Skip to main content

Advertisement

Log in

A Comparison of Stem Cells for Therapeutic Use

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

An Erratum to this article was published on 19 August 2011

An Erratum to this article was published on 19 August 2011

Abstract

A critical comparison of the attributes of several types of stem cells is presented, with particular emphasis on properties that are critical for the application of these cells for therapeutic purposes. The importance of an autologous source of pluripotent stem cells is stressed. It is apparent that two sources currently exist for non-embryonic pluripotent stem cells—very small embryonic-like stem cells (VSELs) and induced pluripotent stem cells (iPS). The impact of the emerging iPS research on therapy is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maitra, A., Arking, D. E., Shivapurkar, N., et al. (2005). Genomic alterations in cultured human embryonic stem cells. Nature Genetics, 37, 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  2. Amariglio, N., Hirshberg, A., Scheithauer, B. W., et al. (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Medicine, 6, e1000029.

    Article  PubMed  Google Scholar 

  3. Scott, C. T., & Reijo Pera, R. A. (2008). The road to pluripotence: the research response to the embryonic stem cell debate. Human Molecular Genetics, 17(R1), R3–R9.

    Article  PubMed  CAS  Google Scholar 

  4. Smart, N., & Riley, P. R. (2008). The stem cell movement. Circulation Research, 102, 1155–1168.

    Article  PubMed  CAS  Google Scholar 

  5. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the hematopoietic stem cell. Blood Cells, 4, 7–25.

    PubMed  CAS  Google Scholar 

  6. Papayannopoulou, T., & Scadden, D. T. (2008). Stem cell ecology and stem cells in motion. Blood, 111, 3923–3930.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson, A., Laurenti, E., Oser, G., et al. (2008). Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell, 135, 1118–1129.

    Article  PubMed  CAS  Google Scholar 

  8. Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327, 542–545.

    Article  PubMed  CAS  Google Scholar 

  9. Becker, A. J., McCulloch, E. A., & Till, J. E. (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 197, 452–454.

    Article  PubMed  CAS  Google Scholar 

  10. Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2(2), 83–92.

    PubMed  CAS  Google Scholar 

  11. Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4(5), 267–274.

    PubMed  CAS  Google Scholar 

  12. Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: mechanisms of inflammation. Annual Review of Pathology: Mechanisms of Disease, 6, 457–478.

    Article  CAS  Google Scholar 

  13. Shin, D. M., Liu, R., Klich, I., et al. (2010). Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia, 24, 1450–1461.

    Article  PubMed  CAS  Google Scholar 

  14. Kucia, M., Reca, R., Jala, V. R., Dawn, B., Ratajczak, J., & Ratajczak, M. Z. (2005). Bone marrow as a home of heterogeneous populations of nonhematopoietic stem cells. Leukemia, 19, 1118–1127.

    Article  PubMed  CAS  Google Scholar 

  15. Orkin, S. H., & Zon, L. I. (2002). Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nature Immunology, 3, 323–328.

    Article  PubMed  CAS  Google Scholar 

  16. Nayernia, K., Lee, J. H., Drusenheimer, N., et al. (2006). Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation, 86, 654–663.

    Article  PubMed  CAS  Google Scholar 

  17. Ratajczak, M. Z., Machalinski, B., Wojakowski, W., Ratajczak, J., & Kucia, M. (2007). A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues. Leukemia, 21, 860–867.

    PubMed  CAS  Google Scholar 

  18. Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16, 381–390.

    PubMed  CAS  Google Scholar 

  19. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.

    Article  PubMed  CAS  Google Scholar 

  20. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74.

    Article  PubMed  CAS  Google Scholar 

  21. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.

    Article  PubMed  CAS  Google Scholar 

  22. D’Ippolito, G., Diabira, S., Howard, G. A., Menei, P., Roos, B. A., & Schiller, P. C. (2004). Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. Journal of Cell Science, 117, 2971–2981.

    Article  PubMed  Google Scholar 

  23. D’Ippolito, G., Howard, G. A., Roos, B. A., & Schiller, P. C. (2006). Isolation and characterization of marrow-isolated adult multilineage inducible (MIAMI) cells. Experimental Hematology, 34, 1608–1610.

    Article  PubMed  Google Scholar 

  24. Beltrami, A. P., Cesselli, D., Bergamin, N., et al. (2007). Multipotent cells can be generated in vitro from several adult human organs (heart, liver and bone marrow). Blood, 110, 3438–3446.

    Article  PubMed  CAS  Google Scholar 

  25. Ratajczak, M. Z., Zuba-Surma, E. K., Wysoczynski, M., Ratajczak, J., & Kucina, M. (2008). Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Experimental Hematology, 36, 742–751.

    Article  PubMed  CAS  Google Scholar 

  26. Hung, S. C., Chen, N. J., Hsieh, S. L., Li, H., Ma, H. L., & Lo, W. H. (2002). Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells, 20, 249–258.

    Article  PubMed  Google Scholar 

  27. Kucia, M., Wysoczynski, M., Ratajczak, J., & Ratajczak, M. Z. (2008). Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell and Tissue Research, 331, 125–134.

    Article  PubMed  CAS  Google Scholar 

  28. Zuba-Surma, E. K., Kucia, M., Abdel-Latif, A., et al. (2008). Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. Journal of Cellular and Molecular Medicine, 12, 292–303.

    Article  PubMed  Google Scholar 

  29. Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869.

    Article  PubMed  CAS  Google Scholar 

  30. Taichman, R. S., Wang, Z., Shiozawa, Y., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells and Development, 19, 1557–1570.

    Article  PubMed  CAS  Google Scholar 

  31. Kucia, M., Wysoczynski, M., Wu, W., Zuba-Surma, E. K., Ratajczak, J., & Ratajczak, M. Z. (2008). Evidence that very small embryonic like (VSEL) stem cells are mobilized into peripheral blood. Stem Cells, 26, 2083–2092.

    Article  PubMed  CAS  Google Scholar 

  32. Kucia, M., Zhang, Y. P., Reca, R., et al. (2006). Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into peripheral blood following stroke. Leukemia, 20, 18–28.

    Article  PubMed  CAS  Google Scholar 

  33. Zuba-Surma, E. K., Kucia, M., Dawn, B., Guo, Y., Ratajczak, M. Z., & Bolli, R. (2008). Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 44, 865–873.

    Article  PubMed  CAS  Google Scholar 

  34. Dawn, B., Tiwari, S., Kucia, M. J., et al. (2008). Transplantation of bone marrow derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells, 26, 1646–1655.

    Article  PubMed  Google Scholar 

  35. Tang, X. L., Rokosh, D. G., Guo, Y., & Bolli, R. (2010). Cardiac progenitor cells and bone marrow derived very small embryonic-like stem cells for cardiac repair after myocardial infarction. Circulation Journal, 74, 390–404.

    Article  PubMed  Google Scholar 

  36. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20, 1487–1495.

    Article  PubMed  CAS  Google Scholar 

  37. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  38. Thomson, J. A., Kalishman, J., Golos, T. G., et al. (1995). Isolation of a primate embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America, 92, 7844–7848.

    Article  PubMed  CAS  Google Scholar 

  39. Amit, M., Carpenter, M. K., Inokuma, M. S., et al. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology, 227, 271–278.

    Article  PubMed  CAS  Google Scholar 

  40. Kucia, M., Wu, W., & Ratacjzak, M. Z. (2007). Bone marrow-derived very small embryonic-like stem cells: their developmental origin and biological significance. Developmental Dynamics, 236, 3309–3320.

    Article  PubMed  CAS  Google Scholar 

  41. Yamazaki, Y., Mann, M. R., Lee, S. S., et al. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proceedings of the National Academy of Sciences of the United States of America, 100, 12207–12212.

    Article  PubMed  CAS  Google Scholar 

  42. Mann, J. R. (2001). Imprinting in the germ line. Stem Cells, 19, 287–294.

    Article  PubMed  CAS  Google Scholar 

  43. Oosterhuis, J. W., & Looijenga, L. H. (2005). Testicular germ-cell tumours in a broader perspective. Nature Reviews. Cancer, 5, 210–222.

    Article  PubMed  CAS  Google Scholar 

  44. Reik, W., & Walter, J. (2001). Genomic imprinting: parental influence on the genome. Nature Reviews. Genetics, 2, 21–32.

    Article  PubMed  CAS  Google Scholar 

  45. Kucia, M., Halasa, M., Wysoczynski, M., et al. (2007). Morphological and molecular characterization of novel population of CXCR4+ SSEA-4e+ Oct-4+ very small embryonic-like cells purified from human cord blood—preliminary report. Leukemia, 21, 297–303.

    Article  PubMed  CAS  Google Scholar 

  46. Medicetty, S., Ratajczak, M. Z., Kucia, M. J., et al. (2009). Evidence that human very small embryonic-like stem cells (VSELs) are mobilized by G-CSF into peripheral blood: a novel strategy to obtain human pluripotent stem cells for regenerative medicine. Proceedings of the American Society for Hematology, 51st Annual Meeting, New Orleans, LA. Abstract 1474.

  47. Sovalat, H., Scrofani, M., Eidenschenk, A., Pasquet, S., Rimelen, V., & Hénon, P. (2011). Identification and isolation from either adult human bone marrow or G-CSF mobilized peripheral blood of CD34+/CD133+/CXCR4+/Lin-CD45- cells, featuring morphological, molecular and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Experimental Hematology. doi:10.1016/j.exphem.2011.01.003.

    PubMed  Google Scholar 

  48. Parte, S., Telang, J., Bhartiya, D., et al. (2011). Detection, characterization and spontaneous differentiation in vitro of very small embryonic-like stem cells in adult mammalian ovary. Stem Cells and Development, in press.

  49. Bhartiya, D., Kasiviswanathan, S., Sreepoorna, K., et al. (2011). Newer insights into pre-meiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. Journal of Histochemistry and Cytochemistry, exPRESS, in press.

  50. He, Z., Kokkinaki, M., Jiang, J., Dobrinski, I., & Dym, M. (2010). Isolation, characterization, and culture of human spermatogonia. Biology of Reproduction, 82, 363–372.

    Article  PubMed  CAS  Google Scholar 

  51. Kossack, N., Meneses, J., Shefi, S., et al. (2009). Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells, 27, 138–149.

    Article  PubMed  CAS  Google Scholar 

  52. Mizrak, S. C., Chikhovskaya, J. V., Sadri-Ardekani, H., et al. (2010). Embryonic stem cell-like cells derived from adult human testis. Human Reproduction, 25, 158–167.

    Article  PubMed  CAS  Google Scholar 

  53. Golestaneh, N., Kokkinaki, M., Pant, D., et al. (2009). Pluripotent stem cells derived from adult human testes. Stem Cells and Development, 18, 1115–1126.

    Article  PubMed  Google Scholar 

  54. Conrad, S., Renninger, M., Hennenlotter, J., et al. (2008). Generation of pluripotent stem cells from adult human testis. Nature, 456(7220), 344–349.

    Article  PubMed  CAS  Google Scholar 

  55. Virant-Klun, I., Zech, N., Rozman, P., et al. (2008). Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation, 76, 843–856.

    Article  PubMed  CAS  Google Scholar 

  56. Virant-Klun, I., Rozman, P., Cvjeticanin, B., et al. (2009). Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells and Development, 18, 137–149.

    Article  PubMed  CAS  Google Scholar 

  57. Wojakowski, W., Tendera, T., Kucia, M., et al. (2009). Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. Journal of the American College of Cardiology, 53, 1–9.

    Article  PubMed  CAS  Google Scholar 

  58. Paczkowska, E., Kucia, M., Koziarska, D., et al. (2009). Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke, 40, 1237–1244.

    Article  PubMed  CAS  Google Scholar 

  59. Massa, M., Rosti, V., Ferrario, M., et al. (2005). Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood, 105, 199–206.

    Article  PubMed  CAS  Google Scholar 

  60. Fadini, G. P., Sartore, S., Agostini, C., & Avogaro, A. (2007). Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care, 30, 1305–1313.

    Article  PubMed  CAS  Google Scholar 

  61. Fadini, G. P., Sartore, S., Albiero, M., et al. (2006). Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2140–2146.

    Article  PubMed  CAS  Google Scholar 

  62. Wojakowski, W., Kucia, M., Wyderka, R, et al. (2006). Mobilization of CXCR4+ stem cells in acute myocardial infarction is correlated with left ventricular ejection fraction and myocardial perfusion assessed by MRI in 1 year follow-up (REGENT trial). Circulation, 114, II_669. Abstract 3162.

    Google Scholar 

  63. Leone, A. M., Rutella, S., Bonanno, G., et al. (2005). Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. European Heart Journal, 26, 1196–1204.

    Article  PubMed  Google Scholar 

  64. Numaguchi, Y., Sone, T., Okumura, K., et al. (2006). The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation, 114, I-114–I-119.

    Article  Google Scholar 

  65. Zuba-Surma, E. K., Wu, W., Ratajczak, J., Kucia, M., & Ratajczak, M. Z. (2009). Very small embryonic-like stem cells in adult tissues—potential implications for aging. Mechanisms of Ageing and Development, 130, 58–66.

    Article  PubMed  CAS  Google Scholar 

  66. Ratajczak, M. Z., Zuba-Surma, E. K., Shin, D. M., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Experimental Gerontology, 43, 1009–1017.

    Article  PubMed  CAS  Google Scholar 

  67. Sharpless, N. E., & DePinho, R. A. (2007). How stem cells age and why this makes us grow old. Nature Reviews. Molecular Cell Biology, 8, 703–713.

    Article  PubMed  CAS  Google Scholar 

  68. Shin, D. M., Kucia, M., & Ratajczak, M. Z. (2011). Nuclear and chromatin reorganization during cell senescence and aging—a mini-review. Gerontology, 57, 76–84.

    Article  PubMed  Google Scholar 

  69. Ratajczak, J., Dhin D. M., Wan, W., et al. (2011). Higher number of stem cells in the bone marrow of circulating low Igf-1 level Laron dwarf mice—novel view on Igf-1, stem cells and aging. Leukemia, in press.

  70. Wojakowski, W., Tendera, M., Kucia, M., et al. (2010). Cardiomyocyte differentiation of bone marrow-derived Oct-4+CXCR4+SSEA-1+ very small embryonic-like stem cells. International Journal of Oncology, 37, 237–247.

    PubMed  CAS  Google Scholar 

  71. Zuba-Surma, E. K., Kucia, M., Guo, Y., Dawn, B., Bolli, R., & Ratajczak, M. Z. (2007). An in vivo evidence that murine very small embryonic like (VSEL) stem cells are mobilized into peripheral blood after acute myocardial infarction (AMI) and contribute to myocardiac regeneration. Blood (American Society of Hematology Annual Meeting Abstracts), 110, 3694.

    Google Scholar 

  72. Bolli, R. (2007). George E. Brown Memorial Lecture—use of very small embryonic-like (VSEL) stem cells and cardiac stem cells for repair of myocardial infarction. Circulation, 116, Supplement 16, II_C.

  73. Chavakis, E., Koyanagi, M., & Dimmeler, S. (2010). Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation, 121, 325–335.

    Article  PubMed  Google Scholar 

  74. Enzmann, V., Yolcu, E., Kaplan, H. J., & Ildstad, S. T. (2009). Stem cells as tools in regenerative therapy for retinal degeneration. Archives of Ophthalmology, 127, 563–571.

    Article  PubMed  Google Scholar 

  75. Weiss, D. J., Kolls, J. K., Ortiz, L. A., Panoskaltsis-Mortari, A., & Prockop, D. J. (2008). Stem cells and cell therapies in lung biology and lung diseases. Proceedings of the American Thoracic Society, 5, 637–667.

    Article  PubMed  Google Scholar 

  76. di Bonzo, L. V., Ferrero, I., Cravanzola, C., et al. (2008). Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut, 57, 223–231.

    Article  PubMed  Google Scholar 

  77. Krause, D. S. (2008). Bone marrow-derived cells and stem cells in lung repair. Proceedings of the American Thoracic Society, 5, 323–327.

    Article  PubMed  Google Scholar 

  78. Kuroda, Y., Kitada, M., Wakao, S., et al. (2010). Unique multipotent cells in adult human mesenchymal cell populations. Proceedings of the National Academy of Sciences of the United States of America, 107, 8639–8643.

    Article  PubMed  CAS  Google Scholar 

  79. Takahashi, K., Tanabe, T., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  PubMed  CAS  Google Scholar 

  80. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    Article  PubMed  CAS  Google Scholar 

  81. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  82. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.

    Article  PubMed  CAS  Google Scholar 

  83. Miura, K., Okada, Y., Aoi, T., et al. (2009). Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 27, 743–745.

    Article  PubMed  CAS  Google Scholar 

  84. Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.

    Article  PubMed  CAS  Google Scholar 

  85. Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.

    Article  PubMed  CAS  Google Scholar 

  86. Warren, L., Manos, P. D., Ahfeldt, T., et al. (2010). Highly efficient reprogramming of pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.

    Article  PubMed  CAS  Google Scholar 

  87. Feng, Q., Lu, S. J., Klimanskaya, I., et al. (2010). Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells, 28, 704–712.

    Article  PubMed  Google Scholar 

  88. Hu, B. Y., Weick, J. P., Yu, J., et al. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America, 107, 4335–4340.

    Article  PubMed  CAS  Google Scholar 

  89. Djuric, U., & Ellis, J. (2010). Epigenetics of induced pluripotency, the seven-headed dragon. Stem Cell Research and Therapy, 1, 3.

    Article  PubMed  Google Scholar 

  90. Moretti, A., Bellin, M., Welling, A., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363, 1397–1409.

    Article  PubMed  CAS  Google Scholar 

  91. Rosenzweig, A. (2010). Illuminating the potential of pluripotent stem cells. The New England Journal of Medicine, 363, 1471–1472.

    Article  PubMed  CAS  Google Scholar 

  92. Stadtfeld, M., Apostolou, E., Akutsu, H., et al. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 465(7295), 175–181.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review was supported in part by grant R43 AR056893-01A1 from NIAMS. The authors gratefully acknowledge the review of the manuscript by Dr. Mariusz Z. Ratajczak, Henry S. and Stella M. Hoenig Professor, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky. Editorial assistance was provided by Jan S. Redfern, PhD, Redfern Strategic Medical Communications, Inc., Goshen, NY.

Conflict of Interest Statement

The authors are employees of, and own stock in, NeoStem, Inc. D.O.R. is Director of Stem Cell Science. A.G.H. is Vice President of Regenerative Medicine, Drug Development & Regulatory Affairs

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis O. Rodgerson.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12015-011-9308-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodgerson, D.O., Harris, A.G. A Comparison of Stem Cells for Therapeutic Use. Stem Cell Rev and Rep 7, 782–796 (2011). https://doi.org/10.1007/s12015-011-9241-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9241-y

Keywords

Navigation