall downreg-
ulation of circRNA expression in FUS−/−mice and expression
was dysregulated also in FUSR521C and FUSP525L human-
induced pluripotent stem cell-derived motor neurons. Since
cognate linear transcripts showed no significant alteration in
expression levels, circRNA deregulation can be attributed to
altered splicing dynamics due to mutated or absent FUS.
Whether this is the reason for altered circRNA expression also
in human tissues, it remains to be determined. These findings
could have considerable implications for further research on
circRNAs in ALS as mutations in FUS have been found in 5%
of ALS cases [2].

With the Spearman rank correlation test, we evaluated the
potential associations between circRNA expression and clin-
ical data or correlations between expression levels of each
circRNA. We found that three circRNAs (hsa_circ_0000567,
hsa_circ_0023919, and hsa_circ_0088036) were negatively
associated with the age of ALS patient at the time of blood
collection and two of them (hsa_circ_0000567 and
hsa_circ_0088036) were also negatively associated with the
age at the disease onset. None of these circRNAs were asso-
ciated with the age at the time of blood collection in healthy
controls, suggesting that this association is disease specific.
hsa_circ_0005218 was positively correlated with the level of
functional impairment in ALS patients and hsa_circ_0063411
was negatively correlated with disease duration and survival
time. Verification of clinically relevant associations is needed
to exclude potential influence of other clinical conditions.
Moreover, expression of several circRNAs was positively cor-
related with each other, indicating potential involvement of
these circRNAs in similar biological processes and/or co-reg-
ulation. Extensive functional studies are of course needed to
evaluate these indications.

Through ROC curve ana lys i s , we iden t i f i ed
hsa_circ_0023919, hsa_circ_0088036, and hsa_circ_0063411
as potential blood-based biomarkers for ALS. All of them had
AUC values above 0.95. Moreover, at the optimal threshold
point, each of them had both sensitivity and specificity above
90%. Among already discovered fluid-based biomarkers for
ALS are the most promising two protein biomarkers, NFL and
pNFH. However, they do not reach such sensitivity and spec-
ificity in serum or plasma samples [5] as have reached
circRNAs in this study. Therefore, we could speculate that
circRNAs hsa_circ_0023919, hsa_circ_0088036, and
hsa_circ_0063411 could possess great clinical relevance in
ALS. However, studies with increased sample size and more
diverse set of controls are needed to justify this. Furthermore,
comparison with other neurodegenerative diseases is neces-
sary in order to investigate ALS disease specificity.

In conclusion, to our knowledge, this is the first study of
circRNA expression profile in human samples of ALS. It

provides a broad framework for further functional studies on
the role of circRNAs in ALS. This might help to improve our
understanding about the molecular mechanisms in ALS. This
work also revealed promising diagnostic potential of
circRNAs. We think therefore that circRNAs and their asso-
ciation with ALS are definitely worth to be further
investigated.
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