Skip to main content

Advertisement

Log in

NIR LEDs and NIR lasers as feasible alternatives to replace oven processes for treatment of thermal-responsive coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Near-infrared (NIR) laser sources (800–1000 nm) can potentially reduce the processing time for curing by a fast heating and incorporation of NIR absorbers into the coating. The latter converts NIR laser light absorbed into thermal energy. This curing technique was successfully applied to one-component thermoset coatings based on blocked polyisocyanate/hydroxy-polyester and melamine formaldehyde/hydroxy-acrylate resins with heptamethine cyanines as near-infrared absorbing material. The laser curing was additionally compared with LED sources. In general, the curing time significantly decreases in comparison with traditional heat sources. Furthermore, the photopolymerization of acrylates or epoxides can be induced simultaneously by adding suitable initiators due to photochemical generation of radicals and cations. Curing of the thermoset resin system and the photopolymerization process created interpenetrating networks. Principally, the techniques reported based on photonic NIR sources may help to substitute oven techniques where thermal activation of curing reactions is typically induced by oven or heating with infrared radiators for coating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tillet, G, Boutevin, B, Ameduri, B, “Chemical Reactions of Polymer Crosslinking and Post-crosslinking at Room and Medium Temperature.” Prog. Polym. Sci., 36 (2) 191–217 (2011)

    CAS  Google Scholar 

  2. Enns, JB, Gillham, JK, “Time-Temperature-Transformation (TTT) Cure Diagram-Modeling the Cure Behavior of Thermosets.” J. Appl. Polym. Sci., 28 (8) 2567–2591 (1983)

    CAS  Google Scholar 

  3. Hampshire, RJ, “The Use of Radiant Heat Transfer in the Curing of Coatings on Complex Geometries and Problematic Substrates.” Pigment Resin Technol., 26 (4) 225–228 (1997)

    Google Scholar 

  4. Dickie, RA, Bauer, DR, Ward, SM, Wagner, DA, “Modeling Paint and Adhesive Cure in Automotive Applications.” Prog. Organ. Coat., 31 (3) 209–216 (1997)

    CAS  Google Scholar 

  5. Sawyer, M, “Infrared Curing Systems Offer Alternative to Tried-and-True Convection Heat Sources.” Met. Finish., 104 (11) 9–11 (2006)

    CAS  Google Scholar 

  6. Abliz, D, Duan, Y, Steuernagel, L, Xie, L, Li, D, Ziegmann, G, “Curing Methods for Advanced Polymer Composites—A Review.” Polym. Polym. Compos., 21 (6) 341–348 (2013)

    CAS  Google Scholar 

  7. Howell, JR, Siegel, R, Mengüc, MR, Thermal Radiation Heat Transfer. CRC Press, New York, 2010

    Google Scholar 

  8. Kane, R, Sirek, S, “The T3 Quartz Infrared Lamps.” In: Kane, R, Sell, H (eds.) Revolution in Lamps: A Chronicle of 50 Years of Progress, pp. 65–74. Fairmont Press, Lilburn, 2001

    Google Scholar 

  9. Baumann, H, Hoffmann-Walbeck, T, Wenning, W, Lehmann, H-J, Simpson, CD, Mustroph, H, Stebani, U, Telser, T, Weichmann, A, Studenroth, R, Imaging Technology, 3. Imaging in Graphic Arts. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, New York, 2015

    Google Scholar 

  10. Schubert, EF, Light Emitting Diodes-Schubert. Cambridge University Press, Cambridge, 2006

    Google Scholar 

  11. Bachmann, F, Takahashi, R, “Chances and Limitations of High-Power Diode Lasers.” Rev. Laser Eng., 31 (5) 313–317 (2003)

    CAS  Google Scholar 

  12. Bao, L, Bai, J, Price, K, DeVito, M, Grimshaw, M, Dong, W, Guan, X, Zhang, S, Zhou, H, Bruce, K, Dawson, D, Kanskar, M, Martinsen, R, Haden, J, “Reliability of High Power/Brightness Diode Lasers Emitting from 790 to 980 nm.” Proc. SPIE, pp. 8605 (2013)

  13. Kanskar, M, Bao, L, Bai, J, Chen, Z, Dahlen, D, DeVito, M, Dong, W, Grimshaw, M, Haden, J, Guan, X, Hemenway, M, Kennedy, K, Martinsen, R, Tibbals, J, Urbanek, W, Zhang, S, “High Reliability of High Hower and High Brightness Diode Lasers.” Proc. of SPIE, 8965 (2014)

  14. Abhinandan, L, Chari, R, Nath, AK, Trivedi, MK, “Laser Curing of Thermosetting Powder Coatings: A Detailed Investigation.” J. Laser Appl., 11 (6) 248–257 (1999)

    CAS  Google Scholar 

  15. Blais, C, Chalco, PA, “Semiconductor Chip Packaging Method which Heat Cures an Encapsulant Deposited on a Chip Using a Laser Beam to Heat the Back Side of the Chip.” US Patent 5,457,299, 1995

  16. Chala, TF, Wu, CM, Chou, MH, Gebeyehu, MB, Cheng, KB, “Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites.” Nanomaterials (Basel), 7 (7) 191 (2017)

    Google Scholar 

  17. Chua, CT, Lee, YP, Zhou, MS and Chan, L, “Laser Curing of Spin-On Dielectric Thin Films.” US Patent 6,121,130, 2000

  18. Hirshey, JA, Busiello, M, “Manufacturing System Implementing Laser-Curing of Epoxied Joints.” US Patent 0305070 A1, 2017

  19. Hong, Z, Liang, R, “IR-Laser Assisted Additive Freeform Optics Manufacturing.” Sci. Rep., 7 (1) 7145 (2017)

    Google Scholar 

  20. Hoult, AP, Crane, SJ, “Diode-Laser Curing of Liquid Epoxide Encapsulants.” US Patent 613794 B2, 2005

  21. Mackwood, AP, Crafer, RC, “Thermal Modelling of Laser Welding and Related Processes: A Literature Review.” Opt. Laser Technol., 37 (2) 99–115 (2005)

    Google Scholar 

  22. Simone, G, “An Experimental Investigation on the Laser Cure of Thermosetting Powder: An Empirical Model for the Local Coating.” Prog. Org. Coat., 68 (4) 340–346 (2010)

    CAS  Google Scholar 

  23. Suzuki, A, Mochizuki, N, “PET Microfiber Prepared by Carbon Dioxide Laser Heating.” J. Appl. Polym. Sci., 88 (14) 3279–3283 (2003)

    CAS  Google Scholar 

  24. Baumann, H, “Lithographische Druckplatten für Laserbelichtung.” Chemie in unserer Zeit, 48 (1) 14–29 (2015)

    Google Scholar 

  25. Kunita, K, Oohashi, H, Ooshima, Y, “Novel Trialkoxy-Substituted Onium Salts as Highly Sensitive and Stable Photoinitiators Reactive to IR Laser.” J. Photopolym. Sci. Technol., 27 (6) 695–702 (2014)

    CAS  Google Scholar 

  26. Forbes, A, Bayer, A, Meinschien, J, Mitra, T, Brodner, M, Lizotte, TE, “Beam Shaping of Line Generators Based on High Power Diode Lasers to Achieve High Intensity and Uniformity Levels.” Proc. of SPIE, 7062 70620X-70620X-7 (2008)

  27. Beier, B, “Arraytechnologie Statt Einzelner Laserdiode.” Laser Tech. J., 8 (2) 34–36 (2011)

    Google Scholar 

  28. Wood, GL, Homburg, O, Hauschild, D, Kubacki, F, Lissotschenko, V, Dubinskii, MA, “Efficient Beam Shaping for High-Power Laser Applications.” Proc. of SPIE 6216 621608-1-621608-8 (2006)

  29. Neukum, J, “Diodenlaserbarren in der Druckindustrie.” Laser Tech. J., 8 (4) 22–23 (2011)

    Google Scholar 

  30. Hoynant, P, Pitz, H, “Verfahren zum Trocknen von Druckfarbe und Druckfarbe.” German Patent 102008056237, 2009

  31. Pitz, H, Hauck, A, Anweiler, W, Hachmann, P, “Method for Drying an Ink on a Printed Material in a Printing Press and Printing Press.” German Patent 10316472, 2004

  32. Stollenwerk, J, Weigt, W, Zschuppe, M, Meixner, M, “Sol-Gel-Lacke: Laser statt Trockenöfen.” Farbe und Lack, 121 (3) 88–92 (2013)

    Google Scholar 

  33. Brömme, T, Schmitz, C, Oprych, D, Wenda, A, Strehmel, V, Grabolle, M, Resch-Genger, U, Ernst, S, Reiner, K, Keil, D, Lüs, P, Baumann, H, Strehmel, B, “Digital Imaging of Lithographic Materials by Radical Photopolymerization and Photonic Baking with NIR Diode Lasers.” Chem. Eng. Technol., 39 (1) 13–25 (2016)

    Google Scholar 

  34. Kasha, M, Rawls, HR, Ashraf El-Bayoumi, M, “The Exciton Model in Molecular Spectroscopy.” Pure Appl. Chem., 11 (3–4) 371–392 (1965)

    CAS  Google Scholar 

  35. West, W, Pearce, S, “The Dimeric State of Cyanine Dyes.” J. Phys. Chem., 69 (6) 1894–1903 (1965)

    CAS  Google Scholar 

  36. Emerson, ES, Conlin, MA, Rosenoff, AE, Norland, KS, Rodriguez, H, Chin, D, Bird, GR, “The Geometrical Structure and Absorption Spectrum of a Cyanine Dye Aggregate.” J. Phys. Chem., 71 (8) 2396–2403 (1967)

    CAS  Google Scholar 

  37. Schmitz, C, Halbhuber, A, Keil, D, Strehmel, B, “NIR-Sensitized Photoinitiated Radical Polymerization and Proton Generation with Cyanines and LED Arrays.” Prog. Org. Coat., 100 32–46 (2016)

    CAS  Google Scholar 

  38. Brömme, T, Oprych, D, Horst, J, Pinto, PS, Strehmel, B, “New Iodonium Salts in NIR Sensitized Radical Photopolymerization of Multifunctional Monomers.” RSC Adv., 5 (86) 69915–69924 (2015)

    Google Scholar 

  39. Crivello, JV, Lam, JHW, “Diaryliodonium Salts. A New Class of Photoinitiators for Cationic Polymerization.” Macromolecules, 10 (6) 1307–1315 (1977)

    CAS  Google Scholar 

  40. Pohlers, G, Scaiano, JC, Sinta, R, “A Novel Photometric Method for the Determination of Photoacid Generation Efficiencies Using Benzothiazole and Xanthene Dyes as Acid Sensors.” Chem. Mater., 9 (12) 3222–3230 (1997)

    CAS  Google Scholar 

  41. Crivello, JV, Lam, JHW, “Dye-Sensitized Photoinitiated Cationic Polymerization.” J. Polym. Sci. Polym. Chem. Ed., 16 (10) 2441–2451 (1978)

    CAS  Google Scholar 

  42. Crivello, JV, “A New Visible Light Sensitive Photoinitiator System for the Cationic Polymerization of Epoxides.” J. Polym. Sci. Part A Polym. Chem., 47 (3) 866–875 (2009)

    CAS  Google Scholar 

  43. Xiao, P, Zhang, J, Dumur, F, Tehfe, MA, Morlet-Savary, F, Graff, B, Gigmes, D, Fouassier, JP, Lalevée, J, “Visible Light Sensitive Photoinitiating Systems: Recent Progress in Cationic and Radical Photopolymerization Reactions Under Soft Conditions.” Prog. Polym. Sci., 41 32–66 (2015)

    CAS  Google Scholar 

  44. Yagci, Y, Jockusch, S, Turro, NJ, “Photoinitiated Polymerization: Advances, Challenges, and Opportunities.” Macromolecules, 43 (15) 6245–6260 (2010)

    CAS  Google Scholar 

  45. Fouassier, JP, Morlet-Savary, F, Lalevée, J, Allonas, X, Ley, C, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions.” Materials, 3 (12) 5130–5142 (2010)

    CAS  Google Scholar 

  46. Hatano, T, Fukui, K, Karatsu, T, Kitamura, A, Urano, T, “Sensitization Mechanisms of Photopolymer Coating Layer using Infrared Dye.” J. Photopolym. Sci. Technol., 13 (5) 697–701 (2000)

    CAS  Google Scholar 

  47. Karatsu, T, Yanai, M, Yagai, S, Mizukami, J, Urano, T, Kitamura, A, “Evaluation of Sensitizing Ability of Barbiturate-Functionalized Non-Ionic Cyanine Dyes; Application for Photoinduced Radical Generation System Initiated by Near IR Light.” J. Photochem. Photobiol. A, 170 (2) 123–129 (2005)

    CAS  Google Scholar 

  48. Zhang, S, Li, B, Tang, L, Wang, X, Liu, D, Zhou, Q, “Studies on the Near Infrared Laser Induced Photopolymerization Employing a Cyanine Dye-Borate Complex as the Photoinitiator.” Polymer, 42 (18) 7575–7582 (2001)

    CAS  Google Scholar 

  49. Urano, T, Ishikawa, M, Sato, Y, Itoh, H, “Sensitizer Dyes and Sensitization Mechanisms in Photopolymer Coating Layer II.” J. Photopolym. Sci. Technol., 12 (5) 711–716 (1999)

    CAS  Google Scholar 

  50. Bonardi, AH, Dumur, F, Grant, TM, Noirbent, G, Gigmes, D, Lessard, BH, Fouassier, JP, Lalevée, J, “High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen.” Macromolecules, 51 (4) 1314–1324 (2018)

    CAS  Google Scholar 

  51. Schmitz, C, Strehmel, B, “Photochemical Treatment of Powder Coatings and VOC-Free Coatings with NIR Lasers Exhibiting Line-Shaped Focus: Physical and Chemical Solidification.” ChemPhotoChem, 1 (1) 26–34 (2017)

    CAS  Google Scholar 

  52. Schmitz, C, Strehmel, B, “Laser Focus on Curing.” Eur. Coat. J., 4 40–44 (2018)

    Google Scholar 

  53. Bonardi, AH, Bonardi, F, Morlet-Savary, F, Dietlin, C, Noirbent, G, Grant, TM, Fouassier, JP, Dumur, F, Lessard, BH, Gigmes, D, Lalevée, J, “Photoinduced Thermal Polymerization Reactions.” Macromolecules, 51 (21) 8808–8820 (2018)

    CAS  Google Scholar 

  54. Lee, JM, Subramani, S, Lee, YS, Kim, JH, “Thermal Decomposition Behavior of Blocked Diisocyanates Derived from Mixture of Blocking Agents.” Macromol. Res., 13 (5) 427–434 (2005)

    CAS  Google Scholar 

  55. Griffin, GR, Willwerth, LJ, “The Thermal Dissociation of Blocked Toluene Diisocyanates.” Ind. Eng. Chem. Product Res. Dev., 1 (4) 265–268 (1962)

    CAS  Google Scholar 

  56. Schmitz, C, Pang, Y, Gläser, M, Gülz, A, Horst, J, Jäger, M, Strehmel, B, “New High-Power LED Opens Photochemistry for NIR-Sensitized Radical and Cationic Photopolymerization.” Angewandte Chemie, submitted for publication (2018)

  57. Brömme, T, Schmitz, C, Moszner, N, Burtscher, P, Strehmel, N, Strehmel, B, “Photochemical Oxidation of NIR Photosensitizers in the Presence of Radical Initiators and Their Prospective Use in Dental Applications.” Chem. Sel., 1 (3) 524–532 (2016)

    Google Scholar 

  58. Paints and Varnishes—Pendelum Damping Test.” DIN EN ISO 1522:2007-04 (2007)

Download references

Acknowledgments

The authors thank the county of North Rhine-Westphalia for funding the project REFUBELAS (Grant 005-1703-0006) and FEW Chemicals GmbH for the NIR sensitizers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schmitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented at the 2018 European Technical Coatings Congress on June 26–29, 2018, in Amsterdam, The Netherlands.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, C., Strehmel, B. NIR LEDs and NIR lasers as feasible alternatives to replace oven processes for treatment of thermal-responsive coatings. J Coat Technol Res 16, 1527–1541 (2019). https://doi.org/10.1007/s11998-019-00197-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00197-3

Keywords

Navigation