Skip to main content

Advertisement

Log in

Effect of Duration of Exposure to Fluoride and Type of Diet on Lipid Parameters and De Novo Lipogenesis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of duration of chronic treatment with fluoride (F, 50 mg/L as NaF) on the lipid profile, lipid droplets and triglycerides (TG) in liver was evaluated in mice with nonalcoholic fatty liver disease (NAFLD) previously induced by hyperlipidic diet and in animals fed normocaloric diet. In addition, the effect of F administered for a short period (20 days) was evaluated on de novo lipogenesis, by nuclear magnetic resonance. GRP78, Apo-E, and sterol regulatory element-binding protein (SREBP) were quantified by Western blotting. Our data indicate that F interferes in lipid metabolism and lipid droplets, having a different action depending on the exposure time and type of diet administered. F improved lipid parameters and reduced steatosis only when administered for a short period of time (up to 20 days) to animals fed normocaloric diet. However, when NAFLD was already installed, lipid parameters were only slightly improved at 20 days of treatment, but no effect was observed on the degree of steatosis. In addition, lipid profile was in general impaired when the animals were treated with F for 30 days, regardless of the diet. Moreover, F did not alter de novo lipogenesis in animals with installed NAFLD. Furthermore, hyperlipidic diet increased F accumulation in the body. GRP78 increased, while Apo-E and SREBP decreased in the F-treated groups. Our results provide new insights on how F affects lipid metabolism depending on the available energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Whitford GM (1996) The metabolism and toxicity of fluoride. Monogr Oral Sci 16 Rev 2:1–153

    CAS  PubMed  Google Scholar 

  2. Buzalaf MA, Pessan JP, Honorio HM, ten Cate JM (2011) Mechanisms of action of fluoride for caries control. Monogr Oral Sci 22:97–114. https://doi.org/10.1159/000325151

    Article  PubMed  Google Scholar 

  3. Strunecka A, Patocka J, Blaylock RL, Chinoy NJ (2007) Fluoride interactions: from molecules to disease. Curr Signal Transduction Ther 2(3):190–213

    Article  CAS  Google Scholar 

  4. Barbier O, Arreola-Mendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188(2):319–333. https://doi.org/10.1016/j.cbi.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  5. Pereira HA, Leite Ade L, Charone S, Lobo JG, Cestari TM, Peres-Buzalaf C, Buzalaf MA (2013) Proteomic analysis of liver in rats chronically exposed to fluoride. PLoS One 8(9):e75343. https://doi.org/10.1371/journal.pone.0075343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carvalho JG, Leite Ade L, Peres-Buzalaf C, Salvato F, Labate CA, Everett ET, Whitford GM, Buzalaf MA (2013) Renal proteome in mice with different susceptibilities to fluorosis. PLoS One 8(1):e53261. https://doi.org/10.1371/journal.pone.0053261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kobayashi CA, Leite AL, Peres-Buzalaf C, Carvalho JG, Whitford GM, Everett ET, Siqueira WL, Buzalaf MA (2014) Bone response to fluoride exposure is influenced by genetics. PLoS One 9(12):e114343. https://doi.org/10.1371/journal.pone.0114343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobayashi CA, Leite AL, Silva TL, Santos LD, Nogueira FC, Oliveira RC, Palma MS, Domont GB, Buzalaf MA (2009) Proteomic analysis of kidney in rats chronically exposed to fluoride. Chem Biol Interact 180(2):305–311. https://doi.org/10.1016/j.cbi.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  9. Lima Leite A, Gualiume Vaz Madureira Lobo J, Barbosa da Silva Pereira HA, Silva Fernandes M, Martini T, Zucki F, Sumida DH, Rigalli A, Buzalaf MA (2014) Proteomic analysis of gastrocnemius muscle in rats with streptozotocin-induced diabetes and chronically exposed to fluoride. PLoS One 9(9):e106646. https://doi.org/10.1371/journal.pone.0106646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lobo JG, Leite AL, Pereira HA, Fernandes MS, Peres-Buzalaf C, Sumida DH, Rigalli A, Buzalaf MA (2015) Low-level fluoride exposure increases insulin sensitivity in experimental diabetes. J Dent Res 94(7):990–997. https://doi.org/10.1177/0022034515581186

    Article  CAS  PubMed  Google Scholar 

  11. Shanthakumari D, Srinivasalu S, Subramanian S (2004) Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats. Toxicology 204(2–3):219–228. https://doi.org/10.1016/j.tox.2004.06.058

    Article  CAS  PubMed  Google Scholar 

  12. Dabrowska E, Letko R, Balunowska M (2006) Effect of sodium fluoride on the morphological picture of the rat liver exposed to NaF in drinking water. Adv Med Sci 51(Suppl 1):91–95

    CAS  PubMed  Google Scholar 

  13. Dianat N, Steichen C, Vallier L, Weber A, Dubart-Kupperschmitt A (2013) Human pluripotent stem cells for modelling human liver diseases and cell therapy. Curr Gene Ther 13(2):120–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang KT, Lin C, Liu CW, Chen YC (2014) Effects of chicken-liver hydrolysates on lipid metabolism in a high-fat diet. Food Chem 160:148–156. https://doi.org/10.1016/j.foodchem.2014.03.052

    Article  CAS  PubMed  Google Scholar 

  15. Pereira HA, Dionizio AS, Fernandes MS, Araujo TT, Cestari TM, Buzalaf CP, Iano FG, Buzalaf MA (2016) Fluoride intensifies hypercaloric diet-induced ER oxidative stress and alters lipid metabolism. PLoS One 11(6):e0158121. https://doi.org/10.1371/journal.pone.0158121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asrih M, Jornayvaz FR (2014) Diets and nonalcoholic fatty liver disease: the good and the bad. Clin Nutr 33(2):186–190. https://doi.org/10.1016/j.clnu.2013.11.003

    Article  PubMed  Google Scholar 

  17. Brunt EM, Tiniakos DG (2010) Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol 16(42):5286–5296

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bugianesi E, Leone N, Vanni E, Marchesini G, Brunello F, Carucci P, Musso A, De Paolis P, Capussotti L, Salizzoni M, Rizzetto M (2002) Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123(1):134–140

    Article  PubMed  Google Scholar 

  19. Palekar NA, Naus R, Larson SP, Ward J, Harrison SA (2006) Clinical model for distinguishing nonalcoholic steatohepatitis from simple steatosis in patients with nonalcoholic fatty liver disease. Liver Int 26(2):151–156. https://doi.org/10.1111/j.1478-3231.2005.01209.x

    Article  PubMed  Google Scholar 

  20. Paschos P, Paletas K (2009) Non-alcoholic fatty liver disease and metabolic syndrome. Hippokratia 13(1):9–19

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Machado MV, Ravasco P, Jesus L, Marques-Vidal P, Oliveira CR, Proenca T, Baldeiras I, Camilo ME, Cortez-Pinto H (2008) Blood oxidative stress markers in non-alcoholic steatohepatitis and how it correlates with diet. Scand J Gastroenterol 43(1):95–102

    Article  CAS  PubMed  Google Scholar 

  22. Chlubek DPS (2003) Fluoride and oxidative stress. Fluoride 4:36

    Google Scholar 

  23. Bharti VK, Srivastava RS, Kumar H, Bag S, Majumdar AC, Singh G, Pandi-Perumal SR, Brown GM (2014) Effects of melatonin and epiphyseal proteins on fluoride-induced adverse changes in antioxidant status of heart, liver, and kidney of rats. Adv Pharmacol Sci 2014:532969. https://doi.org/10.1155/2014/532969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iano FG, Ferreira MC, Quaggio GB, Fernandes MS, Oliveira RC, Ximenes VF, Buzalaf MAR (2014) Effects of chronic fluoride intake on the antioxidant systems of the liver and kidney in rats. J Fluor Chem 168(0):212–217

    Article  CAS  Google Scholar 

  25. Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferre P, Foufelle F (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119(5):1201–1215. https://doi.org/10.1172/JCI37007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jo H, Choe SS, Shin KC, Jang H, Lee JH, Seong JK, Back SH, Kim JB (2013) Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very low-density lipoprotein receptor. Hepatology 57(4):1366–1377. https://doi.org/10.1002/hep.26126

    Article  CAS  PubMed  Google Scholar 

  27. Miltonprabu S, Thangapandiyan S (2015) Epigallocatechin gallate potentially attenuates fluoride induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. J Trace Elem Med Biol 29:321–335. https://doi.org/10.1016/j.jtemb.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  28. Chiba FY, Garbin CAS, Mattera MSLC, Mota MSO, Pereira RF, Sumida DH (2015) Chronic treatment with a mild dose of Naf promotes dyslipidemia in rats. Fluoride 48(3):205–212

    CAS  Google Scholar 

  29. de Cassia Alves Nunes R, Chiba FY, Pereira AG, Pereira RF, de Lima Coutinho Mattera MS, Ervolino E, Louzada MJ, Buzalaf MA, Silva CA, Sumida DH (2016) Effect of sodium fluoride on bone biomechanical and histomorphometric parameters and on insulin signaling and insulin sensitivity in ovariectomized rats. Biol Trace Elem Res 173:144–153. https://doi.org/10.1007/s12011-016-0642-2

    Article  CAS  PubMed  Google Scholar 

  30. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    Article  CAS  PubMed  Google Scholar 

  31. Dunipace AJ, Brizendine EJ, Zhang W, Wilson ME, Miller LL, Katz BP, Warrick JM, Stookey GK (1995) Effect of aging on animal response to chronic fluoride exposure. J Dent Res 74(1):358–368. https://doi.org/10.1177/00220345950740011201

    Article  CAS  PubMed  Google Scholar 

  32. Moura LP, Figueredo GA, Bertolini NO, Ceccato M, Pereira JR, Sponton AC, de Mello MA (2012) Dietary restriction, caloric value and the accumulation of hepatic fat. Lipids Health Dis 11:2. https://doi.org/10.1186/1476-511X-11-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. WHO (2004) Fluoride in drinking water. Background document for development of - WHO Guidelines for Drinking-water Quality. http://www.who.int/water_sanitation_health/dwq/chemicals/fluoride.pdf

  34. Taves DR (1968) Separation of fluoride by rapid diffusion using hexamethyldisiloxane. Talanta 15(9):969–974

    Article  CAS  PubMed  Google Scholar 

  35. Luna LG (1968) Manual of the histologic staining methods of the armed force imtituli of pathology. 3 edn

  36. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    CAS  PubMed  Google Scholar 

  37. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  Google Scholar 

  38. Christie WW (1982) Preparation of lipid extracts from tissues. Lipid analysis

  39. Silva AM, Martins F, Jones JG, Carvalho R (2011) 2H2O incorporation into hepatic acetyl-CoA and de novo lipogenesis as measured by Krebs cycle-mediated 2H-enrichment of glutamate and glutamine. Magn Reson Med 66(6):1526–1530. https://doi.org/10.1002/mrm.22955

    Article  CAS  PubMed  Google Scholar 

  40. Jones JG, Fagulha A, Barosa C, Bastos M, Barros L, Baptista C, Caldeira MM, Carvalheiro M (2006) Noninvasive analysis of hepatic glycogen kinetics before and after breakfast with deuterated water and acetaminophen. Diabetes 55(8):2294–2300. https://doi.org/10.2337/db06-0304

    Article  CAS  PubMed  Google Scholar 

  41. Duarte JA, Carvalho F, Pearson M, Horton JD, Browning JD, Jones JG, Burgess SC (2014) A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J Lipid Res 55(12):2541–2553. https://doi.org/10.1194/jlr.M052308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan YX, Gong YW, Guo Y, Lv Q, Guo C, Zhuang Y, Zhang Y, Li R, Zhang XZ (2012) Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation. PLoS One 7(4):e35709. https://doi.org/10.1371/journal.pone.0035709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahley RW, Rall SC Jr (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1:507–537. https://doi.org/10.1146/annurev.genom.1.1.507

    Article  CAS  PubMed  Google Scholar 

  44. Sun L, Gao Y, Zhang W, Liu H, Sun D (2014) Effect of high fluoride and high fat on serum lipid levels and oxidative stress in rabbits. Environ Toxicol Pharmacol 38(3):1000–1006. https://doi.org/10.1016/j.etap.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  45. Miller RF, Phillips PH (1955) The enhancement of the toxicity of sodium fluoride in the rat by high dietary fat. J Nutr 56(4):447–454

    Article  CAS  PubMed  Google Scholar 

  46. Buttner W, Muhler JC (1958) The retention of fluoride by the skeleton, liver, heart and kidney as a function of dietary fat intake in the rat. J Nutr 65(2):259–266

    Article  CAS  PubMed  Google Scholar 

  47. Vijayran M, Manuja N, Chaudhary S, Sinha A, Chaitra TR (2014) Co-relation of body mass index, dental caries and periodontal status with fluorosis in different high fluoridated areas of Haryana state, India. Indian J Dent Res 25(6):722–728. https://doi.org/10.4103/0970-9290.152174

    Article  PubMed  Google Scholar 

  48. Liu G, Ye Q, Chen W, Zhao Z, Li L, Lin P (2015) Study of the relationship between the lifestyle of residents residing in fluorosis endemic areas and adult skeletal fluorosis. Environ Toxicol Pharmacol 40(1):326–332. https://doi.org/10.1016/j.etap.2015.06.022

    Article  CAS  PubMed  Google Scholar 

  49. Daugherity EK, Balmus G, Al Saei A, Moore ES, Abi Abdallah D, Rogers AB, Weiss RS, Maurer KJ (2012) The DNA damage checkpoint protein ATM promotes hepatocellular apoptosis and fibrosis in a mouse model of non-alcoholic fatty liver disease. Cell Cycle 11(10):1918–1928. https://doi.org/10.4161/cc.20259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Umarani V, Muvvala S, Ramesh A, Lakshmi BV, Sravanthi N (2015) Rutin potentially attenuates fluoride-induced oxidative stress-mediated cardiotoxicity, blood toxicity and dyslipidemia in rats. Toxicol Mech Methods 25(2):143–149. https://doi.org/10.3109/15376516.2014.1003359

    Article  CAS  PubMed  Google Scholar 

  51. Zhou BH, Zhao J, Liu J, Zhang JL, Li J, Wang HW (2015) Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice. Chemosphere 139:504–511. https://doi.org/10.1016/j.chemosphere.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  52. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445. https://doi.org/10.1146/annurev-immunol-031210-101322

    Article  CAS  Google Scholar 

  53. Kim E, Choi Y, Jang J, Park T (2013) Carvacrol protects against hepatic steatosis in mice fed a high-fat diet by enhancing SIRT1-AMPK signaling. Evid Based Complement Alternat Med 2013:290104–290110. https://doi.org/10.1155/2013/290104

    Article  PubMed  PubMed Central  Google Scholar 

  54. Buzalaf MA, Whitford GM (2011) Fluoride metabolism. Monogr Oral Sci 22:20–36. https://doi.org/10.1159/000325107

    Article  PubMed  Google Scholar 

  55. Melcrova A, Pokorna S, Pullanchery S, Kohagen M, Jurkiewicz P, Hof M, Jungwirth P, Cremer PS, Cwiklik L (2016) The complex nature of calcium cation interactions with phospholipid bilayers. Sci Rep 6:38035. https://doi.org/10.1038/srep38035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rapold RA, Wueest S, Knoepfel A, Schoenle EJ, Konrad D (2013) Fas activates lipolysis in a Ca2+-CaMKII-dependent manner in 3T3-L1 adipocytes. J Lipid Res 54(1):63–70. https://doi.org/10.1194/jlr.M028035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Delgado TC, Pinheiro D, Caldeira M, Castro MM, Geraldes CF, Lopez-Larrubia P, Cerdan S, Jones JG (2009) Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat. NMR Biomed 22(3):310–317. https://doi.org/10.1002/nbm.1327

    Article  CAS  PubMed  Google Scholar 

  58. Strable MS, Ntambi JM (2010) Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45(3):199–214. https://doi.org/10.3109/10409231003667500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leavens KF, Easton RM, Shulman GI, Previs SF, Birnbaum MJ (2009) Akt2 is required for hepatic lipid accumulation in models of insulin resistance. Cell Metab 10(5):405–418. https://doi.org/10.1016/j.cmet.2009.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oosterveer MH, van Dijk TH, Tietge UJ, Boer T, Havinga R, Stellaard F, Groen AK, Kuipers F, Reijngoud DJ (2009) High fat feeding induces hepatic fatty acid elongation in mice. PLoS One 4(6):e6066. https://doi.org/10.1371/journal.pone.0006066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee WN, Bassilian S, Ajie HO, Schoeller DA, Edmond J, Bergner EA, Byerley LO (1994) In vivo measurement of fatty acids and cholesterol synthesis using D2O and mass isotopomer analysis. Am J Phys 266(5 Pt 1):E699–E708

    CAS  Google Scholar 

  62. Brunengraber DZ, McCabe BJ, Kasumov T, Alexander JC, Chandramouli V, Previs SF (2003) Influence of diet on the modeling of adipose tissue triglycerides during growth. Am J Phys Endocrinol Metab 285(4):E917–E925. https://doi.org/10.1152/ajpendo.00128.2003

    Article  CAS  Google Scholar 

  63. Fon Tacer K, Rozman D (2011) Nonalcoholic fatty liver disease: focus on lipoprotein and lipid deregulation. J Lipids 2011:783976. https://doi.org/10.1155/2011/783976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kockx M, Dinnes DL, Huang KY, Sharpe LJ, Jessup W, Brown AJ, Kritharides L (2012) Cholesterol accumulation inhibits ER to Golgi transport and protein secretion: studies of apolipoprotein E and VSVGt. Biochem J 447(1):51–60. https://doi.org/10.1042/BJ20111891

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Leandro Pereira de Moura for the help with the preparation of the hyperlipidic diet and Dr. José Roberto Bosqueiro for the help with obtaining the animals.

Funding

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the concession of a Master scholarship to the first author (grant number 2013/25756-0 and 2015/10988-9).

Author information

Authors and Affiliations

Authors

Contributions

Dionizio A, Pereira HABS, and Buzalaf MAR conceived the experiments. Dionizio A, Pereira HABS, Nogueira FN, and Carvalho, RA conducted the experiments. Dionizio A, Pereira HABS, Araujo TT, Sabino-Arias IT. Fernandes MS. Oliveira KA. Nogueira FN, Carvalho, RA, Raymundo FS, and Cestari TM participated in the research experiments. Dionizio A, Pereira HABS, and Buzalaf MAR drafted the article and analyzed and interpreted the results. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Marília Afonso Rabelo Buzalaf.

Ethics declarations

All experimental protocols were approved by the Ethics Committee for Animal Experiments of Bauru Dental School, University of São Paulo (protocol: 001/2014; 008/2015).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dionizio, A., Pereira, H.A.B.S., Araujo, T.T. et al. Effect of Duration of Exposure to Fluoride and Type of Diet on Lipid Parameters and De Novo Lipogenesis. Biol Trace Elem Res 190, 157–171 (2019). https://doi.org/10.1007/s12011-018-1542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1542-4

Keywords

Navigation