Skip to main content
Log in

Selenium-Mercury Balance in Commercial Fish Species from the Turkish Waters

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The interactions between selenium (Se) and mercury (Hg) were assessed in order to interpret public health risk, associated with dietary mercury exposure due to fish consumption. For this purpose, the mass and molar concentrations of Se and Hg were determined in the edible tissues of six species of fish, collected from the commercial fishing grounds of Turkey. The Se/Hg molar ratios and selenium health benefit values (Se-HBVs) were also calculated. The main fish species exported from Turkey to Europe were studied to determine the risks or benefits for human health. The mean Hg levels (μg g−1, wet weight) ranged from 0.01 (in turbot) to 0.45 (in Atlantic bluefin tuna). The average selenium concentrations were between 0.96 μg g−1 (in thornback ray) and 1.86 μg g−1 (in turbot). The molar ratios of Se/Hg were above 1 for all species and greater than 100 in turbot, red mullet, and whiting. Positive Se-HBVs were determined for all samples, showing health benefits. Since Se is present in molar excess of Hg in the fish muscles, organic Hg exposures from eating these fish is not a public health concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. US EPA (2004) What you need to know about mercury in fish and shellfish. https://www.epa.gov/choose-fish-and-shellfish-wisely/what-you-need-know-aboutmercury-fish-and-shellfish. Accessed 3 June 2018

  2. Calatayud M, Devesa V, Virseda JR, Barberá R, Montoro R, Vélez D (2012) Mercury and selenium in fish and shellfish: occurrence, bioaccessibility and uptake by Caco-2 cells. Food Chem Toxicol 50:2696–2702. https://doi.org/10.1016/j.fct.2012.05.028

    Article  CAS  PubMed  Google Scholar 

  3. Avella-Garcia CB, Julvez J (2014) Seafood intake and neurodevelopment: a systematic review. Curr Environ Health Rep 11:46–77. https://doi.org/10.1007/s40572-013-0006-4

    Article  CAS  Google Scholar 

  4. Davidson PW, Cory-Slechta DA, Thurston SW, Huang LS, Shamlaye CF, Gunzler D, Watson G, van Wijngaarden E, Zareba G, Klein JD, Clarkson TW, Strain JJ, Myers GJ (2011) Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study. Neurotoxicology 32(6):711–717. https://doi.org/10.1016/j.neuro.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Julvez J, Méndez M, Fernandez-Barres S, Romaguera D, Vioque J, Llop S, Riaño I (2016) Maternal consumption of seafood in pregnancy and child neuropsychological development: a longitudinal study based on a population with high consumption levels. Am J Epidemiol 183:169–182. https://doi.org/10.1093/aje/kwv195

    Article  PubMed  Google Scholar 

  6. US EPA (2017) EPA-FDA advice about eating fish and shellfish. https://www.epa.gov/fish-tech/2017-epa-fda-advice-about-eating-fish-and-shellfish. Accessed 18 March 2018

  7. Hajeb P, Jinap S, Ismail A, Fatimah AB, Jamilah B, Abdul Rahim M (2009) Assessment of mercury level in commonly consumed marine fishes in Malaysia. Food Control 20:79–84. https://doi.org/10.1016/j.foodcont.2008.02.012

    Article  CAS  Google Scholar 

  8. Uluozlu OD, Tuzen M, Mendil D, Soylak M (2007) Trace metal content in nine species of fish from the Black and Aegean Seas, Turkey. Food Chem 104:835–840. https://doi.org/10.1016/j.foodchem.2007.01.003

    Article  CAS  Google Scholar 

  9. Mormede S, Davies IM (2001) Heavy metal concentrations in commercial deep-sea fish from the Rockall Trough. Cont Shelf Res 21:899–916. https://doi.org/10.1016/S02784343(00)00118-7

    Article  Google Scholar 

  10. Golding J, Hibbeln JR, Gregory SM, Iles-Caven Y, Emond A, Taylor CM (2017) Maternal prenatal blood mercury is not adversely associated with offspring IQ at 8 years provided the mother eats fish: a British prebirth cohort study. Int J Hyg Environ Health 220(7):1161–1167. https://doi.org/10.1016/j.ijheh.2017.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Llop S, Ballester F, Murcia M, Forns J, Tardon A, Andiarena A, Vioque J, Ibarluzea J, Fernández-Somoano A, Sunyer J, Julvez J, Rebagliato M, Lopez-Espinosa MJ (2017) Prenatal exposure to mercury and neuropsychological development in young children: the role of fish consumption. Int J Epidemiol 46(3):827–838. https://doi.org/10.1093/ije/dyw259

    Article  PubMed  Google Scholar 

  12. ATSDR (2003) Toxicological profile for selenium. US Agency for Toxic Substances and Disease Registry. Atlanta, GA, USA

  13. Ralston NVC (2018) Effects of soft electrophiles on selenium physiology. Free Radic Biol Med 127:134–144. https://doi.org/10.1016/j.freeradbiomed.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  14. Vinceti M, Wei ET, Malagoli C, Bergoini M, Vivoli G (2001) Adverse health effects of selenium in humans. Environ Health Perspect 16:233–251. https://doi.org/10.1515/REVEH.2001.16.4.233

    Article  CAS  Google Scholar 

  15. Ježek P, Škarpa P, LoŠák T, HluŠek J, Jůzl V, Elzner P (2012) Selenium–an important antioxidant in crops biofortification. In: El-Missiry (ed) Antioxidant enzyme. IntechOpen Limited, London, UK, pp 343–368

  16. Cabanero AI, Carvalho C, Madrid Y, Batoréu C, Cámara C (2005) Quantification and speciation of mercury and selenium in fish samples of high consumption in Spain and Portugal. Biol Trace Elem Res 103:17–35. https://doi.org/10.1385/BTER:103:1:017

    Article  CAS  PubMed  Google Scholar 

  17. Peterson SA, Ralston NVC, Whanger PD, Oldfield JE, Mosher WD (2009) Selenium and mercury interactions with emphasis on fish tissue. Environ Bioind 4:318–334. https://doi.org/10.1080/15555270903358428

    Article  CAS  Google Scholar 

  18. Chapman PM (2010) Ecological assessment of selenium in the aquatic environment. In: Adams WJ, Brooks ML et al (eds) Chapman PM. Pellston workshop on selenium in the aquatic environment. SETAC, Florida, USA, pp 1–4

    Google Scholar 

  19. Dang F, Wang WX (2011) Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. Environ Sci Technol 45:3116–3122. https://doi.org/10.1021/es103705a

    Article  CAS  PubMed  Google Scholar 

  20. Ralston NVC (2009) Environmental bioindicators introduction to 2nd issue on special topic: selenium and mercury as interactive environmental indicators. Environ Bioind 4:286–290. https://doi.org/10.1080/15555270903448682

    Article  CAS  Google Scholar 

  21. Osman K, Schütz A, Akesson B, Maciag A, Vahter M (1998) Interactions between essential and toxic elements in lead exposed children in Katowice, Poland. Clin Biochem 31(8):657 665–657 665. https://doi.org/10.1016/S0009-9120(98)00071-X

    Article  Google Scholar 

  22. Carvalho CM, Lu J, Zhang X, Arnér ES, Holmgren A (2011) Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning. FASEB J 25(1):370–381. https://doi.org/10.1096/fj.10-157594

    Article  CAS  PubMed  Google Scholar 

  23. Ralston NVC, Raymond LJ (2018) Mercury’s neurotoxicity is characterized by its disruption of selenium biochemistry. Biochim Biophys Acta Gen Subj 1862:2405–2416. https://doi.org/10.1016/j.bbagen.2018.05.009

    Article  CAS  Google Scholar 

  24. Branco V, Coppo L, Solá S, Rodrigues C, Lu J, Holmgren A, Carvalho C (2017) Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biol 13:278–287. https://doi.org/10.1016/j.redox.2017.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spiller HA, Hays HL, Burns G, Casavant MJ (2017) Severe elemental mercury poisoning managed with selenium and N-acetylcysteine administration. Toxic Commun 1(1):24–28. https://doi.org/10.1080/24734306.2017.1392076

    Article  Google Scholar 

  26. Ralston NVC (2008) Selenium health benefit values as seafood safety criteria. EcoHealth 5:442–455. https://doi.org/10.1007/s10393-008-0202-0

    Article  PubMed  Google Scholar 

  27. Ralston NVC, Ralston CR, Blackwell JL III, Raymond LJ (2008) Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 29:802–811. https://doi.org/10.1016/j.neuro.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  28. Bjerregaard P, Fjordside S, Hansen MG, Petrova MB (2011) Dietary selenium reduces retention of methyl mercury in freshwater fish. Environ Sci Technol 45:9793–9798. https://doi.org/10.1021/es202565g

    Article  CAS  PubMed  Google Scholar 

  29. Gochfeld M, Burger J, Jeitner C, Donio M, Pittfield T (2012) Seasonal, locational and size variations in mercury and selenium levels in striped bass (Morone saxatilis) from New Jersey. Environ Res 112:8–19. https://doi.org/10.1016/j.envres.2011.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. US EPA (1994) Microwave assisted acid digestion of sediments, sludges, soils, and oils: test methods for evaluating solid waste. US Environmental Protection Agency. 3th ed. Washington DC, USA

  31. Kaneko JJ, Ralston NVC (2007) Selenium and mercury in pelagic fish in the central north pacific near Hawaii. Biol Trace Elem Res 119:242–254. https://doi.org/10.1007/s12011007-8004-8

    Article  CAS  PubMed  Google Scholar 

  32. EC (2006) Commission regulation (EC). No 1881/2006 of 19 December 2006: setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union Legis:5–24

  33. Turkish Food Codex (2011) Turkish food csodex regulation on contaminants. Official Gazette, In, p 5996

    Google Scholar 

  34. Olmedo P, Pla A, Hernandez AF, Barbier L, Ayouni L, Gil F (2013a) Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ Int 59:63–7225. https://doi.org/10.1016/j.envint.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  35. Tuzen M (2009) Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food Chem Toxicol 47:1785–1790. https://doi.org/10.1016/j.fct.2009.04.029

    Article  CAS  PubMed  Google Scholar 

  36. Burger J, Stern AH, Gochfeld M (2005) Mercury in commercial fish: optimizing individual choices to reduce risk. Environ Health Perspect 113:1–6. https://doi.org/10.1289/ehp.7315

    Article  CAS  Google Scholar 

  37. Silvano F (2012) Levels of mercury and polychlorobiphenyls in commercial food in Siena Province (Tuscany, Italy) in the period 2001–2010. Microchem J 105:60–64. https://doi.org/10.1016/j.microc.2012.01.013

    Article  CAS  Google Scholar 

  38. Martorell I, Perelló G, Martí-Cid R, Llobet JM, Castell V, Domingo JL (2011) Human exposure to arsenic, cadmium, mercury, and lead from foods in Catalonia, Spain: temporal trend. Biol Trace Elem Res 142:309–322. https://doi.org/10.1007/s12011-010-8787-x

    Article  CAS  PubMed  Google Scholar 

  39. Storelli MM, Giacominelli-Stuffler R, Storelli A, Marcotrigiano GO (2005) Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean Sea: a comparative study. Mar Pollut Bull 50:993–1018. https://doi.org/10.1016/j.marpolbul.2005.06.041

    Article  CAS  Google Scholar 

  40. Storelli MM, Normanno G, Barone G, Dambrosio A, Errico L, Garofalo R, Giacomınelli Stuffler R (2012) Toxic metals (Hg, Cd, and Pb) in fishery products imported into Italy: suitability for human consumption. J Food Prot 75:189–194. https://doi.org/10.4315/0362-028X.JFP-11-212

    Article  CAS  PubMed  Google Scholar 

  41. Brambilla G, Abete MC, Binato G, Chiaravalle E, Cossu M, Dellatte E, Miniero R, Orletti R, Piras P, Roncarati A, Ubaldi A, Chessa G (2013) Mercury occurrence in Italian seafood from the Mediterranean Sea and possible intake scenarios of the Italian coastal population. Regul Toxicol Pharmacol 65:269–277. https://doi.org/10.1016/j.yrtph.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  42. Burger J, Gochfeld M (2005) Heavy metals in commercial fish in New Jersey. Environ Res 99:403–412. https://doi.org/10.1016/j.envres.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  43. Kroepfl N, Jensen KB, Francesconi KA, Kuehnelt D (2015) Human excretory products of selenium are natural constituents of marine fish muscle. Anal Bioanal Chem 407:7713–7719. https://doi.org/10.1007/s00216-015-8936-3

    Article  CAS  PubMed  Google Scholar 

  44. Murphy J, Cashman KD (2001) Selenium content of a range of Irish foods. Food Chem 74:493–498

    Article  CAS  Google Scholar 

  45. Polack-Juszczak L (2015) Selenium and mercury molar ratios in commercial fish from the Baltic Sea: additional risk assessment criterion for mercury exposure. Food Control 50:881–888. https://doi.org/10.1016/j.foodcont.2014.10.046

    Article  CAS  Google Scholar 

  46. Rezayi M, Esmaeli AS, Valinasab T (2011) Mercury and selenium content in Otolithes ruber and Psettodes erumei from Khuzestan Shore, Iran. Bull Environ Contam Toxicol 86:511–514. https://doi.org/10.1007/s00128-011-0237-8

    Article  CAS  PubMed  Google Scholar 

  47. Burger J, Gaines KF, Boring CS, Stephens WL Jr, Snodgrass J, Gochfeld M (2001) Mercury and selenium in fish from the Savannah River: species, trophic level, and locational differences. Environ Res Sect A 87:108–118. https://doi.org/10.1006/enrs.2001.4294

    Article  CAS  Google Scholar 

  48. Campbell JW, Waters MN, Tarter A, Jackson J (2010) Heavy metal and selenium concentrations in liver tissue from wild American alligator (Alligator mississippiensis) livers near Charleston, south Carolina. J Wildl Dis 46(4):1234–1241. https://doi.org/10.7589/0090-3558-46.4.1234

    Article  CAS  PubMed  Google Scholar 

  49. Bangley CW (2011) Food and feeding habits of the spiny dogfish Squalus acanthias overwintering off the coast of North Carolina and the effects on the marine community. Master of science thesis, University of East Carolina

  50. FAO/WHO (2001) Human vitamin and mineral requirements. http://www.fao.org/docrep/pdf/004/y2809e/y2809e15.pdf. Accessed August 7, 2018

  51. Olmedo P, Hernández AF, Pla A, Femia P, Navas-Acien A, Gil F (2013b) Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury–selenium balance. Food Chem Toxicol 62:299–307. https://doi.org/10.1016/j.fct.2013.08.076

    Article  CAS  PubMed  Google Scholar 

  52. Chen YW, Belzile N, Gunn JM (2001) Antagonistic effect of selenium on mercury assimilation by fish populations near Sudbury metal smelters? Limnol Oceanogr 46(7):1814–1818. https://doi.org/10.4319/lo.2001.46.7.1814

    Article  CAS  Google Scholar 

  53. Ouédraogo Q, Amyot M (2013) Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso). Sci Total Environ 444:243–254. https://doi.org/10.1016/j.scitotenv.2012.11.095

    Article  CAS  PubMed  Google Scholar 

  54. Burger J, Jeitner C, Gochfeld M (2011) Locational differences in mercury and selenium levels in 19 species of saltwater fish from New Jersey. J Toxicol Environ Health A 74:863–874. https://doi.org/10.1080/15287394.2011.570231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raymond LJ, Ralston NVC (2009) Selenium's importance in regulatory issues regarding mercury. Fuel. Sci Technol 90:1333–1338. https://doi.org/10.1016/j.fct.2013.03.021

    Article  CAS  Google Scholar 

  56. Chien LC, Yeh CY, Huang SY, Shieh MJ, Han BC (2003) Pharmacokinetic model of daily selenium intake from contaminated seafood in Taiwan. Sci Total Environ 311:57–64. https://doi.org/10.1016/S0048-9697(03)00134-7

    Article  CAS  PubMed  Google Scholar 

  57. Fang GC, Nam DH, Basu N (2011) Mercury and selenium content of Taiwanese seafood. Food Addit Contam B 4:212–217. https://doi.org/10.1080/19393210.2011.605526

    Article  CAS  Google Scholar 

  58. Ralston NVC, Ralston CR, Raymond LJ (2016) Selenium health benefit values: updated criteria for mercury risk assessments. Biol Trace Elem Res 171:262–269. https://doi.org/10.1007/s12011-015-0516-z

    Article  CAS  PubMed  Google Scholar 

  59. Burger J, Gochfeld M (2011) Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Sci Total Environ 409:1418–1429. https://doi.org/10.1016/j.scitotenv.2010.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Burger J, Gochfeld M (2013) Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: variation within species and relevance to risk communication. Food Chem Toxicol 57:235–245. https://doi.org/10.1016/j.fct.2013.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burger J, Gochfeld M, Batang Z, Alikunhi N, Al-Jahdali R, Al-Jebreen D, Aziz MAM, Al Suwailem A (2014) Interspecific and locational differences in metal levels in edible fish tissue from Saudi Arabia. Environ Monit Assess 186:6721–6746. https://doi.org/10.1007/s10661-014-3885-4

    Article  CAS  PubMed  Google Scholar 

  62. Karimi R, Frisk M, Fisher NS (2013) Contrasting food web factor and body size relationships with Hg and Se concentrations in marine biota. PLoS One 8(9):1–10. https://doi.org/10.1371/journal.pone.0074695

    Article  CAS  Google Scholar 

  63. Power M, Klein GM, Guıguer KRRA, Kwan MKH (2002) Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. J Appl Ecol 39:819–830. https://doi.org/10.1046/j.1365-2664.2002.00758.x

    Article  CAS  Google Scholar 

  64. Swanson HK, Johnston TA, Doucett RR, Leggett WC, Cunjak RA (2006) Trophic positions and mercury bioaccumulation in Rainbow smelt (Osmerus mordax) and native forage fishes in Northwestern Ontario Lakes. Ecosystems 6:289–299. https://doi.org/10.1007/s10021-002-0205-6

    Article  CAS  Google Scholar 

  65. Burger J (2009) Risk to consumers from mercury in bluefish (Pomatomus saltatrix) from New Jersey: size, season and geographical effects. Environ Res 109(7):803–811. https://doi.org/10.1016/j.envres.2009.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ordiano-Flores A, Rosiles-Martinez R, Galvan-Magana F (2012) Biomagnification of mercury and its antagonistic interaction with selenium in yellowfin tuna Thunnus albacares in the trophic web of Baja California Sur, Mexico. Ecotox Environ Safe 86:182–187. https://doi.org/10.1016/j.ecoenv.2012.09.014

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Research Fund of Istanbul University (Grant number 9567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şafak Ulusoy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulusoy, Ş., Mol, S., Karakulak, F. et al. Selenium-Mercury Balance in Commercial Fish Species from the Turkish Waters. Biol Trace Elem Res 191, 207–213 (2019). https://doi.org/10.1007/s12011-018-1609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1609-2

Keywords

Navigation