Skip to main content
Log in

SUMO and Ischemic Tolerance

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Hibernating squirrels slow blood flow to a crawl, but sustain no damage to brain or other tissues. This phenomenon provides an excellent model of natural tolerance to ischemia. Small ubiquitin-like modifier (SUMO) is a 100-residue peptide that modifies other proteins by being attached to the epsilon amino group of specific lysine residues. The discovery of massive SUMOylation (by both SUMO-1 and SUMO-2/3) occurring in the brains of 13-lined ground squirrels (Ictidomys tridecemlineatus) during hibernation torpor had opened the door to the studies on SUMO and ischemic tolerance reviewed here. Ischemic stress was shown to increase the levels of SUMO conjugation, especially SUMO-2/3, mostly during reperfusion in animal models and during restoration of oxygen and glucose in cell culture systems. Over-expression or depletion of SUMOs and/or Ubc9 (the SUMO E2 conjugating enzyme) increases or decreases (respectively) the levels of SUMO conjugates. Elevated global SUMO conjugations were shown to cytoprotect from ischemic insults; conversely, depressed SUMOylation sensitized cells. Global protein conjugation not only by SUMOs, but also by other ubiquitin-like modifiers (ULMs) including NEDD8, ISG15, UFM1 and FUB1 was shown to be significantly increased in the brains of hibernating ground squirrels during torpor. These increases in multiple ULM conjugations may orchestrate the cellular events in hibernating ground squirrels that induce a state of natural tolerance through their multipronged effects. Certain miRNAs such as the miR-200 family and the miR-182 family were shown, at least partly, to control the levels of these ULM conjugations. Lowering the levels of these miRNAs leads to an increase in global SUMOylation/ULM conjugation, thereby providing the tolerance to ischemia. This suggests that these miRNAs may be good targets for therapeutic intervention in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SUMO:

Small ubiquitin-like modifier

ULM:

Ubiquitin-like modifier

MCAO:

Middle cerebral artery occlusion

OGD:

Oxygen–glucose deprivation

ROG:

Restoration of oxygen and glucose

miR:

microRNA

References

  • Carey, H. V., Andrews, M. T., & Martin, S. L. (2003). Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83(4), 1153–1181.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Matsushita, M., Nairn, A. C., Damuni, Z., Cai, D., Frerichs, K. U., et al. (2001). Mechanisms for increased levels of phosphorylation of elongation factor-2 during hibernation in ground squirrels. Biochemistry, 40(38), 11565–11570.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R. X., Xia, Y. H., Xue, T. C., & Ye, S. L. (2012). Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells. [Research Support, Non-U.S. Gov’t]. Molecular Medicine Reports, 5(3), 800–804. doi:10.3892/mmr.2011.695.

    PubMed  CAS  Google Scholar 

  • Cimarosti, H., Ashikaga, E., Jaafari, N., Dearden, L., Rubin, P., Wilkinson, K. A., et al. (2012). Enhanced SUMOylation and SENP-1 protein levels following oxygen and glucose deprivation in neurons. Journal of Cerebral Blood Flow and Metabolism, 32(1), 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Cimarosti, H., Lindberg, C., Bomholt, S. F., Ronn, L. C., & Henley, J. M. (2008). Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology, 54(2), 280–289.

    Article  PubMed  CAS  Google Scholar 

  • Datwyler, A. L., Lattig-Tunnemann, G., Yang, W., Paschen, W., Lee, S. L., Dirnagl, U., et al. (2011). SUMO2/3 conjugation is an endogenous neuroprotective mechanism. Journal of Cerebral Blood Flow and Metabolism, 31, 2152–2159.

    Article  PubMed  CAS  Google Scholar 

  • Dharap, A., & Vemuganti, R. (2010). Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. Journal of Neurochemistry, 113(6), 1685–1691.

    PubMed  CAS  Google Scholar 

  • Dirnagl, U., Iadecola, C., & Moskowitz, M. A. (1999). Pathobiology of ischaemic stroke: An integrated view. Trends in Neurosciences, 22(9), 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Drew, K. L., Rice, M. E., Kuhn, T. B., & Smith, M. A. (2001). Neuroprotective adaptations in hibernation: Therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radical Biology and Medicine, 31(5), 563–573.

    Article  PubMed  CAS  Google Scholar 

  • Drew, K. L., Toien, O., Rivera, P. M., Smith, M. A., Perry, G., & Rice, M. E. (2002). Role of the antioxidant ascorbate in hibernation and warming from hibernation. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 133(4), 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Evdokimov, E., Sharma, P., Lockett, S. J., Lualdi, M., & Kuehn, M. R. (2008). Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. Journal of Cell Science, 121(Pt 24), 4106–4113.

    Article  PubMed  CAS  Google Scholar 

  • Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., et al. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell, 1(4), 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Frerichs, K. U., & Hallenbeck, J. M. (1998). Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: An in vitro study in hippocampal slices. Journal of Cerebral Blood Flow and Metabolism, 18(2), 168–175.

    PubMed  CAS  Google Scholar 

  • Frerichs, K. U., Kennedy, C., Sokoloff, L., & Hallenbeck, J. M. (1994). Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia”. Journal of Cerebral Blood Flow and Metabolism, 14(2), 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Frerichs, K. U., Smith, C. B., Brenner, M., DeGracia, D. J., Krause, G. S., Marrone, L., et al. (1998). Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14511–14516.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Dominguez, M., & Reyes, J. C. (2009). SUMO association with repressor complexes, emerging routes for transcriptional control. Biochimica et Biophysica Acta, 1789(6–8), 451–459.

    Article  PubMed  CAS  Google Scholar 

  • Gentile, N. T., Spatz, M., Brenner, M., McCarron, R. M., & Hallenbeck, J. M. (1996). Decreased calcium accumulation in isolated nerve endings during hibernation in ground squirrels. Neurochemical Research, 21(8), 947–954.

    Article  PubMed  CAS  Google Scholar 

  • Girdwood, D. W., Tatham, M. H., & Hay, R. T. (2004). SUMO and transcriptional regulation. Seminars in Cell and Developmental Biology, 15(2), 201–210.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M. P., & Choi, D. W. (1993). Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. Journal of Neuroscience, 13(8), 3510–3524.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Ibarra, F. P., Varon, J., & Lopez-Meza, E. G. (2011). Therapeutic hypothermia: Critical review of the molecular mechanisms of action. Frontiers in Neurology, 2, 4.

    Article  PubMed  Google Scholar 

  • Gravgaard, K. H., Lyng, M. B., Laenkholm, A. V., Sokilde, R., Nielsen, B. S., Litman, T., et al. (2012). The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Research and Treatment,. doi:10.1007/s10549-012-1969-9.

    PubMed  Google Scholar 

  • Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. [Research Support, Non-U.S. Gov’t]. Nature Cell Biology, 10(5), 593–601.

    Article  PubMed  CAS  Google Scholar 

  • Guo, C., Hildick, K. L., Luo, J., Dearden, L., Wilkinson, K. A., & Henley, J. M. (2013). SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO Journal,. doi:10.1038/emboj.2013.65.

    Google Scholar 

  • Haas, A. L., Ahrens, P., Bright, P. M., & Ankel, H. (1987). Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Journal of Chemical Biology, 262(23), 11315–11323.

    CAS  Google Scholar 

  • Hallenbeck, J. M., & Dutka, A. J. (1990). Background review and current concepts of reperfusion injury. Archives of Neurology, 47(11), 1245–1254.

    Article  PubMed  CAS  Google Scholar 

  • Hannoun, Z., Greenhough, S., Jaffray, E., Hay, R. T., & Hay, D. C. (2010). Post-translational modification by SUMO. Toxicology, 278(3), 288–293.

    Article  PubMed  CAS  Google Scholar 

  • Hay, R. T. (2005). SUMO: A history of modification. Molecular Cell, 18(1), 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, J., Lerman, L. O., & Lerman, A. (2007). Ubiquitin and ubiquitin-like proteins in protein regulation. Circulation Research, 100(9), 1276–1291.

    Article  PubMed  CAS  Google Scholar 

  • Hillion, J. A., Takahashi, K., Maric, D., Ruetzler, C., Barker, J. L., & Hallenbeck, J. M. (2005). Development of an ischemic tolerance model in a PC12 cell line. Journal of Cerebral Blood Flow and Metabolism, 25(2), 154–162.

    Article  PubMed  CAS  Google Scholar 

  • Hur, K., Toiyama, Y., Takahashi, M., Balaguer, F., Nagasaka, T., Koike, J., et al. (2012). MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut,. doi:10.1136/gutjnl-2011-301846.

    PubMed  Google Scholar 

  • Jeon, Y. J., Yoo, H. M., & Chung, C. H. (2010). ISG15 and immune diseases. Biochimica et Biophysica Acta, 1802(5), 485–496.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu, M., Chiba, T., Tatsumi, K., Iemura, S., Tanida, I., Okazaki, N., et al. (2004). A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO Journal, 23(9), 1977–1986.

    Article  PubMed  CAS  Google Scholar 

  • Krol, J., Busskamp, V., Markiewicz, I., Stadler, M. B., Ribi, S., Richter, J., et al. (2010). Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell, 141(4), 618–631.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Yoshida, Y., & Noda, M. (1993). Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochemical and Biophysical Research Communications, 195(1), 393–399.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Castri, P., Bembry, J., Maric, D., Auh, S., & Hallenbeck, J. M. (2009). SUMOylation participates in induction of ischemic tolerance. Journal of Neurochemistry, 109(1), 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. T., Chu, K., Jung, K. H., Yoon, H. J., Jeon, D., Kang, K. M., et al. (2010). MicroRNAs induced during ischemic preconditioning. Stroke, 41(8), 1646–1651.

    Article  PubMed  Google Scholar 

  • Lee, Y. J., Johnson, K. R., & Hallenbeck, J. M. (2012). Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia. PLoS One, 7(10), e47787.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Miyake, S., Wakita, H., McMullen, D. C., Azuma, Y., Auh, S., et al. (2007). Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. Journal of Cerebral Blood Flow and Metabolism, 27(5), 950–962.

    PubMed  CAS  Google Scholar 

  • Lee, Y. J., Mou, Y., Maric, D., Klimanis, D., Auh, S., & Hallenbeck, J. M. (2011). Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PLoS One, 6(10), e25852.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire, K., Moura, R. F., Granvik, M., Igoillo-Esteve, M., Hohmeier, H. E., Hendrickx, N., et al. (2011). Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS One, 6(4), e18517.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Howell, P. M., & Riker, A. I. (2012a). Up-regulation of miR-182 expression after epigenetic modulation of human melanoma cells. Annals of Surgical Oncology,. doi:10.1245/s10434-012-2467-3.

    Google Scholar 

  • Liu, Z., Liu, J., Segura, M. F., Shao, C., Lee, P., Gong, Y., et al. (2012b). MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. Journal of Pathology,. doi:10.1002/path.4000.

    Google Scholar 

  • Loftus, L. T., Gala, R., Yang, T., Jessick, V. J., Ashley, M. D., Ordonez, A. N., et al. (2009). Sumo-2/3-ylation following in vitro modeled ischemia is reduced in delayed ischemic tolerance. Brain Research, 1272, 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Magenta, A., Cencioni, C., Fasanaro, P., Zaccagnini, G., Greco, S., Sarra-Ferraris, G., et al. (2011). miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death and Differentiation, 18(10), 1628–1639.

    Article  PubMed  CAS  Google Scholar 

  • Mergenthaler, P., Dirnagl, U., & Meisel, A. (2004). Pathophysiology of stroke: Lessons from animal models. Metabolic Brain Disease, 19(3–4), 151–167.

    Article  PubMed  CAS  Google Scholar 

  • Mihelich, B. L., Khramtsova, E. A., Arva, N., Vaishnav, A., Johnson, D. N., Giangreco, A. A., et al. (2011). miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells. Journal of Biological Chemistry, 286(52), 44503–44511.

    Article  PubMed  CAS  Google Scholar 

  • Moskwa, P., Buffa, F. M., Pan, Y., Panchakshari, R., Gottipati, P., Muschel, R. J., et al. (2011). miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Molecular Cell, 41(2), 210–220.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M., & Yamaguchi, S. (2006). The ubiquitin-like protein MNSFbeta regulates ERK-MAPK cascade. Journal of Biological Chemistry, 281(25), 16861–16869.

    Article  PubMed  CAS  Google Scholar 

  • Nakka, V. P., Lang, B. T., Lenschow, D. J., Zhang, D. E., Dempsey, R. J., & Vemuganti, R. (2011). Increased cerebral protein ISGylation after focal ischemia is neuroprotective. Journal of Cerebral Blood Flow and Metabolism, 31(12), 2375–2384.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki, T., Matsumoto, M., Kitagawa, K., Taguchi, A., Maeda, Y., Hata, R., et al. (1993). Induced resistance and susceptibility to cerebral ischemia in gerbil hippocampal neurons by prolonged but mild hypoperfusion. Brain Research, 614(1–2), 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Oved, S., Mosesson, Y., Zwang, Y., Santonico, E., Shtiegman, K., Marmor, M. D., et al. (2006). Conjugation to NEDD8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. Journal of Biological Chemistry, 281(31), 21640–21651.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275(9), 6252–6258.

    Article  PubMed  CAS  Google Scholar 

  • Shao, C., Liu, Y., Ruan, H., Li, Y., Wang, H., Kohl, F., et al. (2010). Shotgun proteomics analysis of hibernating arctic ground squirrels. Molecular and Cellular Proteomics, 9(2), 313–326.

    Article  PubMed  CAS  Google Scholar 

  • Shao, R., Zhang, F. P., Tian, F., Anders Friberg, P., Wang, X., Sjoland, H., et al. (2004). Increase of SUMO-1 expression in response to hypoxia: Direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Letters, 569(1–3), 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Sossey-Alaoui, K., Bialkowska, K., & Plow, E. F. (2009). The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. Journal of Biological Chemistry, 284(48), 33019–33029.

    Article  PubMed  CAS  Google Scholar 

  • Storey, K. B. (2003). Mammalian hibernation. Transcriptional and translational controls. Advances in Experimental Medicine and Biology, 543, 21–38.

    Article  PubMed  CAS  Google Scholar 

  • Storey, K. B. (2004). Cold ischemic organ preservation: Lessons from natural systems. Journal of Investigative Medicine, 52(5), 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., Nakamura, M., Nariai, Y., Dekio, S., & Tanigawa, Y. (1996). Monoclonal nonspecific suppressor factor beta (MNSF beta) inhibits the production of TNF-alpha by lipopolysaccharide-activated macrophages. Immunobiology, 195(2), 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Tateishi, K., Omata, M., Tanaka, K., & Chiba, T. (2001). The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. Journal of Cell Biology, 155(4), 571–579.

    Article  PubMed  CAS  Google Scholar 

  • Tempe, D., Piechaczyk, M., & Bossis, G. (2008). SUMO under stress. Biochemical Society Transactions, 36(Pt 5), 874–878.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Ma, Q., Yang, W., Mackensen, G. B., & Paschen, W. (2012). Moderate hypothermia induces marked increase in levels and nuclear accumulation of SUMO2/3-conjugated proteins in neurons. Journal of Neurochemistry,. doi:10.1111/j.1471-4159.2012.07916.x.

    Google Scholar 

  • Wang, Z., Wang, R., Sheng, H., Sheng, S. P., Paschen, W., & Yang, W. (2013). Transient ischemia induces massive nuclear accumulation of SUMO2/3-conjugated proteins in spinal cord neurons. Spinal Cord, 51(2), 139–143.

    Article  PubMed  CAS  Google Scholar 

  • Wasiak, S., Zunino, R., & McBride, H. M. (2007). Bax/Bak promote SUMOylation of DRP1 and its stable association with mitochondria during apoptotic cell death. Journal of Cell Biology, 177(3), 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Wei, H., Teng, H., Huan, W., Zhang, S., Fu, H., Chen, F., et al. (2012). An upregulation of SENP3 after spinal cord injury: Implications for neuronal apoptosis. Neurochemical Research, 37(12), 2758–2766.

    Article  PubMed  CAS  Google Scholar 

  • Yan, J., Burman, A., Nichols, C., Alila, L., Showe, L. C., Showe, M. K., et al. (2006). Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays. Physiological Genomics, 25(2), 346–353.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., Ma, Q., Mackensen, G. B., & Paschen, W. (2009). Deep hypothermia markedly activates the small ubiquitin-like modifier conjugation pathway; implications for the fate of cells exposed to transient deep hypothermic cardiopulmonary bypass. Journal of Cerebral Blood Flow and Metabolism, 29(5), 886–890.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., Sheng, H., Warner, D. S., & Paschen, W. (2008a). Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. Journal of Cerebral Blood Flow and Metabolism, 28(5), 892–896.

    Article  PubMed  Google Scholar 

  • Yang, W., Sheng, H., Warner, D. S., & Paschen, W. (2008b). Transient global cerebral ischemia induces a massive increase in protein sumoylation. Journal of Cerebral Blood Flow and Metabolism, 28(2), 269–279.

    Article  PubMed  Google Scholar 

  • Yenari, M. A., & Han, H. S. (2012). Neuroprotective mechanisms of hypothermia in brain ischaemia. Nature Reviews Neuroscience, 13(4), 267–278.

    PubMed  CAS  Google Scholar 

  • Zhang, F. P., Mikkonen, L., Toppari, J., Palvimo, J. J., Thesleff, I., & Janne, O. A. (2008). Sumo-1 function is dispensable in normal mouse development. Molecular and Cellular Biology, 28(17), 5381–5390.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., Smith, M. A., Perry, G., Wang, Y., Ross, A. P., Zhao, H. W., et al. (2005). MAPKs are differentially modulated in arctic ground squirrels during hibernation. Journal of Neuroscience Research, 80(6), 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Zunino, R., Braschi, E., Xu, L., & McBride, H. M. (2009). Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. Journal of Biological Chemistry, 284(26), 17783–17795.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NINDS/NIH. The authors thank to all colleagues and collaborators involved in this work including Shinichi Miyake, Hideaki Wakita, David McMullen, Yongshan Mou, Paola Castri, Dace Klimanis, Joliet Bembry, Dragan Maric, Kory Johnson, Sungyoung Auh, Yoshiaki Azuma, and Mary Dasso.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-ja Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Yj., Hallenbeck, J.M. SUMO and Ischemic Tolerance. Neuromol Med 15, 771–781 (2013). https://doi.org/10.1007/s12017-013-8239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8239-9

Keywords

Navigation