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Abstract
CACNG2 (TARPγ2, Stargazin) is a multi-functional regulator of excitatory neurotransmission and has been implicated in the
pathological processes of several brain diseases. Cacng2 function is dependent upon expression level, but currently, little is
known about the molecular mechanisms that control expression of this gene. To address this deficit and investigate disease-
related gene variants, we have cloned and characterized the rat Cacng2 promoter and have defined three major features: (i)
multiple repressive domains that include an array of RE-1 silencing transcription factor (REST) elements, and a calcium
regulatory element-binding factor (CaRF) element, (ii) a (poly-GA) short tandem repeat (STR), and (iii) bidirectional organiza-
tion with expressed lncRNAs. Functional activity of the promoter was demonstrated in transfected neuronal cell lines (HT22 and
PC12), but although selective removal of REST and CaRF domains was shown to enhance promoter-driven transcription, the
enhanced Cacng2 promoter constructs were still about fivefold weaker than a comparable rat Synapsin-1 promoter sequence.
Direct evidence of REST activity at the Cacng2 promoter was obtained through co-transfection with an established dominant-
negative REST (DNR) construct. Investigation of the GA-repeat STR revealed polymorphism across both animal strains and
species, and size variation was also observed in absence epilepsy disease model cohorts (Genetic Absence Epilepsy Rats,
Strasbourg [GAERS] and non-epileptic control [NEC] rats). These data provide evidence of a genotype (STR)-phenotype
correlation that may be unique with respect to proximal gene regulatory sequence in the demonstrated absence of other promoter,
or 3′UTR variants in GAERS rats. However, although transcriptional regulatory activity of the STR was demonstrated in further
transfection studies, we did not find a GAERS vs. NEC difference, indicating that this specific STR length variation may only be
relevant in the context of other (Cacna1h and Kcnk9) gene variants in this disease model. Additional studies revealed further
(bidirectional) complexity at the Cacng2 promoter, and we identified novel, co-regulated, antisense rat lncRNAs that are paired
with Cacng2 mRNA. These studies have provided novel insights into the organization of a synaptic protein gene promoter,
describing multiple repressive and modulatory domains that can mediate diverse regulatory inputs.
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Introduction

CACNG2 (TARPγ2, Stargazin) is a plasma membrane pro-
tein that regulates excitatory neurotransmission in the brain.
This 323 amino-acid (in human) protein is an auxiliary subunit
o f AMPA (α - am i n o - 3 - h y d r o x y - 5 -m e t h y l - 4 -
isoxazolepropionic acid) glutamate receptors, a so-called
trans-membrane AMPAR regulatory protein (TARP) that reg-
ulates receptor function and distribution at the synapse (Chen
et al. 2000; Jackson and Nicoll 2011). Although a number of
different TARPs are expressed in the CNS, indicating some
functional redundancy, studies have shown that CACNG2/
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TARPγ2 does have specific actions, for example, in maintain-
ing AMPAR density in hippocampal synapses (Yamasaki
et al. 2016). Of relevance to the current study of Cacng2 gene
expression, experiments have shown that CACNG2 Bdose-
dependently^ affects AMPA receptor gating (Milstein et al.
2007), indicating that expression level could, potentially, be
a regulated aspect of CACNG2 function in the brain.
Supporting this idea, CACNG2 associates with the
(neuronal) activity-regulated cytoskeleton-associated protein,
ARC (Zhang et al. 2015), and changes in Cacng2 expression
are correlated with experience-dependent plasticity (Lee et al.
2016; Louros et al. 2014). There is also evidence of both
developmental- (Menuz et al. 2009) and disease-related
changes in Cacng2 expression, the latter including several
different psychiatric disorders (Beneyto and Meador-
Woodruff 2008; Silberberg et al. 2008), and Alzheimer’s dis-
ease (Savas et al. 2017).

Given the role ofCacng2 in synaptic transmission, and this
evidence for function/dysfunction-related expression level, it
is surprising that very little is known about the molecular
mechanisms that regulate Cacng2 gene expression, including,
for example, gene promoter structure. Disease-associated ge-
netic variants are often found in gene regulatory sequences,
and, in fact, there is evidence of bipolar disorder-associated
variants within putative human Cacng2 regulatory sequence
(Ament et al. 2015). Hence, there is a strong justification for
experimental analysis of the regulatory DNA sequences that
control Cacng2 expression.

Our interest in the regulation of this gene is based on stud-
ies of absence epilepsy models (Cope et al. 2009; Holter et al.
2005a, 2005b; McCafferty et al. 2018).Cacng2 is well known
as the affected gene in stargazer mutant mice (Noebels et al.
1990), but we have primarily studied another genetic model
(GAERS; genetic absence epilepsy rats, Strasbourg) that is a
polygenic rat model of absence epilepsy (see Cope et al.
2009). The genetic basis of spontaneous spike-and-wave dis-
charges (SWDs) in GAERS is not fully understood; known
mutations in Cacna1h (Powell et al. 2009) and Kcnk9 (Holter
et al. 2005a) may contribute, but it is likely that additional
DNA sequence variants remain to be discovered. One study
(Rudolf et al. 2004) has mapped possible mutation sites in a
quantitative trait locus (QTL) analysis. One QTL region on rat
chromosome 7 is intriguing because it contains the Cacng2
gene. Although we have shown that the Cacng2 mRNA se-
quence is not altered in GAERS rats (Cope et al. 2009), other
studies have demonstrated raised levels of Cacng2 mRNA
and protein in GAERS (Powell et al. 2009). These results
are consistent with the hypothesis that regulatory DNA se-
quences controlling Cacng2 expression could be affected in
GAERS.

As noted above, Cacng2 gene promoter/enhancer se-
quences have not been directly investigated, and are also of
general interest in the molecular neuroscience field because

these sequences must contribute to the highly brain-specific
expression of this gene (Fukaya et al. 2005; GTEx
Consortium 2015). A genome-wide study of the calcium reg-
ulatory element-binding factor (CaRF; Pfenning et al. 2010)
has identified the Cacng2 mRNA as one (negatively regulat-
ed) CaRF target. In the latter study, a CaRF-associated,
CaRE1 element upstream of Cacng2 was also identified
(Pfenning et al. 2010), although the functional activity of this
site has not been experimentally confirmed. Other than this
rather limited data, nothing else is known about the Cacng2
promoter, and so preliminary cloning and sequencing work is
required to define Cacng2 promoter DNA sequence, and, at
the same time, investigate the sequence context of the CaRE
site that is conserved across rat, mouse, and human genomes.
By conducting this promoter analysis with rat genomic se-
quence, it will then be possible to investigate possible muta-
tions within GAERS sequence, and consider their functional
relevance.

Methods

Animals

Rodents were used in accordance with both the UK Animals
(Scientific Procedures) 1986 Act of Parliament and Cardiff
University ethical review. GAERS and non-epileptic control
(NEC) strains were maintained as described (Cope et al.
2009). The health status of the animals was monitored in ac-
cordance with these regulations and a veterinarian was
consulted if required. Animals were maintained in standard
laboratory cages and with standard conditions (14:10
light:dark cycle, lights on: 05.00 h; ad libitum access to food
and water) and killed by a Schedule 1 method. Tissues were
rapidly dissected, and then either stored briefly on dry ice prior
to RNA extraction, or used directly for DNA extraction.

PCR Analysis of DNA and RNA

Total cellular RNAwas extracted from either rat brain samples
or cell culture extracts using Trizol (Invitrogen protocol,
Thermo Fisher Scientific, Waltham, MA, USA). Rat genomic
sequence was amplified from initial rat brain RNA extracts
which contain a sufficient background of intact genomic
DNA. Mouse genomic DNA was amplified from Maxwell
kit-purified mouse tissue (Promega protocol; Promega,
Madison, WI, USA). Where cDNAwas required from either
rat brain or cell culture samples (see below), RNA extracts
were DNaseI-purified (Promega protocol), and cDNA was
generated with the Superscript II protocol (Life
Technologies, Thermo Fisher Scientific) using an Oligo (dT)
primer. PCR was conducted using standard procedures with
either REDTaq ReadyMix (Sigma, Aldridge, St.Louis, MO,
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USA) or Q5 Hot-Start High-Fidelity DNA polymerase (NEB,
Ipswich, MA, USA). Oligonucleotides used for amplification
are listed in Table S1. Amplified products in end-point PCR
analysis were visualized after agarose gel electrophoresis,
with reference to a DNA ladder (Hyperladder I, Bioline,
London, UK or 1 kb ladder, Promega), using GeneSnap
(Syngene, Frederick, MD, USA). For cloning and sequence
analysis, PCR products were purified (Qiaex II gel extraction
kit, Qiagen, Hilden, Germany) and either directly ligated into
pGEM-T (Promega protocol;) or, in the case of Q5-amplified
products, BA-tailed^ (Promega protocol) prior to ligation.
Ligations were transformed into JM109 cells (Promega), and
transformants were selected for plasmid purification (Wizard
SV Miniprep protocol, Promega). PCR products were then
sequenced (Eurofins MWG Operon, Ebersberg, Germany).
For QPCR analysis, the qPCRBIO SyGreen mix (PCR
Biosystems protocol, PCR Biosystems Ltd., London, UK)
was used with the Mx3000P system (Agilent, Santa Clara,
CA, USA), using the 2-ΔΔCT method for quantitation. In these
experiments, where samples of RNA extracted from mouse
HT22 cells were analyzed, mouse-specific PCR primers were
used, with mActb as the normalization gene (Table S1).

Expression of Cacng2 in Cell Culture

For the initial characterization of the rat Cacng2 promoter,
genomic sequence of different lengths (see Fig. 1) was ampli-
fied from Sprague Dawley rat genomic rat DNA using primers
flanked with KpnI and HindIII restriction enzyme sites (see
Table S1). Amplified products were purified, ligated into
pGEM-T as described above and sequence verified. Cacng2
sequences were then ligated into KpnI-HindIII-cut pGL4.10
(Promega). For the subsequent analysis of GA-repeat length
variation, similar procedures were used to obtain BF11-R10^
constructs containing sequence-verified GAERS and NEC rat
GA repeats (respectively, 60 bp and 58 bp repeats). A previ-
ously characterized dominant-negative REST (DNR) expres-
sion construct (Park et al. 2007) was obtained by amplifying
N-terminal mouse REST sequence with restriction enzyme-
flanked PCR primers (Table S1; DNRESTF1 and
DNRESTR2) and cloning the sequence-verified fragment into
the expression vector pcDNA3.1.

For comparison with the Cacng2 promoter constructs, we
selected the synapsin I (Syn1) promoter, widely used as an
experimental promoter with relative neuronal specificity (see
Matsuzaki et al. 2014). In order to enhance comparability
between the two promoter sequences with respect to species
and sequence length, we used similar cloning procedures (see
above) to obtain a de novo rat Syn1 promoter construct
(Supplemental data, S4; Genbank Accession: MH119182),
but included additional 5′ flanking sequence compared with
the commonly used Bcore^ promoter sequence (Matsuzaki
et al. 2014; cloning oligonucleotides in Table S1).

Hippocampal HT22 cells (provided by JD) were main-
tained in DMEM (Invitrogen/Thermo Fisher) with 10%
Fetal Bovine Serum (FBS, Invitrogen), and PC12 cells (Gift
of Prof. D. Murphy, University of Bristol, UK) were grown in
DMEM with 10% horse serum (Invitrogen) and 5% FBS.
Both culture media were supplemented with 1x antibiotic/
antimycotic (Invitrogen), and cells were grown on 12- or 24-
well Costar CellBIND® plates (Corning, Kennebunk, ME,
USA) at 37 °C, and in 5% CO2. For experimental analysis,
cells (1 × 105 or 5 × 104 for 12-, or 24-well plates, respective-
ly) were transfected (TransFast protocol, Promega) with plas-
mid constructs (PureYield, Promega protocol) and maintained
for 24 h prior to either reporter assay, or, in some cases RNA
extraction (see above). Plasmids were used at different
amounts for 24- and 12-well plates (100 or 150 ng/well re-
spectively), and were co-transfected with the control pRL-TK
plasmid (5 ng, Promega). Where used, the DNR construct was
transfected at 250 ng. In other experiments, HT22 cell cultures
were treated with N6,2′-O-Dibutyryladenosine 3′,5′-cyclic
monophosphate sodium salt (dbcAMP; 200 mM; Sigma) or
vehicle for 24 h, and then RNA was extracted as described
above. Transcription reporter assays were conducted with the
Dual-luciferase reporter assay system (Promega), using a
Luminometer (Model TD-20/20, Turner Biosystems,
Sunnyvale, CA, USA). Each transfection was replicated either
sixfold (3 replicates, in 2 transfection experiments) or eight-
fold (4 replicates, in 2 transfection experiments), as indicated
in the BResults^ section. Data was analyzed by first normal-
izing against individual pRL-TK values, and then calculating
fold-difference, compared to the activity of Bempty^ pGL4.10
vector.

Bioinformatics and Statistical Analysis

Rat Cacng2 gene promoter sequence was predicted from
flanking genomic sequence associated with mammalian
Cacng2 exons mapped on the UCSC genome browser
(genome.ucsc.edu), and also with reference to predicted
mouse and human promoters on the Eukaryotic promoter
database (epd.vital-it.ch). Species and strain sequence
variants were obtained from the STR catalog viewer (http://
strcat.teamerlich.org; Willems et al. 2014) and The Mouse
Genomes Project (ensembl.org/Mus_musculus/Info/Strains).
Potential trans-regulatory sites were identified using the
Meme suite (meme-suite.org/) and Lasagna (biogrid-lasagna.
engr.uconn.edu/lasagna). Potential regulatory sites in the
Cacng2 3′ UTR sequence were searched with BAREsite^
that detects AU-rich sites (rna.tbi.univie.ac.at/cgi-bin/
AREsite.cgi; Gruber et al. 2011), and TargetScan for
conserved miRNA target sites (www.targetscan.org).
Sequence identity was initially confirmed using BLAST
(blast.ncbi.nlm.nih.gov), and sequence comparisons were
conducted with Clustal Omega (ebi.ac.uk/Tools/ msa/
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clustalo). Statistical analysis was conducted with IBM SPSS
Statistics version 20 (IBM, New York, USA) by applying
different tests as indicated in the Results, and accepting
p < 0.05 as the significance level.

Data Availability The Genotype-Tissue Expression Project
(GTEx) data used for the analyses described in this manuscript
were obtained from the UCSC Genome Browser (http://
genome-euro.ucsc.edu) on 02/10/2017.

Results

Structure of the Cacng2 Promoter

Putative rat Cacng2 promoter sequence was identified by
selecting genomic DNA sequence that flanks the start of rat

CACNG2 coding sequence, and also aligns with human and
mouse promoters that are predicted on the Eukaryotic Promoter
Database (Supplemental data, S1). A number of prominent fea-
tures were identified in the selected 1832 bp of sequence in-
cluding an initiator sequence, multiple RE-1 silencing transcrip-
tion factor (REST/NRSF) elements, and a short tandem repeat
(STR) sequence, that consists of a run of repeated GA motifs
(Fig.1; Supplemental data, S1 & Fig. S2). With reference to the
conserved CaRE element previously identified in mouse se-
quence (Pfenning et al. 2010), it was also possible to identify
an equivalent rat CaRE sequence (Supplemental data, S1).

The genomic DNA sequence ident i f ied above
(Supplemental data, S1) was cloned and sequenced from
GAERS, NEC (Non-epileptic control strain) and Sprague-
Dawley rats. No inter-strain sequence variants were observed
with the exception of variation in the length of the STR se-
quence (Table 1, Supplemental data, S2). The latter finding is,

Fig. 1 Functional analysis of Cacng2 promoter activity in transfected
cells reveals multiple regulatory sequences, including an array of REST
elements and a GA-repeat STR. Cacng2 sequences were cloned within
pGL4.10, transfected into HT22 cells and levels of expression (fold-
change relative to empty pGL4.10) were determined by luciferase (Luc)
assays. In each experiment, p < 0.05 indicates statistically significant
differences between different groups, as determined by ANOVA and
post hoc analysis. a Expression levels of seven different Cacng2
constructs (mean ± S.E., n = 6/group). The relative position of the
different elements/regions are indicated by text boxes. C, calcium
regulatory element-binding factor consensus site (CaRE); DR,
downstream repressive region; GA, GA-repeat STR sequence; REST,

array of four REST consensus sites; R fully-boxed, single remaining
REST site; R incompletely boxed, partial REST site. For comparison,
representative activity of a similar rat SynI promoter construct is also
shown. This construct served as a positive control in all experiments. b
Co-transfection of a dominant-negative RESTconstruct (DNR) enhances
activity of the 1234 bp Cacng2 promoter construct. The data are
expression levels of constructs (mean ± S.E., n = 6/group). p < 0.05
indicates a statistically significant difference in Cacng2 construct
activity in the presence of DNR. c Cacng2 GA-repeat length affects
promoter activity. Expression levels of three different Cacng2
constructs (mean ± S.E., n = 8/group) showing higher expression of the
GA-58 and GA-60 constructs relative to the GA-50 construct
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in fact, consistent with recorded sequence variation already
lodged in the nucleotide and genome databases. In fact, sourc-
ing these sequences from different databases reveals that mul-
tiple length variants are recorded at both inter- and intra-
species levels (Table 1). Our sequencing results also indicate
some intra-individual variation; for example, values of either
50 nt or 52 nt for the Sprague-Dawley strain (Table 1). Both
these values accord with the value of 50 nt for Sprague-
Dawley sequence in the NCBI nucleotide database (e.g.,
XR_601918.1), and the small differences may relate to either
some degree of intra-individual variation/heterozygosity, or
possibly, PCR Bslippage^ in the analysis (Clarke et al.
2001). Overall, however, we have observed a consistent strain
variation, with a marked difference of up to 12 nt between the
GAERS/NEC strains and SD rats. For an Bin-house^ species
comparison, we also sequenced the GA-repeat region from
CD-1 mice, finding values that approximated to many of the
recorded strains in the Mouse Genomes Project database
(Table 1).

In an additional sequencing analysis, we also showed that
3′ UTR sequence in GAERS Cacng2 mRNA did not exhibit
sequence variation when compared to the genome database
(Supplemental data, S3). Taken together, these sequencing
results provide no evidence for sequence variation within the
proximal regulatory sequence of GAERS ratCacng2, with the
notable exception of a length variation at a poly-GA STR
sequence.

Functional Domains of the Cacng2 Promoter

In further experiments, the Cacng2 sequence identified above
was cloned into a promoter-less vector (pGL4.10), and direct-
ly analyzed for promoter activity using a transient transfection
approach in two cell lines, HT22 and PC12. For comparison
with another neuronal promoter sequence that has been exten-
sively characterized for other species, the rat Syn1 promoter
was similarly cloned (Supplemental data, S4) and tested in
parallel. Initial studies showed that the rat Syn1 sequence
strongly drives transcription of the luciferase reporter gene
in HT22 cells, resulting in approximately 50-fold induction
compared with empty vector (Fig.1; p < 0.05, Student’s t test
for independent samples, n = 6/group). Subsequent experi-
ments utilized a number of different sized Cacng2 promoter
constructs, and all of these constructs were found to be mark-
edly less active than the Syn1 construct, driving only modest
levels of transcription even following the selective removal of
multiple different sequence blocks (Fig.1, see details below).
Statistical analysis showed that only four Cacng2 constructs
(named 1234 bp, 801 bp, 778 bp, and 661 bp; Fig.1) stimu-
lated transcription above the control (vector) level (p < 0.05,
Student’s t test for independent samples, n = 6/group; Fig. 1).
These findings were also broadly confirmed (using selected
constructs) in PC12 cells where the Syn1 promoter was again

markedly more active thanCacng2 constructs (fold-difference
vs. empty vector: SynI, 50.8 ± 4.6; Cacng2 801 bp, 9.6 ± 1.0;
Cacng2 1234 bp, 3.6 ± 0.5; n = 6/group).

The extensive promoter analysis conducted in HT22 cells
revealed three repressive regions: a distal, upstream region
containing the identified CaRE element, a larger distal region
containing the multiple REST elements, and a third, down-
stream repressive region (Fig. 1). Evidence for independent
regulatory activity in these three regions can be found in the
statistical comparisons between: 1234 and 1344 bp (deleting
CaRE region), 801 and 1234 bp (deleting 3 REST elements),
and 780 and 661 bp (deleting downstream region). For each of
these comparisons, ANOVA and post-hoc analysis conducted
across all Cacng2 constructs (Fig. 1) revealed significant dif-
ferences in fold induction (p < 0.05, one-way ANOVA, and
Dunnett T3 test, df (6.35), F = 37.789, n = 6/group). Our in-
ference of independently acting repressive elements is also
generally supported by additional comparisons between dif-
ferent constructs in this analysis (Fig. 1). The absence of any
significant difference between the 661 and 801 bp data indi-
cates that the remaining REST consensus sequence in 801 bp
does not significantly influence activity, at least in this exper-
imental context. In order to directly evaluate the role of the full
array of REST consensus sequences in this promoter context,
a dominant-negative REST construct (DNR, see BMethods^
section) was co-transfected with the Cacng2 1234 bp con-
struct in HT22 cells (Fig. 1). Marked over-expression of this
DNR sequence was demonstrated by RT-PCR analysis of
transfected cells (Supplemental Fig. S5), and this was associ-
ated with a significant increase in transcription from the
Cacng2 construct, indicating derepression of the promoter
(Fig. 1). In this experiment, ANOVA and post-hoc analysis
between the different experimental conditions revealed a sig-
nificant difference in fold-induction when the DNR construct
was co-expressed with the 1234 bp Cacng2 construct
(p < 0.05, one-way ANOVA, and Dunnett’s T3 test, df
(3.20), F = 34.707, n = 6/group).

The Cacng2 F11R10 1234 bp construct was also selected
for analysis of the functional properties of the variable GA-
repeat sequence. For this purpose, two additional F11R10
constructs were synthesized containing the longer 58 bp
(NEC-representative) and 60 bp (GEARS-representative)
GA-repeat length sequences. A three-way comparison be-
tween the GA-50 (Sprague-Dawley), GA-58, and GA-60 con-
structs in further transfection experiments revealed a modest
but significant increase in activity of the GA-58 and GA-60
constructs compared with GA-50 construct, but no apparent
difference in activity between the latter two constructs (Fig.1;
p < 0.05GA-50 vs both GA-58 and GA-60, one-way ANOVA
and Dunnett T3 test, df (3.28), F = 31.592, n = 8/group). The
GA-repeat sequence is therefore identified as having regula-
tory function in this promoter context. Additional analysis of
this repeat sequence on the UCSC genome browser revealed a
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high level of conservation (Supplemental Fig. S6), extending
far beyond that already identified for human, mouse, and rat
genomes (Table 1 data).

Co-regulation of Cacng2-Paired lncRNAs

Observation of the Cacng2 genomic locus on the human and
mouse genome browsers indicates a potential bidirectional
promoter organization (Fig. 2a; Adachi and Lieber 2002), giv-
en the proximal, downstream location of lncRNA transcripts
that are oriented Bhead-to-head^ with Cacng2 (human RP1-
293 L6.1 and mouse AK043153; Supplemental Fig. S7A).
Notably, GTEx analysis indicates an almost identical expres-
sion profile for human Cacng2 and the associated RP1-
293 L6.1 transcript (Supplemental Fig. S8). Analysis of hu-
man ESTs also reveals similar (brain-specific) expression of

EST sequences in this genomic region (e.g., DA799098; Fig.
S7B). This region also features an annotated CpG island in the
mouse Cacng2 promoter region that is highly conserved in rat
(Supplemental data, S9), and CpG islands are common fea-
tures of bidirectional promoters (Uesaka et al. 2014). In order
to investigate the presence of expressed downstream se-
quences in rat, that are antisense to Cacng2, we designed
primers (Table S1) to rat sequence equivalent to that of mouse
AK043153, following BLAT analysis of the rat genome, and
used these primers to amplify cDNAs from oligo-dT-primed
rat RNAs (Fig. 2). Abundant PCR products were derived from
rat brain but not the liver (Fig. 2B), a consistent result that was
replicated from independent tissue samples (data not shown).
The two brain-derived product bands were cloned and se-
quenced, revealing multi-exon RNA sequences (405 bp and
578 bp; Supplemental data, S10) with relative homology to

Table 1 Cacng2 gene variants at
the poly-GA STR sequence Species and

strain
STR Length (current
study)

Genome/database STR length (genome/
database)

Rat BN – Rat genome, rn6 XR_593643 54

54

SD 50, 52, 50 XR_601918.1 50

GAERS 60, 60, 62 –

NEC 58, 58, 58 –

Mouse
C57BL/6J

– Mouse genome, mm10 XR_
875456.1

48

48

CD-1 38, 38, 40 –

sPRET/EiJ – MGP 30

pWK/phJ – MGP 38

cAST/EiJ – MGP 30

wSB/EiJ – MGP 40

nZO/HILtJ – MGP 34

C57BL/6NJ – MGP 48

nOD/ShiLtJ – MGP 42

fVB/NJ – MGP 40

dBA/2 J – MGP 42

cBA/J – MGP 40

c3H/HeJ – MGP 40

aKR/J – MGP 42

bALB/cJ – MGP 40

a/J – MGP 40

IP/J – MGP 40

129S1/SvImJ – MGP 42

Human – Human genome, hg38 66

– STR catalog viewer* 51, 53, 55, 57

Values are GA-repeat length in nucleotides (e.g., 50 = 25 × GA). Values shown for the current study are repre-
sentative of individual biological replicates

*Willems et al. (2014). BN, Brown Norway; GAERS, Genetic Absence Epilepsy Rat, Strasbourg; NEC, normal
epileptic control; SD, Sprague-Dawley. Mouse strain nomenclature is from the Mouse Genomes Project (MGP,
see BMethods^ section)
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both human RP1-293L6.1 and mouse AK043153. However,
the cloned rat RNAs have an exon structure that is distinct
from current database sequences, because whereas the two
terminal exons map to annotated mouse exons in
AK043153, for example, the intervening exons, although
highly conserved at a sequence level, do not. Clearly, this
distinction may relate to currently incomplete transcriptome
annotation rather than actual species differences in transcript
structure. The two novel rat RNAs cloned in this initial anal-
ysis (405 bp and 578 bp; Supplemental data, S10) have acces-
sion numbers: MH340060 and MH340061.

Following the demonstration of brain-specific expression
of Cacng2-associated rat lncRNAs, the regulation of their ex-
pression was investigated in (mouse) HT22 cells, and com-
pared with that of Cacng2 mRNA (Fig.2c). This analysis in-
volved a cAMP Bdifferentiation^ paradigm (Inda et al. 2017)
in which HT22 cells were treated with the cAMP analogue,
dbcAMP. Initial end-point RT-PCR analysis revealed that
PCR primers designed against the equivalent mouse se-
quences used for rat lncRNA permitted amplification of sim-
ilar products, as would be predicted from sequence conserva-
tion (see above; Fig. 2c). However, these products can be
clearly observed only in the dbcAMP-treated samples, indi-
cating, firstly, a low level of lncRNA expression under basal
conditions in these cells, and secondly, regulated expression,
in this case by cAMP. Similar results were observed for HT22
Cacng2 mRNA, indicating that these transcripts can be co-
regulated. Subsequent QPCR analysis confirmed co-
regulation quantitatively, with both lncRNA and Cacng2
amplicons showing significant fold-increases in dbcAMP-
treated cultures compared with controls (2.61 ± 0.45-fold

and 2.57 ± 0.29-fold, respectively, n = 6, p < 0.05,
Independent samples t test for both amplicons). Interestingly,
however, the control lanes used for the end-point PCR analy-
sis (Fig. 2c) revealed an apparent higher level of lncRNA
transcripts relative to Cacng2 transcripts in whole brain, sug-
gesting that although co-regulation can be observed, there is
also an indication of independent lncRNA expression (in se-
lective, unknown brain areas), an observation that requires
investigation in further studies (also, see below).

Bidirectional Activity of the Cacng2 Promoter

In order to further investigate the potential bidirectional orga-
nization of the Cacng2 promoter with associated lncRNA
transcripts, further RT-PCR and transfection studies were per-
formed. Initially, RT-PCRs were designed to identify more 5′
lncRNA sequence. This analysis was based on the genomic
location of a (+ strand) rat EST (AI535545.1), and a similar
mouse AK043153 RNA that are both initiated upstream of the
rat lncRNA transcripts identified above, therefore indicating
proximity to the Cacng2 promoter. Using primers RlncF2 and
RlncR3 (Table S1), a PCR product was again consistently
derived from rat brain but not liver (Fig. S11). Cloning and
sequencing of the PCR product revealed a 491 bp sequence
(Supplemental data, S10) that mapped to the predicted region
of the rat Cacng2 locus, and was contiguous with the initial
exon sequence of the two rat lncRNAs identified above. This
result indicates a long initial lncRNA exon in rat that is similar
to that seen in the mouse AK043153 RNA, and is also partial-
ly overlapping annotated ESTs (mouse: BB640458 and
BB643739; rat: AI535545, BF522394, and CB708921).

Fig. 2 Tissue-specific and regulated expression of (antisense) lncRNAs
associated with the Cacng2 promoter. a Schematic representation (not
scaled) of the Cacng2 locus illustrating the Bhead-to-head^ organization
of Cacng2-coding and lncRNA(s) sequences in the rat genome. The
dashed arrows indicate the generation of the respective transcripts from
opposite strands of DNA, with multiple arrows indicating the presence of
multiple lncRNA transcripts of different sizes, as indicated by the current
data. b, cRepresentative images of agarose gel electrophoresis analysis of

PCR-amplified lncRNA, Cacng2 mRNA and Actb mRNA from different
tissues and cells. b Tissue-specific expression of Cacng2-associated
lncRNA in the brain. c Cacng2 and lncRNA amplicons are upregulated
in cultured HT22 cells following treatment with dbcAMP (cAMP) as
compared with vehicle-treated cultures (Con). Numbers on the left of gels
are sizes in base pairs. Arrows indicate the two different lncRNA
amplicons (see text). H2O represents a cDNA-negative control PCR
reaction
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Therefore, the lncRNA(s) are initiated (at most) just 594 bp
from the Cacng2 initiator sequence, and, given the location of
AI535545, possibly as little as 555 bp. Taken together with
our Cacng2 promoter analysis, this sequencing confirms the
predictions of current genome annotation (see above), namely
that the (reverse-oriented)Cacng2 and lncRNA transcripts are
initiated proximally, and may therefore share a bidirectional
promoter. To test this hypothesis, further transfection experi-
ments were conducted using an additional (reverse orienta-
tion) construct based on the 801 bp Cacng2 promoter con-
struct that includes the initial 25 bp of the 5′ lncRNA sequence
identified above. Using both HT22 and PC12 cells, it was
shown that the 801 bp promoter sequence significantly en-
hanced transcription in both orientations, providing strong,
functional evidence for the presence of a bidirectional promot-
er in this region (Fig. 3; HT22: F (2.17) = 16.781, p < 0.05,
Dunnett T3 test; PC12: F (2.17) = 30.298, p < 0.05, Dunnett
T3 test; n = 6/group). Interestingly, the reverse orientation
construct was relatively more active in PC12 cells, driving
significantly more transcription than the (forward (Cacng2)-
oriented) construct in this cellular context (Fig.3c; p < 0.05,
Dunnett T3 test). Further studies are required to identify the
possible physiological significance of this finding, but clearly,
the promoter can be relatively more active in this orientation,
which is interesting given the high levels of brain lncRNA
(relative to Cacng2) transcripts identified in our previous
RT-PCR analysis (Fig.2c).

Discussion

Differences in gene expression level between conspecifics is a
recognized determinant of mutant phenotype severity (Vu
et al. 2015), and one source of this variation is STR
(microsatellite) polymorphism (Hannan 2018; Willems et al.
2014). In humans, polymorphic STR loci (Willems et al.
2014) correlate with many different phenotypes including hu-
man behaviors that are associated with psychiatric disorders
(Bagshaw et al. 2017; Landefeld et al. 2018). In the current
study, we have made the novel observation that a GA-repeat
STR within the Cacng2 promoter region is a candidate se-
quence for this type of function-related polymorphism. Here,
we show that this GA-repeat is highly variable both between
and within species. In different rat strains, we detected multi-
ple different variants in this neuronal promoter region, a find-
ing that reflects previous analyses of promoter-associated re-
peats in rodents (Kacew and Festing 1996). In addition, we
have shown that natural polymorphisms affect activity of the
Cacng2 promoter that has been defined here for the first time.

An absence epilepsy model-related GA-repeat variation
(NEC vs. GAERS rats) was also identified, but was not found
to correlate with Cacng2 promoter activity in the current ex-
periments. This negative result may simply reflect the in vitro/

cell culture context of these studies. At the same time, it is also
the case that the GA-repeat variation is but one (potential)
contributory genetic factor in this polygenic animal model
(see Cope et al. 2009; Holter et al. 2005a; Powell et al.
2009), and therefore a GA-repeat-related contribution may
be subtle, but nevertheless of significance when manifested
in combination with other variations in different contributory
genes. Previous studies have shown that small variations in
repeat length alleles can contribute to phenotype within an
appropriate context; for example, a 12 vs 13 AC-repeat vari-
ation in the Tbr1 gene promoter has been shown to correlate
with a human behavioral phenotype (Bagshaw et al. 2017).
Notably, the Cacng2 GA-repeat variation is extensive across
different mouse strains and may contribute to other pheno-
types, including other epilepsies. With respect to generalized
epileptic seizures, this variation may be of relevance because
there are marked differences in seizure susceptibility between
different mouse strains (Kosobud and Crabbe 1990), includ-
ing kainic acid-induced seizures (McKhann et al. 2003), and
Cacng2 is a determinant of kainic acid responsiveness
(Tomita et al. 2007). However, inspection of the current list
of Cacng2 GA-repeat STR variations across mouse strains
(Table 1) does not indicate a simple correlation between repeat
length and kainic acid-sensitivity, because although C57 mice,
for example (repeat length, 48), are markedly more tolerant of
kainic acid than the 129/SvJ strain (repeat length, 42), C3H
mice, on the other hand (repeat length, 40), have a kainic acid-
sensitivity level more similar to C57 mice than to the 129/SvJ
strain (McKhann et al. 2003). Further functional analysis of
Cacng2 repeat length in different mouse strains is required,
noting that other genetic differences between these strains
must always be considered when making these individual
genotype-phenotype correlations.

With respect to promoter dinucleotide polymorphisms in
general, these are recognized to be correlated with gene ex-
pression (Bilgin Sonay et al. 2015), being observed in numer-
ous promoters (Sugiyama et al. 2011; Ohadi et al. 2012;
Nikkhah et al. 2015; Liu et al. 2015; Emamalizadeh et al.
2017), and forming potential Btuning knobs^ of gene expres-
sion (Abe and Gemmell 2016; Sawaya et al. 2012, 2013;
Vinces et al. 2009). The reported effects of STR variation
are gene-specific, resulting in either enhanced (e.g.,
Sugiyama et al. 2011) or reduced (e.g., Liu et al. 2015; Chen
et al. 2016) promoter activity, as a function of increasing di-
nucleotide repeat length. These different outcomes are clearly
related to promoter-specific structure-function relationships
that could involve many factors including promoter topology
(Philips et al. 2015), spacing of transcription factor (TF) sites
(Bagshaw et al. 2017), or methylation differences where there
are CpGs (e.g., C9orf72; Gijselinck et al. 2016; see below).
The mechanism involved in mediating the observed differ-
ences in activity between Cacng2 GA-50 and Cacng2 GA-
58/60 is unknown, but may involve TF binding. InDrosophila
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sp. two zinc finger proteins, GAF (GAGA factor) and
CLAMP (Chromatin-linked adaptor for MSL proteins) bind
GA repeat sequences and regulate gene expression, for exam-
ple, at a bidirectional histone promoter (Rieder et al. 2017). In
the latter example, there is a defined functional correlate of
repeat length where TF binding is enriched at long GA repeats
on the X chromosome, mediating dosage compensation in
males (Kuzu et al. 2016; Rieder et al. 2017). A functional
equivalent of GAGA factor in mammals is the ETS family
transcription factor GABP1 (GA binding protein-1; Yang
et al. 2007), and further experiments are required to determine
whether this factor could be active at the Cacng2 promoter.
Alternatively, other studies (Chen et al. 2016) indicate a need
to consider STR length-related differences in TF binding out-
side of the repeat sequence.

The current study has also provided experimental evidence
of a role for the zinc finger transcription factor REST (Chong
et al. 1995) in regulating Cacng2 expression through a
promoter-proximal mechanism. Both deletion of a proximal,
multi-REST element domain and over-expression of a
dominant-negative REST protein significantly elevate expres-
sion of rat Cacng2 constructs. These experimental outcomes
are quite extensively supported in the literature, with three
genome-wide studies identifying Cacng2 as one of the >
1000 REST target genes in the genome (Bruce et al. 2004;

Johnson et al. 2007; Otto et al. 2007), and additional
transcriptomic studies in PC12 cells indicating direct regula-
tion of Cacng2 by REST (Dijkmans et al. 2009; Garcia-
Manteiga et al. 2015a, 2015b). Further studies are required
to confirm the function of the individual Cacng2 REST con-
sensus elements identified in our sequence analysis, and also
to investigate a potentially interesting association of these
REST elements with epileptic phenotypes (Thiel et al.
2015). Analysis of ENCODE ChIP-Seq data (www.
encodeproject.org) shows that conserved Cacng2 REST sites
in other species are associated with additional repressive
associations, including Sin3A and HDAC, providing a basis
for powerful, co-repressor-dependent silencing of this neuro-
nal gene (Lunyak et al. 2002). In marked contrast to the pres-
ence of multiple consensus REST target sequences in the
Cacng2 promoter, the rat Syn1 promoter cloned and employed
here does not contain searchable REST sequences; this ab-
sence probably partly explains the relative activity of the
Syn1 promoter compared with Cacng2 in these experiments.
Previously, identified consensus REST sequences in the hu-
man and porcine Syn1 promoter (Hedegaard et al. 2013) are
not sufficiently conserved in the rat sequence, and residual
sequence may exhibit only weak REST binding (Bruce et al.
2009). It is likely that the rat Syn1 gene utilizes alternative
REST sequences outside of the proximal promoter region,

Fig. 3 Bidirectional activity of
the Cacng2 promoter activity in
transfected HT22 and PC12 cells.
a Schematic representation (not
scaled) of the Cacng2 locus
illustrating the Bhead-to-head^
organization of Cacng2-coding,
and lncRNA(s) sequences in the
rat genome, and the forward-
(FOR) and reverse-orientation
(REV) constructs used in the
experiments. b, c Cacng2
sequences were cloned within
pGL4.10, transfected into either b
HT22 or c PC12 cells, and levels
of expression (fold-change
relative to empty pGL4.10) were
determined by luciferase (Luc)
assays. p < 0.05 indicates
statistically significant difference
between different groups as
determined by ANOVA and post
hoc analysis (see text). The data
are expression levels of constructs
(mean ± S.E., n = 6/group)
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for example, in an intron like the human synaptophysin gene
REST element (Lietz et al. 2003). An alternative cis-regulato-
ry distribution of sites would accord with the general obser-
vation that functionally conserved regulatory elements are not
necessarily positionally conserved across genomes (Cheng
et al. 2014).

We have also demonstrated that the rat Cacng2 promoter
has a bidirectional organization (Adachi and Lieber 2002),
involving antisense transcription of associated lncRNA(s).
Bidirectional activity of the identified Cacng2 promoter se-
quence was functionally demonstrated here, using forward
and reverse promoter constructs as for other, similarly orient-
ed, gene pairs (Jiménez-Badillo et al. 2017). Our finding is
consistent with both the observed proximal initiation of the
paired Cacng2 and lncRNA transcripts (generally within 2 kb
in bidirectional promoter-associated, neuronal gene pairs, Hu
et al. 2014), and also with features such as the central CpG
island (Uesaka et al. 2014), and the absence of a TATA box
(Lasagna Transfac analysis; Bagchi and Iyer 2016). Current
genome annotation indicates that bidirectional Cacng2/
lncRNA transcription is conserved across rat, mouse, and hu-
man, but our current sequencing data from rat indicate that
there may be some degree of species-specific exon usage in
the lncRNA(s), a common observation for these non-coding
RNAs (Clark and Blackshaw 2014). In fact, bidirectional
promoter organization is now recognized as a norm for neu-
ronal genes (Hu et al. 2014) and is a major source of
lncRNAs (Uesaka et al. 2014; Hon et al. 2017). Further stud-
ies, which may be extensive, are required to delineate the full
exon structures of the different transcripts that emanate from
Cacng2-associated lncRNA start site (see Fig. S7B for cur-
rent human annotation). Here, we have provided in vitro ev-
idence for co-regulation of Cacng2 and the associated
lncRNA, data that is consistent with both single cell
transcriptomic analysis in developing human cortex (Liu
et al. 2016), and the near identical expression profiles of these
transcripts in the human GTEx platform (Supplemental Fig.
S7A). Together, this data provides evidence of regulated co-
expression of the mRNA:lncRNA pair which has been ob-
served in other, similarly organized, genes, and can form an
aspect of transcriptional regulation (Kaur et al. 2016;
Yamamoto et al. 2016; Jiménez-Badillo et al. 2017;
Malhotra et al. 2017). Currently, we have no evidence of a
regulatory inter-relationship at this bidirectional promoter
site. The demonstrated CpG island in the Cacng2/lncRNA
promoter region is one regulatory sequence that should be
investigated in further studies as these features are commonly
found in head-to-head bidirectional promoters, and are
known to be subject to demethylation by the linked
lncRNAs (see Uesaka et al. 2014). In considering the func-
tional activity of these lncRNAs, however, alternative cis, or
trans activities at other genes must also be considered (Clark
and Blackshaw 2014).

Overall, the current analysis has shown that multiple regu-
latory sequence domains, including those likely to determine
neuronal-specificity, and which are commonly distal (i.e.,
REST; Bruce et al. 2004) reside proximal to the Cacng2 start
site. This organization may indicate merging of regulatory
units into a dual promoter-enhancer, Bdyadic’^organization
that is now recognized (Roadmap Epigenomics Consortium
2015). Given the established role of CACNG2 in neural plas-
ticity, the presence of a polymorphic, regulatory STR in this
promoter region could be important for determining differen-
tial plasticity between individuals (Lee et al. 2016; Louros
et al. 2014). In addition to the aspects of pathology discussed
above, this could also include a contribution to differences in
pain-related plasticity in which CACNG2 is implicated
(Nissenbaum et al. 2010; Sullivan et al. 2017). Hence, in com-
mon with other (regulatory) polymorphic repeat sequences
(e.g., Kotur et al. 2015), the Cacng2 STR is clearly a potential
marker that could be widely applicable to pharmaco-genomic
analysis (Daly 2017). Our characterization of this synaptic
protein gene promoter may also be relevant to the refinement
of neuronal promoters that are required for current transgenic
targeting strategies (see Holehonnur et al. 2015).
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