Skip to main content
Log in

RNA Stability in Human Liver: Comparison of Different Processing Times, Temperatures and Methods

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The accuracy of information garnered by real-time quantitative polymerase chain reaction (RT-qPCR), an important technology for elucidating molecular mechanisms of disease, is dependent on tissue quality. Thus, this study aimed to determine the effects of intra-operative manipulation, extended processing times, different temperatures or storage in RNAlater on RNA quality in liver samples for tissue banking. Liver samples, flash-frozen or in RNAlater, were collected over a time course (during surgery before blood arrest up to 1 day after surgery) with samples kept either at room temperature (RT) or on ice. This study showed that at the longest time-point at RT, the RNA quality decreased significantly by 20%. However, relative gene expressions of FOS, GUSB, MYC, HIF1α and GFER were in general not significantly different when the time-points were compared. In conclusion, samples should be kept on ice during processing, and either RNAlater or snap-freezing should be utilised for storage. Further, intra-operative manipulation and extended postoperative processing time generally does not change relative gene expression levels for the 5 genes studied, making such sampling suitable for RT-qPCR analysis. Thus, if relative gene expression of a gene of interest is stable, these guidelines will lead to increased accrual of samples to the tissue bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6, 986–994.

    Article  CAS  Google Scholar 

  2. Martell, M., Gomez, J., Esteban, J. I., Sauleda, S., Quer, J., Cabot, B., et al. (1999). High-throughput real-time reverse transcription-PCR quantitation of hepatitis C virus RNA. Journal of Clinical Microbiology, 37, 327–332.

    CAS  Google Scholar 

  3. Almeida, A., Paul Thiery, J., Magdelenat, H., & Radvanyi, F. (2004). Gene expression analysis by real-time reverse transcription polymerase chain reaction: Influence of tissue handling. Analytical Biochemistry, 328, 101–108.

    Article  CAS  Google Scholar 

  4. Jewell, S. D., Srinivasan, M., McCart, L. M., Williams, N., Grizzle, W. H., LiVolsi, V., et al. (2002). Analysis of the molecular quality of human tissues: An experience from the Cooperative Human Tissue Network. American Journal of Clinical Pathology, 118, 733–741.

    Article  CAS  Google Scholar 

  5. Ohashi, Y., Creek, K. E., Pirisi, L., Kalus, R., & Young, S. R. (2004). RNA degradation in human breast tissue after surgical removal: A time-course study. Experimental and Molecular Pathology, 77, 98–103.

    Article  CAS  Google Scholar 

  6. Micke, P., Ohshima, M., Tahmasebpoor, S., Ren, Z. P., Ostman, A., Ponten, F., et al. (2006). Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Laboratory Investigation, 86, 202–211.

    Article  CAS  Google Scholar 

  7. Fishman, W. H. (1947). Beta-Glucuronidase; its relation to the action of the estrogenic hormones. Journal of Biological Chemistry, 169, 7–15.

    CAS  Google Scholar 

  8. Patel, P. I., Framson, P. E., Caskey, C. T., & Chinault, A. C. (1986). Fine structure of the human hypoxanthine phosphoribosyltransferase gene. Molecular and Cellular Biology, 6, 393–403.

    CAS  Google Scholar 

  9. Kelly, K., Cochran, B. H., Stiles, C. D., & Leder, P. (1983). Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell, 35, 603–610.

    Article  CAS  Google Scholar 

  10. Wang, G. L., & Semenza, G. L. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. Journal of Biological Chemistry, 268, 21513–21518.

    CAS  Google Scholar 

  11. Farrell, S. R., & Thorpe, C. (2005). Augmenter of liver regeneration: A flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity. Biochemistry, 44, 1532–1541.

    Article  CAS  Google Scholar 

  12. Thasler, W. E., Weiss, T. S., Schillhorn, K., Stoll, P. T., Irrgang, B., & Jauch, K. W. (2003). Charitable state-controlled foundation human tissue and cell research: Ethic and legal aspects in the supply of surgically removed human tissue for research in the academic and commercial sector in Germany. Cell Tissue Bank, 4, 49–56.

    Article  Google Scholar 

  13. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  14. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.

    Article  CAS  Google Scholar 

  15. Marchuk, L., Sciore, P., Reno, C., Frank, C. B., & Hart, D. A. (1998). Postmortem stability of total RNA isolated from rabbit ligament, tendon and cartilage. Biochimica et Biophysica Acta, 1379, 171–177.

    Article  CAS  Google Scholar 

  16. Bahar, B., Monahan, F. J., Moloney, A. P., Schmidt, O., MacHugh, D. E., & Sweeney, T. (2007). Long-term stability of RNA in post-mortem bovine skeletal muscle, liver and subcutaneous adipose tissues. BMC Molecular Biology, 8, 108.

    Article  Google Scholar 

  17. Gopee, N. V., & Howard, P. C. (2007). A time course study demonstrating RNA stability in postmortem skin. Experimental and Molecular Pathology, 83, 4–10.

    Article  CAS  Google Scholar 

  18. Inoue, H., Kimura, A., & Tuji, T. (2002). Degradation profile of mRNA in a dead rat body: Basic semi-quantification study. Forensic Science International, 130, 127–132.

    Article  CAS  Google Scholar 

  19. Finger, J. M., Mercer, J. F., Cotton, R. G., & Danks, D. M. (1987). Stability of protein and mRNA in human postmortem liver—analysis by two-dimensional gel electrophoresis. Clinica Chimica Acta, 170, 209–218.

    Article  CAS  Google Scholar 

  20. Port, M., Schmelz, H. U., Stassen, T., Mueller, K., Stockinger, M., Obermair, R., et al. (2007). Correcting false gene expression measurements from degraded RNA using RTQ-PCR. Diagnostic Molecular Pathology, 16, 38–49.

    Article  CAS  Google Scholar 

  21. Hoffmann, G., Ijzer, J., Brinkhof, B., Schotanus, B. A., van den Ingh, T. S., Penning, L. C., et al. (2009). Comparison of different methods to obtain and store liver biopsies for molecular and histological research. Comparative Hepatology, 8, 3.

    Article  Google Scholar 

  22. Keating, D. T., Malizia, A. P., Sadlier, D., Hurson, C., Wood, A. E., McCarthy, J., et al. (2008). Lung tissue storage: Optimizing conditions for future use in molecular research. Experimental Lung Research, 34, 455–466.

    Article  CAS  Google Scholar 

  23. Wang, S. S., Sherman, M. E., Rader, J. S., Carreon, J., Schiffman, M., & Baker, C. C. (2006). Cervical tissue collection methods for RNA preservation: Comparison of snap-frozen, ethanol-fixed, and RNAlater-fixation. Diagnostic Molecular Pathology, 15, 144–148.

    Article  CAS  Google Scholar 

  24. Grotzer, M. A., Patti, R., Geoerger, B., Eggert, A., Chou, T. T., & Phillips, P. C. (2000). Biological stability of RNA isolated from RNAlater-treated brain tumor and neuroblastoma xenografts. Medical and Pediatric Oncology, 34, 438–442.

    Article  CAS  Google Scholar 

  25. Kasahara, T., Miyazaki, T., Nitta, H., Ono, A., Miyagishima, T., Nagao, T., et al. (2006). Evaluation of methods for duration of preservation of RNA quality in rat liver used for transcriptome analysis. Journal of Toxicological Sciences, 31, 509–519.

    Article  CAS  Google Scholar 

  26. Mutter, G. L., Zahrieh, D., Liu, C., Neuberg, D., Finkelstein, D., Baker, H. E., et al. (2004). Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays. BMC Genomics, 5, 88.

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by the HTCR foundation, which makes human tissues available for research. We thank the technical assistants from the Grosshadern Hospital Tissue Bank for collecting the liver samples. Our thanks also go to Dr. Bauersachs from the Gene Center in Ludwig Maximilians University for kindly allowing us to use his Agilent Bioanalyzer. This work was carried out with financial support from the Bundesministerium für Bildung und Forschung (BMBF; grant name: M4 Munich Biotech Excellence Cluster Biobank Alliance, grant number 01EX1020B).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang E. Thasler.

Additional information

Serene M. L. Lee and Celine Schelcher are equal authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.M.L., Schelcher, C., Gashi, S. et al. RNA Stability in Human Liver: Comparison of Different Processing Times, Temperatures and Methods. Mol Biotechnol 53, 1–8 (2013). https://doi.org/10.1007/s12033-011-9493-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9493-4

Keywords

Navigation