Skip to main content
Log in

Fast preparation of biopassive nonfouling coatings on cellulose

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The microbial infection as a result of biofilm formation is a serious problem in various fields of application in the paper industry including fouling of filters in air conditioning systems, wallpaper, medical and food packaging as well as ancient documents. In this study, we document a highly nonfouling surface coating formed by a functional copolymer consisting of 2-methacryloyloxyethyl phosphorylcholine, as a zwitterionic and cell repellent component, and 4-benzophenyl methacrylate, acting as an anchor group for a fast UV-induced persistent covalent attachment on thin cellulose model films deposited on silicon wafers. The grafting process, studied by UV–Vis spectroscopy, is much faster in comparison with common grafting-to techniques. The obtained sustainable and nonleaching surface coatings were analyzed by attenuated total reflectance-Fourier transform infrared spectroscopy, contact angle measurements, spectroscopic in situ ellipsometry, and atomic force microscopy. Incubation of the modified cellulose surfaces with either Escherichia coli, Bacillus subtilis or Saccharomyces cerevisiae demonstrates that the zwitterionic polymer functionalization has substantial nonfouling capacity against both Gram-negative and Gram-positive bacteria as well as the yeast fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kenawy, E-R, Worley, SD, Broughton, R, “The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review.” Biomacromolecules, 8 (5) 1359–1384 (2007)

    Article  Google Scholar 

  2. Tuson, HH, Weibel, DB, “Bacteria-Surface Interactions.” Soft Matter, 9 (17) 4368–4380 (2013)

    Article  Google Scholar 

  3. Dexter, SC, Sullivan, JD, Williams, J, Watson, SW, “Influence of Substrate Wettability on the Attachment of Marine Bacteria to Various Surfaces.” Appl. Microbiol., 30 (2) 298–308 (1975)

    Google Scholar 

  4. Thallinger, B, Prasetyo, EN, Nyanhongo, GS, Guebitz, GM, “Antimicrobial Enzymes: An Emerging Strategy to Fight Microbes and Microbial Biofilms.” Biotechnol. J., 8 (1) 97–109 (2013)

    Article  Google Scholar 

  5. Conte, A, Buonocore, GG, Bevilacqua, A, Sinigaglia, M, Del Nobile, MA, “Immobilization of Lysozyme on Polyvinylalcohol Films for Active Packaging Applications.” J. Food Prot., 69 (4) 866–870 (2006)

    Article  Google Scholar 

  6. Li, X, Xing, Y, Jiang, Y, Ding, Y, Li, W, “Antimicrobial Activities of ZnO Powder-Coated PVC Film to Inactivate Food Pathogens.” Int. J. Food Sci. Technol., 44 (11) 2161–2168 (2009)

    Article  Google Scholar 

  7. De Lancey Pulcini, E, “Bacterial Biofilms: A Review of Current Research.” Nephrologie, 22 (8) 439–441 (2001)

    Google Scholar 

  8. Jyotsna, C, Guangyin, Z, Mahmoud, AG, “Fungal Biofilms and Antimycotics.” Current Drug Targets, 6 (8) 887–894 (2005)

    Article  Google Scholar 

  9. Gour, N, Ngo, KX, Vebert-Nardin, C, “Anti-Infectious Surfaces Achieved by Polymer Modification.” Macromol. Materi. Eng., 299 (6) 648–668 (2014)

    Article  Google Scholar 

  10. Monroe, D, “Looking for Chinks in the Armor of Bacterial Biofilms.” PLOS Biol., 5 (11) e307 (2007)

    Article  Google Scholar 

  11. Siedenbiedel, F, Tiller, JC, “Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles.” Polymers, 4 (1) 46 (2012)

    Article  Google Scholar 

  12. Tiller, JC, Liao, C-J, Lewis, K, Klibanov, AM, “Designing Surfaces that Kill Bacteria on Contact.” Proc. Natl. Acad. Sci., 98 (11) 5981–5985 (2001)

    Article  Google Scholar 

  13. Aumsuwan, N, McConnell, MS, Urban, MW, “Tunable Antimicrobial Polypropylene Surfaces: Simultaneous Attachment of Penicillin (Gram +) and Gentamicin (Gram −).” Biomacromolecules, 10 (3) 623–629 (2009)

    Article  Google Scholar 

  14. Schwartz, VB, Thétiot, F, Ritz, S, Pütz, S, Choritz, L, Lappas, A, Förch, R, Landfester, K, Jonas, U, “Antibacterial Surface Coatings from Zinc Oxide Nanoparticles Embedded in Poly(N-isopropylacrylamide) Hydrogel Surface Layers.” Adv. Funct. Mater., 22 (11) 2376–2386 (2012)

    Article  Google Scholar 

  15. Banerjee, I, Pangule, RC, Kane, RS, “Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms.” Adv. Mater., 23 (6) 690–718 (2011)

    Article  Google Scholar 

  16. Khalil, F, Franzmann, E, Ramcke, J, Dakischew, O, Lips, KS, Reinhardt, A, Heisig, P, Maison, W, “Biomimetic PEG-Catecholates for Stabile Antifouling Coatings on Metal Surfaces: Applications on TiO2 and Stainless Steel.” Colloids Surf. B Biointerfaces, 117 (Supplement C) 185–192 (2014)

    Article  Google Scholar 

  17. Zeng, R, Luo, Z, Zhou, D, Cao, F, Wang, Y, “A Novel PEG Coating Immobilized onto Capillary Through Polydopamine Coating for Separation of Proteins in CE.” Electrophoresis, 31 (19) 3334–3341 (2010)

    Article  Google Scholar 

  18. Chae, KH, Jang, YM, Kim, YH, Sohn, O-J, Rhee, JI, “Anti-Fouling Epoxy Coatings for Optical Biosensor Application Based on Phosphorylcholine.” Sens. Actuators B Chem., 124 (1) 153–160 (2007)

    Article  Google Scholar 

  19. Akkahat, P, Kiatkamjornwong, S, Yusa, S-I, Hoven, VP, Iwasaki, Y, “Development of a Novel Antifouling Platform for Biosensing Probe Immobilization from Methacryloyloxyethyl Phosphorylcholine-Containing Copolymer Brushes.” Langmuir, 28 (13) 5872–5881 (2012)

    Article  Google Scholar 

  20. Konradi, R, Acikgoz, C, Textor, M, “Polyoxazolines for Nonfouling Surface Coatings—A Direct Comparison to the Gold Standard PEG.” Macromol. Rapid Commun., 33 (19) 1663–1676 (2012)

    Article  Google Scholar 

  21. Bai, L, Tan, L, Chen, L, Liu, S, Wang, Y, “Preparation and Characterizations of Poly(2-Methyl-2-Oxazoline) Based Antifouling Coating by Thermally Induced Immobilization.” J. Mater. Chem. B, 2 (44) 7785–7794 (2014)

    Article  Google Scholar 

  22. Kobayashi, M, Terayama, Y, Yamaguchi, H, Terada, M, Murakami, D, Ishihara, K, Takahara, A, “Wettability and Antifouling Behavior on the Surfaces of Superhydrophilic Polymer Brushes.” Langmuir, 28 (18) 7212–7222 (2012)

    Article  Google Scholar 

  23. Vogler, EA, Morra, A, Water in Biomaterials Surface Science. Wiley, New York (2001)

    Google Scholar 

  24. Zhu, L-J, Zhu, L-P, Jiang, J-H, Yi, Z, Zhao, Y-F, Zhu, B-K, Xu, Y-Y, “Hydrophilic and Anti-Fouling Polyethersulfone Ultrafiltration Membranes with Poly(2-Hydroxyethyl Methacrylate) Grafted Silica Nanoparticles as Additive.” J. Membr. Sci., 451 (Supplement C) 157–168 (2014)

    Article  Google Scholar 

  25. Sun, Z, Chen, F, “Hydrophilicity and Antifouling Property of Membrane Materials from Cellulose Acetate/Polyethersulfone in DMAc.” Int. J. Biolog. Macromol., 91 (Supplement C) 143–150 (2016)

    Article  Google Scholar 

  26. Shirtcliffe, NJ, Roach, P, “Superhydrophobicity for Antifouling Microfluidic Surfaces.” In: Jenkins, G, Mansfield, CD (eds.) Microfluidic Diagnostics: Methods and Protocols, pp. 269–281. Humana Press, Totowa, NJ (2013)

    Chapter  Google Scholar 

  27. Chapman, J, Regan, F, “Nanofunctionalized Superhydrophobic Antifouling Coatings for Environmental Sensor Applications—Advancing Deployment with Answers from Nature.” Adv. Eng. Mater., 14 (4) B175–B184 (2012)

    Article  Google Scholar 

  28. Blossey, R, “Self-cleaning Surfaces—Virtual Realities.” Nat. Mater., 2 (5) 301–306 (2003)

    Article  Google Scholar 

  29. Baier, RE, “The Role of Surface Energy in Thrombogenesis.” Bull. N. Y. Acad. Med., 48 (2) 257–272 (1972)

    Google Scholar 

  30. Minko, S, “Grafting on Solid Surfaces: “Grafting to” and “Grafting from” Methods.” In: Stamm, M (ed.) Polymer Surfaces and Interfaces: Characterization, Modification and Applications, pp. 215–234. Springer, Berlin (2008)

    Chapter  Google Scholar 

  31. Burkert, S, Bittrich, E, Kuntzsch, M, Müller, M, Eichhorn, K-J, Bellmann, C, Uhlmann, P, Stamm, M, “Protein Resistance of PNIPAAm Brushes: Application to Switchable Protein Adsorption.” Langmuir, 26 (3) 1786–1795 (2010)

    Article  Google Scholar 

  32. Uhlmann, P, Houbenov, N, Brenner, N, Grundke, K, Burkert, S, Stamm, M, “In-Situ Investigation of the Adsorption of Globular Model Proteins on Stimuli-Responsive Binary Polyelectrolyte Brushes.” Langmuir, 23 (1) 57–64 (2007)

    Article  Google Scholar 

  33. Barbey, R, Lavanant, L, Paripovic, D, Schüwer, N, Sugnaux, C, Tugulu, S, Klok, H-A, “Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications.” Chem. Rev., 109 (11) 5437–5527 (2009)

    Article  Google Scholar 

  34. Turro, NJ, Modern Molecular Photochemistry. University Science Books, Mill Valley, CA (1991)

    Google Scholar 

  35. Oster, GK, Oster, G, “Photochemical Modifications of High Polymers by Visible Light.” J. Polym. Sci., 48 (150) 321–327 (1960)

    Article  Google Scholar 

  36. Lin, AA, Sastri, VR, Tesoro, G, Reiser, A, Eachus, R, “On the Crosslinking Mechanism of Benzophenone-Containing Polyimides.” Macromolecules, 21 (4) 1165–1169 (1988)

    Article  Google Scholar 

  37. Higuchi, H, Yamashita, T, Horie, K, Mita, I, “Photo-Cross-Linking Reaction of Benzophenone-Containing Polyimide and Its Model Compounds.” Chem. Mater., 3 (1) 188–194 (1991)

    Article  Google Scholar 

  38. Dormán, G, Nakamura, H, Pulsipher, A, Prestwich, GD, “The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore.” Chem. Rev., 116 (24) 15284–15398 (2016)

    Article  Google Scholar 

  39. Dhende, VP, Samanta, S, Jones, DM, Hardin, IR, Locklin, J, “One-Step Photochemical Synthesis of Permanent, Nonleaching, Ultrathin Antimicrobial Coatings for Textiles and Plastics.” ACS Appl. Mater. Interfaces, 3 (8) 2830–2837 (2011)

    Article  Google Scholar 

  40. Marazzi, M, Mai, S, Roca-Sanjuán, D, Delcey, MG, Lindh, R, González, L, Monari, A, “Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics.” J. Phys. Chem. Lett., 7 (4) 622–626 (2016)

    Article  Google Scholar 

  41. Naumann, CA, Prucker, O, Lehmann, T, Rühe, J, Knoll, W, Frank, CW, “The Polymer-Supported Phospholipid Bilayer: Tethering as a New Approach to Substrate–Membrane Stabilization.” Biomacromolecules, 3 (1) 27–35 (2002)

    Article  Google Scholar 

  42. Prucker, O, Naumann, CA, Rühe, J, Knoll, W, Frank, CW, “Photochemical Attachment of Polymer Films to Solid Surfaces via Monolayers of Benzophenone Derivatives.” J. Am. Chem. Soc., 121 (38) 8766–8770 (1999)

    Article  Google Scholar 

  43. Toomey, R, Freidank, D, Rühe, J, “Swelling Behavior of Thin, Surface-Attached Polymer Networks.” Macromolecules, 37 (3) 882–887 (2004)

    Article  Google Scholar 

  44. Shen, WW, Boxer, SG, Knoll, W, Frank, CW, “Polymer-Supported Lipid Bilayers on Benzophenone-Modified Substrates.” Biomacromolecules, 2 (1) 70–79 (2001)

    Article  Google Scholar 

  45. Pahnke, J, Rühe, J, “Attachment of Polymer Films to Aluminium Surfaces by Photochemically Active Monolayers of Phosphonic Acids.” Macromol. Rapid Commun., 25 (15) 1396–1401 (2004)

    Article  Google Scholar 

  46. Leshem, B, Sarfati, G, Novoa, A, Breslav, I, Marks, RS, “Photochemical Attachment of Biomolecules onto Fibre-Optics for Construction of a Chemiluminescent Immunosensor.” Luminescence, 19 (2) 69–77 (2004)

    Article  Google Scholar 

  47. Bunte, C, Rühe, J, “Photochemical Generation of Ferrocene-Based Redox-Polymer Networks.” Macromol. Rapid Commun., 30 (21) 1817–1822 (2009)

    Article  Google Scholar 

  48. Samuel, JDJS, Brenner, T, Prucker, O, Grumann, M, Ducree, J, Zengerle, R, Rühe, J, “Tailormade Microfluidic Devices Through Photochemical Surface Modification.” Macromol. Chem. Phys., 211 (2) 195–203 (2010)

    Article  Google Scholar 

  49. Virkar, A, Ling, M-M, Locklin, J, Bao, Z, “Oligothiophene Based Organic Semiconductors with Cross-Linkable Benzophenone Moieties.” Synth. Met., 158 (21) 958–963 (2008)

    Article  Google Scholar 

  50. Brandstetter, T, Böhmer, S, Prucker, O, Bissé, E, zur Hausen, A, Alt-Mörbe, J, Rühe, J, “A Polymer-Based DNA Biochip Platform for Human Papilloma Virus Genotyping.” J. Virol. Methods, 163 (1) 40–48 (2010)

    Article  Google Scholar 

  51. Bunte, C, Prucker, O, König, T, Rühe, J, “Enzyme Containing Redox Polymer Networks for Biosensors or Biofuel Cells: A Photochemical Approach.” Langmuir, 26 (8) 6019–6027 (2010)

    Article  Google Scholar 

  52. Schaub, M, Wenz, G, Wegner, G, Stein, A, Klemm, D, “Ultrathin Films of Cellulose on Silicon Wafers.” Adv. Mater., 5 (12) 919–922 (1993)

    Article  Google Scholar 

  53. Mohan, T, Kargl, R, Doliška, A, Vesel, A, Köstler, S, Ribitsch, V, Stana-Kleinschek, K, “Wettability and Surface Composition of Partly and Fully Regenerated Cellulose Thin Films from Trimethylsilyl Cellulose.” J. Colloid Interface Sci., 358 (2) 604–610 (2011)

    Article  Google Scholar 

  54. Suchy, M, Linder, MB, Tammelin, T, Campbell, JM, Vuorinen, T, Kontturi, E, “Quantitative Assessment of the Enzymatic Degradation of Amorphous Cellulose by Using a Quartz Crystal Microbalance with Dissipation Monitoring.” Langmuir, 27 (14) 8819–8828 (2011)

    Article  Google Scholar 

  55. Nanjundan, S, Unnithan, CS, Selvamalar, CSJ, Penlidis, A, “Homopolymer of 4-Benzoylphenyl Methacrylate and Its Copolymers with Glycidyl Methacrylate: Synthesis, Characterization, Monomer Reactivity Ratios and Application as Adhesives.” React. Funct. Polym., 62 (1) 11–24 (2005)

    Article  Google Scholar 

  56. Kontturi, E, Thüne, PC, Niemantsverdriet, JW, “Cellulose Model Surfaces Simplified Preparation by Spin Coating and Characterization by X-ray Photoelectron Spectroscopy, Infrared Spectroscopy, and Atomic Force Microscopy.” Langmuir, 19 (14) 5735–5741 (2003)

    Article  Google Scholar 

  57. Karabudak, E, Kas, R, Ogieglo, W, Rafieian, D, Schlautmann, S, Lammertink, RGH, Gardeniers, HJGE, Mul, G, “Disposable Attenuated Total Reflection-Infrared Crystals from Silicon Wafer: A Versatile Approach to Surface Infrared Spectroscopy.” Anal. Chem., 85 (1) 33–38 (2013)

    Article  Google Scholar 

  58. Werner, C, Eichhorn, KJ, Grundke, K, Simon, F, Grählert, W, Jacobasch, HJ, “Insights on Structural Variations of Protein Adsorption Layers on Hydrophobic Fluorohydrocarbon Polymers Gained by Spectroscopic Ellipsometry (Part I).” Colloids Surf. A Physicochem. Eng. Asp., 156 (1) 3–17 (1999)

    Article  Google Scholar 

  59. Kontturi, E, Tammelin, T, Osterberg, M, “Cellulose-Model Films and the Fundamental Approach.” Chem. Soc. Rev., 35 (12) 1287–1304 (2006)

    Article  Google Scholar 

  60. Ilharco, LM, Garcia, AR, da Lopes da Silva, J, Vieira Ferreira, LF, “Infrared Approach to the Study of Adsorption on Cellulose: Influence of Cellulose Crystallinity on the Adsorption of Benzophenone.” Langmuir, 13 (15) 4126–4132 (1997)

    Article  Google Scholar 

  61. Ilharco, LM, Garcia, AR, Lopes da Silva, J, Lemos, MJ, Vieira Ferreira, LF, “Ultraviolet–Visible and Fourier Transform Infrared Diffuse Reflectance Studies of Benzophenone and Fluorenone Adsorbed onto Microcrystalline Cellulose.” Langmuir, 13 (14) 3787–3793 (1997)

    Article  Google Scholar 

  62. Capeletti, LB, de Oliveira, LF, Gonçalves, KDA, de Oliveira, JFA, Saito, Â, Kobarg, J, Santos, JHZD, Cardoso, MB, “Tailored Silica-Antibiotic Nanoparticles: Overcoming Bacterial Resistance with Low Cytotoxicity.” Langmuir, 30 (25) 7456–7464 (2014)

    Article  Google Scholar 

  63. Givens, BE, Xu, Z, Fiegel, J, Grassian, VH, “Bovine Serum Albumin Adsorption on SiO2 and TiO2 Nanoparticle Surfaces at Circumneutral and Acidic pH: A Tale of Two Nano-Bio Surface Interactions.” J. Colloid Interface Sci., 493 334–341 (2017)

    Article  Google Scholar 

  64. Hyltegren, K, Skepö, M, “Adsorption of Polyelectrolyte-Like Proteins to Silica Surfaces and the Impact of pH on the Response to Ionic Strength. A Monte Carlo Simulation and Ellipsometry Study.” J. Colloid Interface Sci., 494 (Supplement C) 266–273 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

A. S. Münch gratefully acknowledges the funding from Federal Ministry for Economic Affairs and Energy (BMWi) of Germany (AiF-IGF 18696 BR). The authors thank Mikhail Malanin for collecting the FTIR spectra and Hannes Kettner for the AFM images. Furthermore, Hartmut Komber is acknowledged for the NMR spectra, Christina Harnisch for conducting the GPC measurements, Michele Wölk for the support in laboratory, and Annabell Radisch (GMBU e.V.) for carrying out the cell adhesion experiments and fluorescence measurements. Dr. Jens Schaller (Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. in Rudolstadt, Germany) is gratefully acknowledged for the provision of trimethylsilyl cellulose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander S. Münch or Petra Uhlmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münch, A.S., Fritzsche, T., Haufe, H. et al. Fast preparation of biopassive nonfouling coatings on cellulose. J Coat Technol Res 15, 703–712 (2018). https://doi.org/10.1007/s11998-018-0066-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0066-3

Keywords

Navigation