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                    Abstract
Neurogranin (Ng) is a calmodulin (CaM)-binding protein that is phosphorylated by protein kinase C (PKC) and is highly enriched in the dendrites and spines of telencephalic neurons. It is proposed to be involved in regulating CaM availability in the post-synaptic environment to modulate the efficiency of excitatory synaptic transmission. There is a close relationship between Ng and cognitive performance; its expression peaks in the forebrain coinciding with maximum synaptogenic activity, and it is reduced in several conditions of impaired cognition. We studied the expression of Ng in cultured hippocampal neurons and found that both protein and mRNA levels were about 10% of that found in the adult hippocampus. Long-term blockade of NMDA receptors substantially decreased Ng expression. On the other hand, treatments that enhanced synaptic activity such as long-term bicuculline treatment or co-culture with glial cells or cholesterol increased Ng expression. Chemical long-term potentiation (cLTP) induced an initial drop of Ng, with a minimum after 15 min followed by a slow recovery during the next 2–4 h. This effect was most evident in the synaptosome-enriched fraction, thus suggesting local synthesis in dendrites. Lentiviral expression of Ng led to increased density of both excitatory and inhibitory synapses in the second and third weeks of culture. These results indicate that Ng expression is regulated by synaptic activity and that Ng promotes the synaptogenesis process. Given its relationship with cognitive function, we propose targeting of Ng expression as a promising strategy to prevent or alleviate the cognitive deficits associated with aging and neuropathological conditions.
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Electronic Supplementary Material

Supplementary Figure 1
Maturation profiles of several proteins in cultured hippocampal neurons. Hippocampal neurons were harvested at several times of culture and processed for western blot; equal amounts of total protein were loaded from samples collected at each day in vitro (DIV). Antibodies used are listed in Supplementary Table 1. (PNG 926 kb)


High resolution image
(TIF 3030 kb)


Supplementary Figure 2
Distribution of excitatory and inhibitory neurons in hippocampal neurons in culture. DIV16 hippocampal neurons were fixed and processed for immunofluorescence. 10 x 10 images were acquired with a 25X oil objective for each channel (DAPI, MAP 2, GluN1, GAD6) and stitched using Metamorph software. Upper panel shows complete tilescans of the total number of cells (DAPI), total number of neurons (MAP 2), excitatory neurons (GluN1), and inhibitory neurons (GAD6). White square shows the ROI detailed in the lower panel. Only a small proportion (11,41% ±3,43 SD n = 2) of neurons in culture expressed the inhibitory marker GAD6 when quantified, while the vast majority (82,55% ±1,41 SD n = 2) were excitatory neurons and expressed GluN1 marker. (PNG 3355 kb)


High resolution image
(TIF 8936 kb)


Supplementary Figure 3
Example of the dense network of excitatory buttons in hippocampal neurons in culture. Immunofluorescence showing DIV16 hippocampal neurons labeled with DAPI, NeuN and vGluT1 antibodies. Note the dense network of excitatory synapses labeled with anti-vGluT1 antibody. (PNG 3010 kb)


High resolution image
(TIF 7426 kb)


Supplementary Figure 4
Ng is expressed in a reduced fraction of hippocampal neurons in culture. DIV16 hippocampal neurons were fixed and processed for immunofluorescence. 10 x 10 images were acquired with a 25X oil objective for each channel (DAPI, MAP 2, Ng, GFAP) and stitched using Metamorph software. Upper panel shows complete tilescans of the total number of cells (DAPI), total number of neurons (MAP 2), Ng expressing neurons (Ng), and astrocytes (GFAP). White square shows the ROI detailed in the lower panel. (PNG 2999 kb)


High resolution image
(TIF 7897 kb)


Supplementary Figure 5
Ng localizes to the dendritic spines of cultured hippocampal neurons. (Upper panel) Immunofluorescence showing a hippocampal neuron after 18 days in vitro (DIV) labeled with anti-Ng antibody and several other cells labeled only with DAPI. (Lower panel) Detail of Ng-labeled dendrites and dendritic spines (red arrowheads). (PNG 1551 kb)


High resolution image
(TIF 4757 kb)


Supplementary Figure 6.
Analysis of Ng-expressing cells in cultured hippocampal neurons. Hippocampal neurons cultured at different cell densities were processed for immunofluorescence with anti-NeuN, anti-Ng antibodies and DAPI. 15 x 15 images covering a central rectangle (7.2 x 5.7 mm) of each coverslip were acquired for each channel and stitched using Metamorph software. Then, for each coverslip, cell density and time of culture (see Fig. 2c), total number of cells (DAPI), total number of neurons (NeuN/DAPI) and total number of Ng-expressing neurons (Ng/NeuN) were measured. The table below gives the total number of cells analyzed at each cell density and the percentage of those that were identified as neurons. (PNG 1016 kb)


High resolution image
(TIF 3002 kb)


Supplementary Figure 7.
Long-term manipulation of endogenous synaptic activity modulates Ng expression. Examples of the western blots quantified for Fig. 4b. Hippocampal neurons were treated as in stated in fig. 4a for the indicated periods, starting at different times and all them collected at DIV18 for western blot analysis. (PNG 802 kb)


High resolution image
(TIF 2727 kb)


Supplementary Figure 8.
Long-term manipulation of endogenous activity alters postsynaptic composition. Hippocampal neurons were kept in control medium or treated with tetrodotoxin (0′5 μM) or bicuculline (25 μM) for 48 h and extracted at DIV18. PSD fractions were purified as described in Methods. 4 μg of total protein of post-synaptic membrane-enriched fractions (Triton X-100 resistant pellet, TxP) were separated by SDS-PAGE and analyzed by western blot with anti-GluN1 (NR1, Millipore AB9864R), anti-GluN2B (NR2B, Millipore MAB5220), anti-PKCɛ (Millipore 06-991) and anti-β-actin (Sigma clone AC-15). (PNG 214 kb)


High resolution image
(TIF 1388 kb)


Supplementary Figure 9.
Recovery of Ng expression after long-term treatment with AP5, TTX and NBQX. Hippocampal neurons were treated with 50 μM AP5, 1 μM TTX, AP5 + TTX or 10 μM NBQX for 1, 2 or 3 days and then harvested after 18 days in vitro (DIV18) for western blot analysis of their Ng and β3-tubulin content. Additionally, hippocampal neurons that were previously treated (Rec.) or not (Cont.) for 3 days with the above drugs were cultured for 3 additional days in normal growth medium (without drugs) and then collected to analyze recovery of Ng expression. Results are expressed as the ratio of Ng:β3-tubulin normalized to the ratio obtained for controls at DIV18. Results are means ± SEM, n = 5. Statistical comparisons were performed between each treatment and the corresponding controls at DIV18. *: p < 0.05, **: p < 0.01, ***: p < 0.001. (PNG 238 kb)


High resolution image
(TIF 1266 kb)


Supplementary Figure 10.
Effect of several inhibitors on Ng levels after cLTP and cLTD induction. Cultured hippocampal neurons after 17 or 18 days in vitro (DIV) were processed for induction of (a) chemical long-term potentiation (cLTP) or (b) chemical long-term depression (cLTD). Lysates were obtained at the indicated times of the recovery period to analyze their Ng content by western blot. Inhibitors (MG132, 10 μM; anisomycin, 40 μM; calpeptin, 10 μM; cycloheximide [CHX], 25 μg/ml; AP5, 100 μM; NBQX, 20 μM; and MCPG, 125 μM) were added 15 min before cLTP induction and maintained thereafter (means ± SEM, n = 3). Statistical comparisons were performed between each treatment and the corresponding controls at DIV18. *: p < 0.05, **: p < 0.01, ***: p < 0.001. (PNG 285 kb)


High resolution image
(TIF 1291 kb)


Supplementary Figure 11
Flowchart of the image analysis procedure used to quantify synaptogenesis in hippocampal neurons in culture. (PNG 1020 kb)


High resolution image
(TIF 2953 kb)


Supplementary Figure 12
Typical captures for analyzing excitatory synapses. Hippocampal neurons were fixed and processed for immunofluorescence at DIV18. Upper panel shows typical example images labeling of MAP 2, vGluT1 and PSD-95, used for the synaptogenesis analysis in Fig. 6. White squares in the merge image show the ROIs detailed in the lower panel. (PNG 2561 kb)


High resolution image
(TIF 7355 kb)


Supplementary Table 1
(DOCX 17 kb)





Rights and permissions
Reprints and permissions


About this article
       



Cite this article
Garrido-García, A., de Andrés, R., Jiménez-Pompa, A. et al. Neurogranin Expression Is Regulated by Synaptic Activity and Promotes Synaptogenesis in Cultured Hippocampal Neurons.
                    Mol Neurobiol 56, 7321–7337 (2019). https://doi.org/10.1007/s12035-019-1593-3
Download citation
	Received: 04 December 2018

	Accepted: 02 April 2019

	Published: 24 April 2019

	Issue Date: November 2019

	DOI: https://doi.org/10.1007/s12035-019-1593-3


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Neurogranin
	Synaptic plasticity
	Glutamate receptors
	Synaptogenesis
	Hippocampal neurons








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					3.81.32.56
				

				Not affiliated

			

		
	
	
		
			
		
	
	© 2024 Springer Nature




	






    