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Abstract Activation of the Toll-like receptor 4 (TLR4) com-
plex, a receptor of the innate immune system, may underpin the
pathophysiology of many human diseases, including asthma,
cardiovascular disorder, diabetes, obesity, metabolic syndrome,
autoimmune disorders, neuroinflammatory disorders, schizo-
phrenia, bipolar disorder, autism, clinical depression, chronic
fatigue syndrome, alcohol abuse, and toluene inhalation. TLRs
are pattern recognition receptors that recognize damage-
associated molecular patterns and pathogen-associated molec-
ular patterns, including lipopolysaccharide (LPS) from gram-
negative bacteria. Here we focus on the environmental factors,
which are known to trigger TLR4, e.g., ozone, atmosphere
particulate matter, long-lived reactive oxygen intermediate,
pentachlorophenol, ionizing radiation, and toluene. Activation
of the TLR4 pathways may cause chronic inflammation and
increased production of reactive oxygen and nitrogen species
(ROS/RNS) and oxidative and nitrosative stress and therefore
TLR-related diseases. This implies that drugs or substances that
modify these pathways may prevent or improve the
abovementioned diseases. Here we review some of the most

promising drugs and agents that have the potential to attenuate
TLR-mediated inflammation, e.g., anti-LPS strategies that aim
to neutralize LPS (synthetic anti-LPS peptides and recombinant
factor C) and TLR4/MyD88 antagonists, including eritoran,
CyP, EM-163, epigallocatechin-3-gallate, 6-shogaol, cinnamon
extract, N-acetylcysteine, melatonin, and molecular hydrogen.
The authors posit that activation of the TLR radical (ROS/RNS)
cycle is a common pathway underpinning many “civilization”
disorders and that targeting the TLR radical cycle may be an
effective method to treat many inflammatory disorders.
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OxPL Oxidized phospholipids
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PM 2.5 is the PM fraction of airborne nanoparticles with

a diameter <2.5 μm
PRRs Pattern recognition receptors
rFC Recombinant factor C
RNS Reactive nitrogen species
ROIs Reactive oxygen intermediates
ROS Reactive oxygen species
Sal B Salvianolic acid B
SALPs Synthetic anti-LPS peptides
SARS Acute respiratory syndrome
siRNA Small interfering RNA
sLP Synthetic lipopeptide
TBK1 TANK-binding kinase 1
TCM Traditional Chinese medicine
TIRAP Toll–interleukin 1 receptor (TIR) domain

containing adaptor protein
TLR1 Toll-like receptor 1
TLR2 Toll-like receptor 2
TLR3 Toll-like receptor 3
TLR4 Toll-like receptor 4
TLR6 Toll-like receptor 6
TLR9 Toll-like receptor 9
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Introduction

A substantial review of receptors and regulation of the innate
immune system emphasized that pattern recognition receptors
(PRRs), including the Toll-like receptors (TLRs), play a key
role in the host defense system [1]. Innate immune responses
are initiated when damage-associated molecular patterns
(DAMPs) and pathogen-associated molecular patterns
(PAMPs) are recognized by PRRs [1]. A classical PAMP is
lipopolysaccharide (LPS) from gram-negative bacteria. In
addition, TLR4 recognizes a broad variety of substances from
viruses, fungus, and mycoplasma [1, 2]. The same is true for
TLR2 [3]. Typical DAMPs acting as TLR4 agonists are en-
dogenous substances, which appear following injury and in-
flammation, including OxPL, OxLDL, β-defensin, high-
mobility group protein 1 (HMGB1), HSPs, ECM, LL37,
hyaluronic acid, heparin sulfate, substance P, and others [4–6].

Dimerization of two receptor molecules precedes TLR
activation. Best understood is the mechanism by which LPS
triggers TLR4. In a complex process, the LPS-binding pro-
tein transfers LPS to the TLR4 accessory protein cluster of
differentiation 14 (CD14). In a second step, LPS is trans-
ferred to the next TLR4 accessory molecule named myeloid
differential protein-2 (MD-2). At least two TLR4/MD-
2/LPS complexes are necessary. They can form a dimer,
which initiates the cell internal signal pathway. The TLR4
pathway consists of two different signaling pathways, the
myeloid differentiating primary response gene 88 (MyD88)-
dependent and the MyD88-independent pathway. The TLR2
pathway, on the contrary, shows only the MyD88-dependent
pathway, but is more complex in activation, since it forms
heterodimers with TLR1 and TLR6. Figure 1 shows the
interactions between DAMPs, PAMPs, LPS, and the TLR4
and TLR2 pathways.

Antibody and T-cell-mediated immunity have both the
biological disadvantage that several days are needed until a
specific immune response is established. In contrast, the
phylogenetic much older TLR system reacts immediately
on invading microbes like viruses, bacteria, and fungal in-
fections. The Nobel Prize laureate Nüsslein-Vollhardt was
the first to discover the Toll protein in Drosophila
melanogaster, the fruit fly. TLRs are strongly conserved in
all vertebrates and even more in mammals. In humans, nine
different TLRs recognize different microbiological sub-
stances, including LPS, lipoproteins, DNA, RNA, etc. TLRs
are not only restricted to immune cells, but are also present,
e.g., on epithelial cells in the lung or skin. After activation
through dimerization, a cell internal cascade is activated
leading to the release of several interleukins, interferons,
and other signaling substances. These signals attract macro-
phages, natural killer cells, mast cells, etc., which in turn
may release reactive oxygen species (ROS) and reactive
nitrogen species (RNS). In the case of microbiological
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pathogen invasions, the increased production of ROS/RNS
helps kill the microbes by destroying pathogen substances,
such as proteins, lipids, carbohydrates, and nucleic acids. In
contrast, the release of ROS/RNS following “sterile infec-
tions,” e.g., those where DAMPs activate TLRs, may be
more harmful because the radicals may damage the hosts
tissues. Obviously, the very archaic TLR system has only
this simple program to react to triggers. Moreover, as de-
scribed below, many environmental substances do have the
ability to activate TLRs. Probably, the resulting release of
radicals is the major problem in many civilization diseases.

A systematic review of the TLR literature shows that TLR4
is involved in many civilization disorders. For example,
asthma—the most common chronic disease among children
(WHO 2012)—is associated with TLRs [7]. Even if the etiol-
ogy of asthma is still poorly understood, the inhalation of
particles and substances that modify TLR2 and TLR4 may be
major causes. For example, Kerkhof et al. [7] showed a signif-
icantly enhanced susceptibility for childhood asthma
depending on single nucleotide polymorphisms of TLR2 and
TLR4. Also, the susceptibility to develop chronic obstructive

pulmonary disease (COPD) [8] correlates with single nucleo-
tide polymorphisms of TLR2 and TLR4. Arteriosclerosis is an
inflammatory and oxidative stress disorder of the blood vessels
with involvement of TLRs either due to chronic infectious or
sterile processes [9, 10]. Sterile inflammation seems to occur in
atherosclerosis through an unusual dimerization of TLR4 with
TLR6 [11]. TLRs may play a role in the tissue damage follow-
ing cardiac infarction [9]. Likewise, TLRs also play an impor-
tant role in tissue damage that occurs after an initial stroke [12].
TLR2 and TLR4 may be involved in some cancers. Thus,
TLR2 and TLR4 single nucleotide polymorphisms are associ-
ated with a 3–5-fold increased risk for colorectal cancer [13].

TLR4 seems to be directly involved in the pathophysiol-
ogy of type 2 diabetes [14]. Obese mice developing type 2
diabetes following hyperglycemia showed a 5.6-fold in-
creased expression of TLR4 and a 37-fold increase in
interleukin-6 (IL-6) as compared with normal lean mice.
TLR4 plays a direct role in β-cell dysfunctions because
LPS may inhibit the secretion of insulin [14, 15]. The
prevalence of metabolic syndrome in the USA is estimated
to be 24.0 % for men and 23.4 % for women [16]. Metabolic
syndrome is not only accompanied by inflammation, as
indicated by increased levels of circulating C-reactive pro-
tein, IL-1, IL-6, IL-8, and tumor necrosis factor-α (TNF-α),
but also by an enhanced expression of TLR2 and TLR4 in
monocytes [17].

Also psychiatric diseases are associated with dysfunc-
tions in TLRs. A systematic analysis of TLRs showed an
enhanced response in TLR2 and TLR4 activation in both
schizophrenic and bipolar patients [18]. Also, in autism, an
enhanced TLR2 and TLR4 responsivity can be measured,
while TLR9 showed a decreased response in the blood [19].
The TLR4 complex is also involved in several diseases
associated with drug abuse, including alcohol abuse and
toluene sniffing. In an experimental model, the damage of
the liver through alcohol consumption can be inhibited by
the suppression of the TLR signal molecule MyD88 [20].

There is now also evidence that the TLR4 complex may play
a role in a large number of diseases, which are related to bacterial
translocation of the gram-negative enterobacteria, which contain
LPS in their bacterial wall. Thus, through increased gut
hyperpermeability, these gut commensals may translocate and
activate the immunocyte TLR4 complex either in the blood
stream or in the mesenteric lymph nodes. This process, in turn,
causes activation of intracellular signaling pathways, such as
nuclear factor-κB (NF-κB), which increases the production of
ROS/RNS and pro-inflammatory cytokines [21]. Therefore, this
gut-derived inflammatory pathway may be associated with the
onset of a number of inflammatory and oxidative and nitrosative
stress (IO&NS) diseases or intensify and perpetuate the IO&NS
pathways in these diseases. This process is thought to play a role
in clinical depression, chronic fatigue syndrome (CFS), IBD,
rheumatoid arthritis, cardiovascular disorders, psoriasis, HIV

Fig. 1 Toll-like receptor (TLR) activation. Toll-like receptors TLR2
and TLR4 are part of the innate immune system. Both recognize
primary bacterial components, i.e., TLR2 recognizes lipoproteins and
TLR4 lipopolysaccharides (LPS). TLR activation occurs through re-
ceptor dimerization. TLR4 builds homodimers, while TLR2 pairs
either with TLR1 or TLR6. TLR4 activation ensues when LPS binds
to lipopolysaccharide-binding protein (LPB). Cluster of differentiation
14 (CD14) and myeloid differentiation factor-2 (MD-2) are required
for TLR4 dimerization. TLR4 signaling can follow two different intra-
cellular pathways. The MyD88-dependent pathway via TIRAP induces
the transcription factor nuclear factor-κB (NF-κB) resulting in the
release of inflammatory cytokines, e.g., interleukin 6 and tumor necro-
sis factor-α. Enhanced amounts of reactive oxygen species (ROS) will
be produced. Alternatively, the MyD88-independent pathway via
TRAM and TRAF leads to the release of type 1 interferons
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infection, Parkinson’s and Alzheimer’s disease, multiple sclero-
sis, and chronic alcoholism [22–36].

The TLR4 and TLR2 pathways are not only activated by
PAMPs and DAMPs, but are also activated or modified by
environmental factors, including ozone, nanoparticles,
volatilic organic compounds, metals, organophosphate pesti-
cides, dioxins, and ionizing radiation. Moreover, these factors
have a common feature, i.e., they all generate free chemical
radicals in tissues. The aim of this paper is to review these
factors that trigger or modify TLR4 and TLR2 pathways and
the most promising drugs and agents that have the potential to
attenuate these pathways and thus may have a clinical efficacy
preventing or treating these disorders.

Environmentally Relevant Substances and Radiation
as TLR Pathway Activators

Ozone

Ozone is an oxygen molecule consisting of three oxygen
atoms (O3) instead of the usual oxygen, which is build up by
two atoms (O2). This makes ozone a very instable and highly
reactive molecule. Usually occurring in the higher layers of
the atmosphere, ozone is also present close to the ground
during summer days with high UV radiation. The inhalation
of ozone causes inflammation of the lung and is characterized
by the accumulation of macrophages [37, 38]. Since no path-
ogens are involved, this process is termed “sterile inflamma-
tion.” Ozone may increase the immune responses to TLR2 in
the lungs [39]. Following ozone exposure, macrophages pro-
duce pro-inflammatory mediators, e.g., NF-κB, and release
cytotoxic substances. These, in turn, may cause injury to the
surrounding tissues [40]. For example, TLR4-deficient mice
show no increased NF-κB activation following ozone admin-
istration, suggesting that a functional TLR4 receptor is essen-
tial for ozone-induced sterile inflammation [40]. There are two
mechanisms that may explain the effects of ozone activating
the TLR4 complex. Firstly, ozone degrades hyaluronan to
fragments, which are potent TLR4 agonists [41]. In a murine
model of ozone-induced airway hyperresponsiveness (AHR),
wild-type, TLR4-deficient, MyD88-deficient, and Toll–inter-
leukin 1 receptor (TIR) domain-containing adapter protein
(TIRAP)-deficient mice were exposed to ozone or stimulated
with hyaluronan fragments [42]. Ozone-exposed mice lacking
functional TLR4, MyD88, or TIRAP showed reduced AHR
and lower levels of pro-inflammatory cytokines. Challenging
mice directly with hyaluronan resulted in AHR in wild-type,
but not in TLR4-deficient, MyD88-deficient, and TIRAP-
deficient mice [42]. The conclusion is that AHR induced by
ozone depends on the fragmentation of hyaluronan and the
TLR4–TIRAP–MyD88 pathway [42]. Ozone can induce
AHR in wild-type, but not in TLR2-deficient, TLR4-

deficient, and MyD88-deficient mice [38]. Therefore, also
TLR2 plays an important role in ozone-induced inflammation.
The authors found that gene expression of TLR2, TLR4,
MyD88, and IL-6 increased in a time-dependent manner with
the duration of ozone exposition. Second, ozone has the
ability to oxidize organic compounds, e.g., pathways of cho-
lesterol oxidation [43]. This oxidation without enzymatic
catalysis is termed “autoxidation” [43]. Also, free radicals like
ROS have the ability to autoxidize cholesterol. Autoxidation
of the body’s own substances may be the key for the genera-
tion of several DAMPs.

Atmospheric Particulate Matter or Particulates

There are many types of particular matter (PM) that may be
found in the atmosphere, including allergens, viruses, bacteria,
dust, oil smoke, smog, and gaseous contaminants. PM 2.5 is the
PM fraction of airborne nanoparticles with a diameter <2.5μm.
In many cases, PM 2.5 comprises volatile organic compounds
(VOC). These are condensation products of organic matter of
different origin. Outside VOC result from plant or combustion
processes (industry, traffic), whereas inside VOC mainly result
from heaters, gas stoves (at home), and laser printer as well as
photocopying machines (in the office). The numbers of VOC
during printing process can be extraordinary high. Lee and Hsu
[44] reported peak particle number concentrations at 1×108

particles/cm3 during photocopying. The physiological reaction
to chronic fine particulate matter exposure has been described
in detail by Kampfrath et al. [45]. Chronic exposure to PM 2.5
causes inflammation and activated O&NS pathways, such as
increased release of ROS via NADPH oxidase. These process-
es lead to markedly increased oxidized phospholipid deriva-
tives and thus probably TLR4 activation. Increased PM in
urban areas contributes to premature mortality, asthma, pulmo-
nary infections, cardiovascular disease, etc. [45, 46]. Moreover,
PM may downregulate TLR4 and TLR2 on dendritic cells in
the lungs, a process that may interfere with an adequate re-
sponse to bacterial and viral infections thus worsening lung
infections [47].

Aerosol Particles in Combination with Ozone

Surprisingly, it was found that ozone in combination with
aerosol particles can result in long-lived reactive oxygen
intermediates (ROIs) [48]. These chemical intermediates
are shown to nitrate proteins via radical reaction mecha-
nisms [48]. Even after 10 min, those reactions were not
attenuated [48]. These authors conclude that long-lived
ROIs are a key to adverse health effects and may explain
the increased incidence of allergic reactions, for example, by
nitrating pollen which in turn causes inflammatory reactions
[48, 49]. Activation of TLRs was not investigated in this
publication [48].
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Nanoparticles

Titanium dioxide (TiO2) nanoparticles are used in cosmetic and
pigment manufacturing [50] and as additives in many toners for
laser printer and copying machines (e.g., titanium oxide; CAS
no. 13463-67-7; weight 1–5 %, see Material Safety Data Sheet
Kyocera No. TK-17-KME-05). TiO2 nanoparticles can trigger
TLR4 and cause inflammation as well as brain and lung prob-
lems [51]. The administration of TiO2 nanoparticles leads to a
significant dose-dependent increased expression of TLR4 and
TLR2 mRNA and protein [52]. A characteristic of many
nanoparticles (e.g., carbon black, TiO2, ZnO, gold) is in their
ability to generate free radicals in their immediate surroundings
[53–57]. Administration of TiO2 nanoparticles for 60 days leads
to behavioral changes in animals in association with significant
changes in ion balance, altered enzyme activities, and changes in
various neurotransmitters in the brain [58]. For example, inhala-
tion of TiO2 nanoparticles for 30 days causes morphological
changes of hippocampal neurons in the rodent in association
with the presence of TiO2 nanoparticles [59]. In the brain,
increased oxidative stress, lipid peroxidation, increased catalase
activity, and the release of glutamic acid and NO2 were detect-
able [59]. Moreover, an accumulation of solid inorganic
nanoparticles, e.g., TiO2 and SiO2, may occur in the body.
Long-term effects from prolonged exposure are to be anticipated.
For example, one nanoparticle can generate many radicals until
excreted. Smaller nanoparticles (5 nm) induce a stronger innate
immune response than larger (28 nm) nanoparticles of the same
material [60]. One explanation for the size dependence could be
that the smaller nanoparticles produce more hydrogen peroxide
than the larger ones [60]. Silver nanoparticles may induce dose-
dependent effects on different cell types in terms of both cyto-
toxicity and TLR2 expression [61]. Silver nanoparticle-induced
apoptosis is reduced after treatment with TLR2 siRNA [61].
Functional blocking of TLR2with anti-TLR2 antibodies inhibits
silver nanoparticle-mediated cytotoxicity [61]. Nanoparticles are
of great interest for drug delivery especially in asthma. In this
context, several publications emphasize the opportunities of
nanoparticles for this purpose. But the reports are in part contra-
dictory, e.g., it is reported that silver nanoparticles can reduce
mucus hypersecretion in an allergic airway inflammation [62]
and that TiO2 nanoparticle conglomerates resolve lung inflam-
mation in asthmatic rats [63]. On the other hand, Chen et al. [64]
found that many respiratory diseases like COPD and asthma
may be associated with exposure to nanoparticles. These authors
reported that TiO2 nanoparticles stimulate mucin secretion in
human bronchial epithelial cells.

Metals

A recent publication by Schmidt et al. [65] caused a paradigm
shift presenting data that contact allergy to nickel depends on
TLR4 functions. Normally, nickel cannot evoke a nickel allergy

in mice. But when in mice—lacking the functional mice
TLR4—the human TLR4 is expressed, they become susceptible
to contact allergy to nickel [65]. In a personal communication,
Marc Schmidt emphasized that TLR4 is necessary, but not
sufficient for the development of nickel allergy. Also, cells of
the adaptive immune system are involved in specific nickel
allergy. Interestingly, nickel and cobalt facilitate TLR4
homodimerization independent of MD-2 [66]. These metal-
induced TLR responses may be inhibited by soluble expressed
TLRs, opening new therapeutic perspectives [66]. To induce an
artificial allergy to nickel in mice, several components from
different microorganisms may serve as adjuvant. Interestingly,
not only TLR4 stimulation by bacterial LPS but also several
TLR2 stimulating microbial components may promote an aller-
gic response to nickel in mice [67]. Lerner [68] reports an
association between aluminum and Crohn’s disease (CD). He
suggests that aluminum adjuvant activity may modulate the
aberrations of innate and adaptive immune responses occurring
in CD. Due to the occurrence of aluminum in food, air, water,
waste, the earth’s surface, and pharmaceuticals, the whole human
population may be exposed, and therefore, the abovementioned
effects of aluminum could have an enormous impact on public
health. Many metals, such as arsenic, cadmium, chromium,
cobalt, lead, mercury, and nickel, are known for their adverse
health effects, e.g., carcinogenic effects. Exposition occurs most-
ly occupational or environmental [69]. Both in in vivo and in
vitro systems, metals induce the production of ROS and RNS
(e.g., nitric oxide, peroxynitrite and S-nitrosothiols), causing
O&NS damage to DNA, proteins, and lipids [69]. Iron, another
metal, is the central atom of hemoglobin. During hemorrhage,
the antioxidant vitamin C may become in combination with iron
a strong prooxidant leading to serious brain damage [70].

Adjuvants

Adjuvants are substances which are co-administered with im-
munizing agents to induce a stronger response. Vaccination
usually is done using a mild immunizing agent in combination
with an adjuvant. While the provoked generation of specific
antibodies must be regarded as a reaction of the adaptive im-
mune system, efficient adjuvants trigger TLR4 and other re-
ceptors of the innate immune system. For human vaccines,
very common adjuvants are aluminum phosphate and aluminum
hydroxide. Apparently, aluminum hydroxide itself does not trig-
ger TLR4 [71], but it becomes very potent in combination with
TLR4 agonists [72].

Organophosphate Pesticides, Dioxin, and Wood
Preservation

Currently, there are only a few data linking pesticides or dioxin
with TLR activation. On the other hand, many publications
show associations between these pesticides and dioxin and the

194 Mol Neurobiol (2013) 48:190–204



generation of ROS. Poovala et al. [73] showed that Bidrint®, a
pesticide, leads to enhanced lipid peroxidation in cell culture
experiments. The authors provided evidence that lipid peroxi-
dation is due to ROS, produced by the exposed cells.
Alluwaimi and Hussein [74] studied the cellular and humoral
immune responses to the organophosphate pesticide diazinon
and found gradual changes in the levels of various cytokines in
diazinon-intoxicated mice. Singh and Jiang [75] found that
chronic low level exposure to acephate (ACE), an organophos-
phate insecticide, impairs the response to LPS in rats. ACE-
exposed rats exhibit an abnormal cytokine production com-
pared with the control animals. Pestka and Zhou [76] reported
that a dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) can trigger
TLR4. Probably, the very toxic effects of dioxins may result
from the ability to activate the aryl hydrocarbon receptor (AhR).
For example, the dioxin 2,3,7,8-tetrachlorodibenzo-p-diox-
in is a very potent AhR ligand [77]. AhR can be regarded as a
“higher authority,” since activation of AhR leads to a modi-
fication of pro-inflammatory cytokines in general [77]. Di-
rect modulation of TLR response through AhR is described
by Masuda et al. [78].

A common substance employed for wood preservation is
pentachlorophenol (PCP). Zhu and Shan [79] showed that
metabolites of PCP generate hydroxyl radicals. The authors
conclude that this generation of free chemical radicals ex-
plains the toxicity of this important pollutant. Ohnishi et al.
[80] showed directed interference of PCP and other organic
substances (e.g., atrazine, bisphenol A) with the TLR4
signaling pathway.

Ionizing Radiation

Ionizing radiation X-ray, radioactivity, and UV light have in
common the ability to generate free radicals in tissues. Expo-
sure to ionizing radiation occurs mostly by sunlight, radio-
therapy, and radioactive spill through nuclear power accidents
or atomic bombs. There are papers reporting that UV light
activates the TLR4 complex and pro-inflammatory cytokines
and O&NS pathways as well [81]. Radiotherapy and
chemoradiation cause neuroinflammation and peripheral
ROS generation and the release of pro-inflammatory cyto-
kines, such as IL-6, TNF-α, IL-1, and IL-12 [82, 83]. Shan
et al. [83] reported that ionizing radiation caused an increased
TLR4–MD-2, CD14, and MyD88 expression in association
with a sustained induction of NF-κB and increased production
of pro-inflammatory cytokines, including IL-12. The secretion
of different cytokines additionally increased in a dose-
dependent manner between 0.05 and 4 Gy [83]. The authors
concluded that the radiation-induced cytokine production de-
pends on TLR-like activation. Interestingly, Hayashi et al.
[84] examined the long-lasting effects of radiation in 442
atomic bomb survivors. They found that radiation had long-
termeffects increasing inflammatory biomarkers even60years

after exposure. Heyman et al. [85] examined the effects of
iodinated contrast media in kidneys in vitro as well as in vivo.
They found that administration of contrast media enhanced
the levels of ROS and hypoxia. Importantly, radiation expo-
sure even when applied locally on the body of rats caused
neuroinflammatory reactions in the brain [87]. These authors
examined the effects of radiation exposure (cobalt gamma up
to 15 Gy) while the head was shielded against radiation and
detected that several cytokines were increased in the brain.
The same authors established that resection of the vagus nerve
before irradiation prevented the onset of neuroinflammation
[86]. This suggests that irradiation-induced peripheral inflam-
mation had induced neuroinflammation via bottom-up signal-
ing through the vagus nerve [87]. Since ROSmay cause TLR4
activation, it may be hypothesized that radioactive exposure
activates the TLR4 complex through ROS effects. For exam-
ple, CFS is a very common symptom in cancer patients
receiving radiotherapy [88]. CFS is characterized by increased
ROS/RNS levels and a chronic inflammatory response [89].

On the other hand, there are many data that show that
TLR4 activation has radioprotective effects. Shakhov et al.
[90] showed that administration of a synthetic lipopeptide
(sLP), which activates TLR2, can help mice to survive
otherwise lethal doses of radiation. The sLP must be given
in a time window between 48 h before and 24 h after
exposure to radiation. In this case, activation of TLR2 is
the essential step. No radioprotective effect of sLP was
found in irradiated TLR2-deficient mice. Riehl et al. [91]
determined the radioprotective effect of hyaluronic acid
(HA). HA fragments are known to activate TLR4. Wild-
type mice administered HA before radiation exposure were
able to survive an 1.8-fold dose of radiation. TLR4-deficient
and cyclooxygenase-2 (COX-2)-deficient mice showed no
radioprotective advancement by the administration of HA.

Toluene

Toluene sniffing is a medical problem in many countries
around the world because it may induce parkinsonism and
encephalopathy with brain abnormalities, including atrophy
and demyelination [92]. In rodent models, it has been shown
that toluene significantly upregulates mRNA production of
TLR4 and NF-κB and that this may play a role in its
neurotoxic effects [93]. The exposure to different concen-
trations of toluene of wild-type mice and TLR4-deficient
mice revealed that TLR4 and NF-κB expression in the
hippocampus is significantly upregulated in the wild-type,
but not in the TLR-deficient mice. Heat shock protein 70, an
agonist of TLR4, was increased in toluene-exposed wild-
type mice. The authors conclude that the known neurotoxic
effect of the exposure to toluene results from toluene-
induced TLR4 activation [93]. Toluene also induces
O&NS pathways and O&NS-induced damage, including
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lipid peroxidation, in different organs, e.g., liver, kidney,
lung, brain, etc. [94].

TLR Memory and Neuro-immune Interactions at the TLR
Level

It is important to note that exposure to TLR agonists causes
sensitization of inflammatory responses [76]; thus, priming
TLR4 with various agonists before the basic TLR4 stimula-
tion enhanced inflammatory responses during the test. The
sensitivity and, therefore, the grade of the TLR4 response are
dependent upon TLR4 activation during the last 24 h. There-
fore, it is important to recognize that TLR4 responsivity is
determined by interactions between many different agonists
and that hypersensitivity to one TLR agonist may result from
priming with another agonist. By inference, priming together
with enhanced gene expression of TLR4,MyD88, and NF-κB
following TLR activation may explain the development of
sensitization or even hypersensitivity of TLR responses.

Additional effects may result from psychological stressors,
which also upregulate TLR4 [18]. Social stress activates TLR
expression on splenic macrophages [95]. Stress responses
may augment the DAMP-induced TLR activation [96].
TLR4 plays a role in the development of brain inflammation
and oxidative processes following immobilization stress [97].

Moreover, TLR functions are partly determined by neuro-
immune interactions while TLRs play a role in neuro-immune
processes. For example, there are several cross-linkages be-
tween the nervous system and the immune system, one of the
most striking findings being that hippocampal stem cell pro-
liferation is partly regulated by TLRs. Thus, Rolls et al. [98]
reported on the processes bywhich TLR2 and TLR4modulate
adult hippocampal neurogenesis via MyD88-related mecha-
nisms. On the other hand, the nervous system may modulate
TLR functions. For example, treatment of human mast cells
with substance P, a neuropeptide, induces an upregulated
expression of TLR2, TLR4, TLR8, and TLR9 [99].

ROS and Neutrophil Cytosolic Factor 1

Several diseases with a high mortality rate, including H5N1
avian flu, acute respiratory syndrome (SARS), and Yersinia
pestis, anthrax, and pox infection cause a dramatic elevated
production of IL-6 and ROS [4]. ROS can oxidize phospho-
lipids, which in their oxidized form (OxPL) function as ago-
nist of TLR4 [4]. Neutrophil cytosolic factor 1 (Ncf1), a
protein of the NADPH oxidase complex, is required for the
oxidative burst and formation of ROS [100]. Ncf1 mutant
mice and TLR4 minus mutant mice showed a strongly atten-
uated reaction to, for example, infection with H5N1 avian flu
or SARS [4]. Therefore, the authors conclude that modulation
of ROS synthesis may protect individuals infected with H5N1

avian influenza, SARS coronavirus, or anthrax from severe
lung failure [4].

OxPAPC

O x i d i z e d 1 - p a l m i t o y l - 2 - a r a c h i d o n y l - s n - 3 -
glycerophosphorylcholine (OxPAPC) was shown to spe-
cifically activate TLR2. While administration of OxPAPC
provoked inflammation in wild-type mice, no such reac-
tion was found in TLR2-deficient mice [101]. The TLR2
mutant mice also were protected against tissue damage
induced by carbon tetrachloride, which causes accumula-
tion of oxidative phospholipids in the liver [101].

New Putative Treatments of TLR4-Mediated
Inflammation

Activation of TLR4 by LPS is a complex process since
many molecules are involved, including LPS, CD14, MD-
2, and LPS-binding protein (LPB). The TLR4 signal path-
way offers, therefore, several opportunities for pharmaco-
logical interventions. Basically, three different approaches
are available: (1) anti-LPS strategies that aim to neutralize
LPS; (2) TLR4 antagonism, including the MyD88 signaling
pathway; and (3) targeting inflammation and ROS/RNS.

Neutralizing LPS

Inactivation of LPS is a promising approach to fight sepsis.
Several synthetic anti-LPS peptides (SALPs) are developed,
which bind LPS, thus preventing activation of TLR4 com-
plex [102]. In a mouse model of lethal sepsis, SALPs are
able to neutralize bacterial endotoxins even at very low
concentrations and protect the animals from endotoxic
shock [102]. In fact, this treatment approach could be ap-
plied to many more inflammatory diseases. For example,
SALPs could be helpful in clinical depression or CFS relat-
ed to increased bacterial translocation and in many infec-
tious diseases mediated by LPS. Another putative treatment
is competing with the interaction of human LBP with LPS,
thus neutralizing endotoxicity, e.g., using purified recombi-
nant factor C (rFC), a protein from the horseshoe crab [103].
This rFC protein does not show acute cytotoxicity in cell
cultures.

Several TLR antagonists are commercially available for
research purposes. For example, the company InvivoGen
offers OxPAPC as an inhibitor for TLR2 and TLR4, which
should act through competing with accessory proteins like
CD14, LBP, and MD-2. At least for TLR2, this is surprising
since this is contradictory to a report [102], describing
OxPAPC as a TLR2 agonist. Further, InvivoGen offers
LPS-RS, which is a LPS from Rhodobactersphaeroides, a

196 Mol Neurobiol (2013) 48:190–204



purple bacteria. The effectiveness of LPS-RS as TLR4 an-
tagonist is shown in mice [104]. The administration of LPS-
RS also prevents the development of a mechanical hyper-
sensitivity in a model of serum-transferred arthritis [105].

TLR4 Antagonism

Eritoran is a synthetic lipid A which binds to MD-2 and pre-
vents LPS activation of TLR4 and is therefore useful in the
treatment of different inflammatory diseases [106]. Eritoran is
developed by Eisai Co. and is subject to different pharmaco-
logical studies, e.g., phase III studies in sepsis. Eritoran is quite
similar to the LPS lipid A structure and, therefore, functions as
a TLR4 antagonist [106]. Macagno et al. [107] characterized a
LPS-like molecule named cyanobacterial product (CyP) which
is extracted from the cyanobacteriumOscillatoria Planktothrix.
CyP does not activate TLR, but binds effectively MD-2. Since
MD-2 is essential for TLR4 activation by LPS, this lipid
indirectly prevents LPS-mediated inflammatory responses by
occupying the co-factor MD-2. There are many other TLR4–
MD-2 antagonists, e.g., E5531 and E5564 [108]. Another
possibility to inhibit the activation of TLRs is the use of specific
monoclonal antibodies, e.g., the anti-hTLR4-IgG (InvivoGen,
Cat. Code mabg-htlr4), which may neutralize human TLR4-
induced cellular activation.

Many plant compounds may be used as antagonists to
target the TLR4 complex [1]. Interestingly, many herbs used
in Traditional Chinese medicine (TCM) and Ayurveda medi-
cine seem to interact with the TLR4 complex. These comprise
green tea, Glycyrrhiza uralensis, better known as licorice,
Magnolia officinalis, ginger (Zingiber officinale), Salvia
miltiorrhiza (red sage), and curcumin. The polyphenol com-
ponent epigallocatechin-3-gallate (EGCG) in green tea is an
inhibitor of kinase TBK1 and can suppress the MyD88 signal
and the MyD88-independent signal pathway [109]. Kuang et
al. [110] were able to prevent the development of neuropathic
pain in an animal model by intrathecal injections of the TLR4
inhibitor EGCG from green tea. In these EGCG-treated ani-
mals, the expression of TLR4, HMGB1, NF-κB, TNF-α, and
IL-1β was significantly reduced in comparison with the con-
trol animals after chronic constriction injury of the sciatic
nerve [110]. Ginger comprises 6-shoagol as an active compo-
nent. The working mechanism of 6-shoagol is based on
inhibiting inhibitor-κB kinase [111]. Red sage is another
important plant in TCM. The effective component in red sage
is Sal B [112]. S. miltiorrhiza is widely used in the context of
cerebrovascular disorders and shows protective effects, e.g., in
H2O2-induced apoptosis, which may be ascribed to inhibition
of the TLR4–NF-κB–TNF-α pathway [112, 113]. Curcumin,
which antagonizes NF-κB activation, also inhibits the dimer-
ization of TLR4 [114].

Another important target of the innate immune system is
MyD88. Humans possess nine TLRs, i.e., TLR1 through

TLR9, all of which (except TLR3) use the MyD88-
dependent pathway. Therefore, it is possible that deactiva-
tion of MyD88 may attenuate the TLR-mediated cytokine
pathway. High doses of cinnamon extract can suppress the
induced overexpression of MyD88 in vivo and in vitro [20].
The authors showed that cinnamon extract may prevent
alcohol-induced liver damage (steatosis) in mice in associ-
ation with inhibition of the expression of MyD88 mRNA,
inducible nitric oxide synthase (iNOS), and plasminogen
activator inhibitor 1. Moreover, in vitro experiments showed
that cinnamon extract suppresses not only LPS-induced
MyD88 and iNOS, but also TNF-α expression and nitric
oxide (NO) synthesis [20]. EM-163 is a synthetic BB-
mimetic of MyD88 (i.e., targeting the BB loop region of
the TIR domain), which prevents downstream MyD88 sig-
naling and staphylococcal enterotoxin B shock-induced
death [115]. EM-163 inhibits the production of pro-
inflammatory cytokines in human primary cells, such as
IL-1, IL-6, TNF-α, and IFNγ. These findings show that
EM-163 may have a therapeutic efficacy against staphylo-
coccal enterotoxin B intoxication and, in fact, may have a
much broader potential, including the treatment of many
chronic inflammatory processes. Surprisingly, also propofol,
an anesthetic, has the ability to reduce ROS formation,
suppress NF-κB expression, and reduce IL-6 [116]. The
exact mechanism how propofol acts seems to be unclear
so far, but it may act upstream of NF-κB [117]. Similar
results were obtained for another anesthetic, i.e., ketamine.
This drug reduces the release of pro-inflammatory cytokines
and TLR4 expression, while influencing the phosphoryla-
tion of NF-κB [118].

Blocking ROS and RNS and TLR4 Signaling

A third approach is to eliminate ROS and RNS together with
attenuating the activated TLR4 or TLR2 complexes. All
TLR-mediated inflammatory reactions are accompanied by
ROS and NOS. Radicals are a double-edged sword in the
body. While ROS released during inflammatory responses
inactivate bacteria, viruses, and fungi, ROS may damage its
own tissues during sterile inflammation where no pathogens
are present. NO, on the one hand, is an essential radical gas
with several biological functions, while ROS, on the other
hand, contributes to aberrations in cardiac functions, vascu-
lar tone, and endothelial function and may be a key factor in
hypertension [119].

There are many different substances that may be used to
eliminate ROS and RNS and that at the same time may
modulate the TLR complex. Examples are synthetic sub-
stances, such as N-acetylcysteine (NAC), and natural occur-
ring substances, such as alfa-lipoic acid, quercitine,
pycnogenol, and some flavonoids (polyphenolic compounds
present in dietary plants), such as micronized purified
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flavonoids (e.g., diosmin and hesperidin) and oxerutins as
well as baicalein and catechins. NAC is the most commonly
used expectorant that also displays antidepressant effects
[120, 121]. NAC is a very potent radical scavenger which is
frequently used in research to eliminate ROS [122]. In animal
models, NAC administration attenuates the adverse effects of
LPS and prevents the increases of NF-κB protein and TLR4
mRNA [123]. Alfa-lipoic acid (ALA) is an organosulfur com-
pound, which is derived from octanoic acid. It occurs in
almost all food, but is usually covalently bound, rare, and
not directly available from dietary sources. For supplemental
purpose, the strong antioxidant ALA is chemically synthe-
sized. Experimental administration of ALA can prevent the
development of NAFLD in rats. ALA-treated rats showed
lesser TLR4, HMGB1, and inflammation markers than the
control group [124]. In obese mice, ALA can attenuate innate
immune infiltration and modulate the visceral adipose inflam-
mation, which play an important role in diet-induced obesity
and insulin resistance [125]. ALA acts through the TLR4 and
NF-κB pathways and abrogates the effects of LPS challenge
[125]. Cotreatment with ALA prevents the LPS-induced ex-
pression of TLR4, IL-6, and TNF-α [126]. Two substances
glycyrrhizin (GL) and isoliquiritigenin (ILG) from the plant
G. uralensis (Chinese licorice) suppress LPS-induced TLR4
signaling in different ways [127]. While GL affects the for-
mation of the LPS–TLR4/MD-2 complex, which leads to an
inhibition of homodimerization of TLR4, ILG does not affect
LPS binding to TLR4/MD-2, but inhibits LPS-induced TLR4
homodimerization [127].

Generally flavonoids, including resveratrol and baicalin, are
known as radical scavengers. In a placebo-controlled study,
Ghanim et al. [128] showed that the combination of resveratrol
and muscadine grape polyphenols significantly improved redox
status. The supplementation not only induces the expression of
antioxidant genes, but also suppresses enhanced TLR4, CD14,
and IL-1β expression [128]. Baicalin is a flavonoid extracted
from Scutellaria baicalensis, an herb used in TCM.Kim and Lee
[129] found that baicalin attenuates ischemia/reperfusion stress-
induced expression of TLR4 and MyD88, the nuclear transloca-
tion of NF-κB, and increased TNF-α and IL-6 mRNA levels in
animal models. Baicalin administration to the genital tract of
Chlamydia-infected mice significantly reduced Chlamydia
trachomatis loading in association with the expression of
TLR2, TLR4, and NF-κB, while in cervical tissue, iNOS and
cyclooxgenase-2 activities were decreased [130]. In another
model, baicalin attenuates the effects of cerebral ischemia in
association with the expression of TLR2, TLR4, NF-κB, iNOS,
and COX-2 [131].

Molecular Hydrogen

Another substance recently gaining scientific attention is
molecular hydrogen. Hydrogen could be either inhaled or

Fig. 2 Different sources of radical-induced damage-associated molec-
ular patterns (DAMPs). Very different chemical substances and ioniz-
ing radiation share that they can generate free radicals in tissue. These
distinct substances directly or indirectly cause activation of TLR4
signaling. One common mechanism is that they all induce DAMPs,
which activate TLR4 and subsequently cause inflammatory and oxida-
tive and nitrosative stress responses. Activation of the TLR with one
agonist causes an enhanced response to a second TLR agonist. Psy-
chological stressors may further augment the responsivity of TLR
signaling

Fig. 3 The TLR Radical Cycle. The initial event could be any TLR
activation, e.g., an infection, chemotherapy or radiation therapy, expo-
sure to radical inducing environmental substances or in some cases
adjuvant agents, either continuous low exposure or a short time high
exposure. Key is the release of reactive oxygen species (ROS), which
can degrade hyaluronic acid, oxidize phospholipids and can activate
high-mobility group protein B1. All these products are damage-asso-
ciated molecular patterns (DAMPs) that activate the TLR4 pathway
resulting in increased production of ROS, reactive nitrogen species,
and inflammatory mediators. As a consequence, a vicious cycle may
result between TLR activation and ROS production which is indepen-
dent of the initial event. Blocking this TLR radical cycle offers oppor-
tunities to treat many TLR-related diseases. TLR4 antagonist,
interference with the signal pathway, and ROS eliminating pharmaceu-
ticals provide possibilities to treat TLR4-induced chronic inflammatory
responses
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consumed as hydrogen-enriched water. Hydrogen is the
lightest of all molecules and has the ability to react with
several free radicals. Recently, Ohno et al. [132] reviewed
that hydrogen may have a positive effect in 63 different
diseases. The majority of the experiments were carried out
in animal models, including Alzheimer’s and Parkinson’s
disease models. Results are reviewed in human
diseases/conditions, including infarction, metabolic syn-
drome, diabetes mellitus type 2, inflammatory and mito-
chondrial myopathies, and radiation-induced adverse
effects [132]. For example, hydrogen-enriched water has
been shown to have a clinical efficacy in treating mito-
chondrial dysfunctions in inflammatory and mitochondrial
myopathies [133]. Part of the clinical efficacy of molec-
ular hydrogen is attributed to its anti-inflammatory,
antioxidative, and neuroprotective effects [134]. More-
over, hydrogen gas inhibits LPS-induced NF-κB produc-
tion and inflammatory pathways in the lung, including
the production of pro-inflammatory cytokines and
chemokines, and additionally prevents lung cell apopto-
sis [135].

Critical Notes

Experimental studies of TLRs are, however, accompanied
by several obstacles. In the past, some papers had to be
retracted due to artifacts by LPS contaminations. Bacteria
are ubiquitous and, therefore, cell culture experiments are
error-prone to LPS contamination [136]. One potential
source of LPS is bovine serum albumin used in eukaryotic
cell cultures. Another problem revolves around the extreme
conserved DNA sequences and structures of TLR receptor
proteins. It appears to be difficult to raise specific monoclo-
nal antibodies, which reliably recognize TLRs [137]. Nev-
ertheless, new methodologies are available to develop
sensitive antibodies [137]. Another problem is that the over-
all expression of TLR receptors is not very high. Other
authors describe difficulties when measuring TLR4 proteins
on the surface of cells [138]. Perhaps, the most reliable
method for the measurement of TLR is quantitative reverse
PCR. The abovementioned methodological difficulties have
undoubtedly led to erroneous conclusions in the past litera-
ture. Nevertheless, the literature on TLR2/TLR4 functions
and dysfunctions is consistent, and new data based on
appropriate methods have been published.

Conclusions

This paper reviews that activation of the TLR4 complex
may underpin chronic inflammatory diseases. Many envi-
ronmental factors may activate or interfere with the TLR4

pathways and therefore induce inflammatory and O&NS
pathways, e.g., ozone, atmospheric particulate matter,
long-lived reactive oxygen intermediates, nanoparticles,
metals, organophosphate pesticides, dioxin, pentachloro-
phenol, ionizing radiation, toluene, and heat shock protein
70. Figure 2 shows the environmental factors that may
activate the TLR4 complex mainly through the effects of
ROS/RNS-induced DAMPs. Chronic inflammation may be
caused by a single high exposure or chronic subacute expo-
sure to the abovementioned radical-inducing substances.

As shown in Fig. 3, a vicious cycle between the TLR4
complex, production of ROS/RNS stimulating the TLR4
complex could explain the maintenance of chronic inflam-
matory state. We propose to term this vicious cycle the
“TLR Radical Cycle.”

The inflammatory andO&NS effects of the abovementioned
TLR4 agonists may be blocked or attenuated using anti-LPS
strategies that neutralize LPS (synthetic anti-LPS peptides and
recombinant factor C), TLR4/MyD88 antagonists (eritoran,
CyP, EM-163, licorice, M. officinalis, ginger, curcumin, and
cinnamon) and antioxidants. By inference, these compounds
targeting the TLR4 complex may be new “drugs” to treat
TLR4-mediated inflammatory disorders. It is concluded that
targeting the TLR radical cycle, i.e., suppressing the TLR4
signaling pathway in conjunction with antioxidative effects,
may alleviate the suffering of millions of people affected with
TLR-induced inflammatory disorders.
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