Skip to main content
Log in

Substrate temperature-dependent physical properties of nanocrystalline zirconium titanate thin films

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Nanocrystalline zirconium titanate thin films were deposited by direct current magnetron reactive sputtering on to glass substrates at room temperature and at different substrate temperatures of 423, 473, 523, and 573 K under high vacuum conditions. The deposited films have been characterized to study the physical properties of the films as a function of substrate temperature. Though the film exhibited amorphous characteristics at room temperature the higher temperatures resulted in the evolution of crystallites in the films. The crystallinity increased with temperature from 423 K onwards and the film deposited at 523 K exhibited a high crystallite size of 22 nm. The SEM images of the films revealed the improvement in the crystallinity from 423 to 523 K with dense columnar structure normal to the substrate. Further higher treatment deteriorated the film properties. The films showed a good transmittance of above 80%. A high optical transmittance of 91% and a high packing density of 96% have been observed for the film deposited at 523 K. The thickness of the films remained consistent at ~230 nm (±6 nm). It is noticed that an increase in the substrate temperature enhanced the structural, optical, and electrical properties of the films up to 523 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Osbond, PC, Whatmore, RW, Ainger, FW, “Properties and Microwave Applications of Zirconium Titanate Stannate Ceramics.” Proc. Br. Ceram. Soc., 36 418 (1985)

    Google Scholar 

  2. Chang, JP, Lin, YS, Chu, K, “Rapid Thermal Chemical Vapor Deposition of Zirconium Oxide for Metal-Oxide-Semiconductor Field Effect Transistor Application.” J. Vac. Sci. Technol. B, 19 (5) 1782 (2001)

    Article  Google Scholar 

  3. Padeletti, G, Cusma, A, Ingo, GM, Santoni, A, Loreti, S, Minarini, C, Viticol, M, “Influence of Substrate Temperature on the Chemical and Microstructural Properties of MO-CVD ZrTiO4 Thin Films.” Appl. Phys. A, 76 801–808 (2003)

    Article  Google Scholar 

  4. Guo, H, Gong, S, Khor, KA, Xu, H, “Effect of Thermal Exposure on the Microstructure and Properties of EB-PVD Gradient Thermal Barrier Coatings.” Surf. Coat. Technol., 168 (1) 23–29 (2003)

    Article  Google Scholar 

  5. Kim, Y, Oh, J, Kim, TG, Park, BW, “Influence of the Microstructures on the Dielectric Properties of ZrTiO4 Thin Films at Microwave-Frequency Range.” Jpn. J. Appl. Phys, 40 4599–4603 (2001)

    Article  Google Scholar 

  6. Biercuk, MJ, Monsma, DJ, Marcus, CM, Becker, JS, Gordan, RG, “Low-Temperature Atomic-Layer-Deposition Lift-off Method for Microelectronic and Nanoelectronic Applications.” Appl. Phys. Lett., 83 (12) 2405 (2003)

    Article  Google Scholar 

  7. Kim, SJ, Yoon, DH, Rim, YS, Kim, HJ, “Low-Temperature Solution-Processed ZrO2 Gate Insulators for Thin-Film Transistors Using High-Pressure Annealing.” Electrochem. Solid State Lett., 14 (11) E35 (2011)

    Article  Google Scholar 

  8. Victor, P, Krupanidhi, SB, “Impact of Microstructure on Electrical Characteristics of Laser Ablation Grown ZrTiO4 Thin Films on Si Substrate.” J. Phys D: Appl. Phys, 38 41–50 (2005)

    Article  Google Scholar 

  9. Wolfram, G, Gobel, E, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x + y + z = 2).” Mater. Res. Bull., 16 1455 (1981)

    Article  Google Scholar 

  10. Vittayakorn, N, “Synthesis and a Crystal Structural Study of Microwave Dielectric Zirconium Titanate (ZrTiO4) Powders via a Mixed Oxide Synthesis Route.” J. Ceram. Process. Res., 7 (4) 288–299 (2006)

    Google Scholar 

  11. Kim, CH, Lee, M, “Zirconium Titanate Thin Film Prepared by Surface Sol-Gel Process and Effects of Thickness on Dielectric Property.” Bull. Korean Chem. Soc, 23 (5) 741–744 (2002)

    Article  Google Scholar 

  12. Park, Y, Kim, YH, Kim, HG, “The Phase Transition and Microwave Dielectric Properties of Tin Modified Zirconium Titanate by Melting Process.” Mater. Sci. Engg. B, 40 37 (1996)

    Article  Google Scholar 

  13. Huang, AP, Chu, K, Yan, H, Zhu, MK, “Dielectric Properties Enhancement of ZrO 2 Thin Films Induced by Substrate Biasing.” J. Vac. Sci. Technol. B, 23 566 (2005)

    Article  Google Scholar 

  14. Alexander, TP, Ulhmann, DR, Teowee, G, Carthy, FM, Bukowsky, TJ, “Dielectric Characterization of Sol-Gel Derived sn Doped ZrTiO4 Thin Films.” Integr. Ferroelectr., 17 221–230 (1997)

    Article  Google Scholar 

  15. Barrera, MC, Viniegra, M, Escobar, J, Vrinat, M, Reyes, JA, Murrieta, F, Garcia, J, “Highly Active MoS2 on Wide-Pore ZrO2–TiO2 Mixed Oxides.” Catal. Today, 98 131 (2004)

    Article  Google Scholar 

  16. Fung, J, Wang, I, “Dehydrocyclization of C6–C8 n-Paraffins to Aromatics Over TiO2–ZrO2 Catalysts.” J. Catal., 130 577–587 (1991)

    Article  Google Scholar 

  17. Ramakrishna, ES, Cornet, KD, Shapiro, GH, Howung, WY, “Dielectric Properties of Radio Frequency Magnetron Sputter Deposited Zirconium Titanate-Based Thin Films.” J. Electrochem. Soc., 145 358 (1998)

    Article  Google Scholar 

  18. Nakagawara, O, Toyota, Y, Kobayashi, M, Yoshino, Y, Katayama, Y, Tabata, H, Kawai, T, “Electrical Properties of (Zr, Sn)TiO4 Dielectric Thin Film Prepared by Pulsed Laser Deposition.” J. Appl. Phys., 80 388 (1996)

    Article  Google Scholar 

  19. Bedikyan, L, Zakhariev, S, Zakharieva, M, “Titanium Dioxide Thin Films: Preparation and Optical Properties.” J. Chem. Tech. Metall., 48 (6) 555–558 (2013)

    Google Scholar 

  20. Manoj, PK, Gopchandran, KG, Joseph, B, Koshy, P, Vaidyan, VK, “Preparation and Characterization of Indium Oxide Thin Films by Chemical Spray Deposition.” Ind. J. Phys., 75A 507 (2001)

    Google Scholar 

  21. Petrov, I, Barna, PB, Hultman, L, “Microstructural Evolution During Film Growth.” J. Vac. Sci. Technol. A, 21 S117 (2003)

    Article  Google Scholar 

  22. Fernandez, S, Steele, AM, Gandia, JJ, Naranjo, FB, “Radio Frequency Sputter Deposition of High-Quality Conductive and Transparent ZnO:Al Films on Polymer Substrates for Thin Film Solar Cells Applications.” Thin Solid Films, 517 3152–3156 (2009)

    Article  Google Scholar 

  23. Ghorannevis, Z, Hosseinnejad, MT, Habibi, M, Golmahdi, P, “Effect of Substrate Temperature on Structural, Morphological and Optical Properties of Deposited Al/ZnO Films.” J. Theor. Appl. Phys., 9 33–38 (2015)

    Article  Google Scholar 

  24. Zhang, SK, Wang, TM, Xiang, G, Wang, C, “Photocatalytic Activity of Nanostructured TiO2 Thin Films Prepared by DC Magnetron Sputtering Method.” Vacuum, 62 361–366 (2001)

    Article  Google Scholar 

  25. Kumar, RA, Subramanian, B, Yugeswaran, S, Jayachandran, M, “Effect of Substrate Temperature on Structural, Morphological and Optical Properties of Crystalline Titanium Dioxide Films Prepared by DC Reactive Magnetron Sputtering.” J. Mater. Sci. Mater. Electron., 23 1898–1904 (2012)

    Article  Google Scholar 

  26. Pamu, D, Sudheendran, K, Krishna, MG, Raju, KCJ, “Dielectric Properties of Ambient Temperature Grown Nanocrystalline ZrTiO4 Thin Films Using DC Magnetron Sputtering.” Mater. Sci. Eng. B, 168 208–213 (2010)

    Article  Google Scholar 

  27. Kumar, AG, Sarmash, TS, Obulapathi, L, Rani, DJ, Rao, TS, Asokan, K, “Structural, Optical and Electrical Properties of Heavy Ion Irradiated CdZnO Thin Films.” Thin Solid Films, 605 102–107 (2016a)

    Article  Google Scholar 

  28. Rani, DJ, Kumar, AGS, Sarmash, TS, Naidu, KCB, Maddaiah, M, Rao, TS, “Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films.” JOM, 68 (6) 1647–1652 (2016)

    Article  Google Scholar 

  29. Paul, A, Wingbermuhle, J, “Surface Morphology for Ion-Beam Sputtered Al Layer with Varying Sputtering Conditions.” Appl. Surf. Sci., 252 8151–8155 (2006)

    Article  Google Scholar 

  30. Håkansson, G, Petrov, I, Sundgren, J-E, “Growth of TaC Thin Films by Reactive Direct Current Magnetron Sputtering: Composition and Structure.” J. Vacuum Sci. Technol. A, 8 3769 (1990)

    Article  Google Scholar 

  31. Shewale, PS, Patil, SI, Uplane, MD, “Preparation of Fluorine-Doped Tin Oxide Films at Low Substrate Temperature by an Advanced Spray Pyrolysis Technique, and their Characterization.” Semicond. Sci. Technol., 25 115008–115016 (2010)

    Article  Google Scholar 

  32. Moholkara, AV, Pawara, SM, Rajpureb, KY, Almeric, SN, Patilb, PS, Bhosale, CH, “Solvent-Dependent Growth of Sprayed FTO Thin Films with Mat-Like Morphology.” Solar Energy Mater. Solar Cells, 92 (11) 1439–1444 (2008)

    Article  Google Scholar 

  33. Menarian, N, Rozati, SM, Lemurugu, E, Fortunato, E, “Characterization of SnO2:F Thin Films Deposited by an Economic Spray Pyrolysis Technique.” Phys. Status Solid C, 79 2277–2281 (2010)

    Article  Google Scholar 

  34. Subramanian, B, Anantha Kumar, R, Vidyan, VS, Jayachandran, M, “Influence of Substrate Temperature on the Materials Properties of Reactive DC Magnetron Sputtered Ti/TiN Multilayered Thin Films.” Mater. Sci. Engg. B, 176 (1) 1–7 (2011)

    Article  Google Scholar 

  35. Warren, BE, X-ray Diffraction. Addison Wesley, London (1969)

    Google Scholar 

  36. Gu, F, Wang, SF, Lu, MK, Zhou, GJ, Xu, D, Yuan, DR, “Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol−Gel Method.” J. Phys. Chem. B, 108 8119–8123 (2004)

    Article  Google Scholar 

  37. Zhang, Y, Ma, X, Chen, P, Yang, D, “Effect of the Substrate Temperature on the Crystallization of TiO2 Films Prepared by DC Reactive Magnetron Sputtering.” J. Cryst. Growth, 300 551–554 (2007)

    Article  Google Scholar 

  38. Hossain, MdF, Takahashi, T, “The Effect of Substrate Temperature on the Spray-Deposited TiO2 Nanostructured Films for Dye-Sensitized Solar Cells.” J. Nano Sci. nano Technol., 11 3222–3228 (2011)

    Article  Google Scholar 

  39. Sankar, S, Gopchandran, KG, “Effect of Annealing on the Structural, Electrical and Optical Properties of Nanostructured TiO2 Thin Films.” Cryst. Res. Technol., 44 (9) 989 (2009)

    Article  Google Scholar 

  40. Williamson, GK, Hall, WH, “X-ray Line Broadening from Filed Aluminium and wolfram Die verbreiterung der roentgeninterferenzlinien von Aluminium- und wolframspaenen.” Acta Matall., 1 (1) 22–31 (1953)

    Article  Google Scholar 

  41. Edelestein, A, Camarata, RC, Nano Materials Synthesis Process and Applications. Institute of Physics Publishing, London (1998)

    Google Scholar 

  42. Lin, CC, Chiang, MC, Chen, YW, “Temperature Dependence of Fluorine-Doped Tin Oxide Films Produced by Ultrasonic Spray Pyrolysis.” Thin Solid Films, 518 (4) 1241–1244 (2009)

    Article  Google Scholar 

  43. Lee, SU, Choi, WS, Hong, B, “Synthesis and Characterization of SnO2: SB Film by DC Magnetron Sputtering Method for Applications to Transparent Electrodes.” Phys. Scr., T129 312–315 (2007)

    Article  Google Scholar 

  44. Kumar, AG, Sarmash, TS, Obulapathi, L, Rani, DJ, Rao, GVVB, Rao, TS, Asokan, K, “Effect of Post Sputter Annealing Treatment on Nano-structured Cadmium Zinc Oxide Thin Films.” J. Alloy. Compd., 665 86–92 (2016b)

    Article  Google Scholar 

  45. Swanepoel, R, “Determination of the Thickness and Optical Constants of Amorphous Silicon.” J. Phys. E: Sci. Instrum., 16 1214 (1983)

    Article  Google Scholar 

  46. Serin, T, Serin, N, Karadeniz, S, Sari, H, Tugluoglu, N, Palima, O, “Electrical, Structural and Optical Properties of SnO2 Thin Films Prepared by Spray Pyrolysis.” J. Non Crystall. Solids, 352 209–215 (2006)

    Article  Google Scholar 

  47. Gonzalez, JS, Parralejo, AD, Ortiz, AL, Guiberteau, F, “Determination of Optical Properties in Nanostructured Thin Films Using the Swanepoel Method.” Appl. Surf. Sci., 252 6013–6017 (2006)

    Article  Google Scholar 

  48. Bazavan, R, Ion, L, Socol, G, Enculescu, I, Bazavan, D, Tazlaoanu, C, Lorinczi, A, Mihailescu, IN, Popescu, M, Antohe, S, “Optical Properties of Pulsed-Laser Deposited ZnO Thin Films.” J. Opt. Electron. Adv. Mater., 11 (4) 425–428 (2009)

    Google Scholar 

  49. Peng, CH, Desu, SB, “Modified Envelope Method for Obtaining Optical Properties of Weakly Absorbing Thin Films and Its Application to Thin Films of Pb(Zr, Ti)O3 Solid Solutions.” J. Am. Ceram. Soc., 77 929 (1994)

    Article  Google Scholar 

  50. Chopra, KL, Das, SR, Thin Film Solar Cells. Plenum Press, New York (1983)

    Book  Google Scholar 

  51. Cauchy, L, “Elastic-Ether Theory of Refractive Index.” Bull. Sci. Math., 14 6–10 (1830)

    Google Scholar 

  52. Tompkins, HG, Gaham, WAM, Spectroscopic Ellipsometry and Reflectometry. Wiley, New York (1999)

    Google Scholar 

  53. Balakrishnan, G, Thanigaiarul, K, Sudhakar, P, “Microstructural and Optical Properties of Nanocrystalline Undoped Zirconia Thin Films Prepared by Pulsed Laser Deposition.” Appl. Phys. A, 110 427–432 (2013)

    Article  Google Scholar 

  54. Balakrishnan, G, Sairam, TN, Kuppusami, P, Thuimurugesan, R, Mohandas, E, Ganeshan, V, Sastikumar, D, “Influence of Oxygen Partial Pressure on the Properties of Pulsed Laser Deposited Nanocrystalline Zirconia Thin Films.” Appl. Surf. Sci., 257 8506–8510 (2010)

    Article  Google Scholar 

  55. Chang, AD, Lin, P, Tseng, TY, “Optical Properties of ZrTiO4 Films Grown by Radio-Frequency Magnetron Sputtering.” J. Appl. Phys, 77 4445 (1995)

    Article  Google Scholar 

  56. Miao, D, Zhaoa, Q, Wua, S, Wange, Z, Zihanga, X, Zhaoa, X, “Effect of Substrate Temperature on the Crystal Growth Orientation of SnO2: F Thin Films Spray-Deposited on Glass Substrates.” J. Non Crystall. Solids, 356 2557–2561 (2010)

    Article  Google Scholar 

  57. Ravichandran, K, Murugananthan, G, Sakthivel, B, “Highly Conducting and Crystalline Doubly Doped Tin Oxide Films Fabricated Using a Low-Cost and Simplified Spray Technique.” Phys. B, 404 4299–4302 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

The author (DJR) acknowledges Department of Science and Technology (DST), New Delhi, for financial assistance under INSPIRE fellowship (IF120615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jhansi Rani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, D.J., Kumar, A.G.S. & Rao, T.S. Substrate temperature-dependent physical properties of nanocrystalline zirconium titanate thin films. J Coat Technol Res 14, 971–980 (2017). https://doi.org/10.1007/s11998-017-9951-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-017-9951-4

Keywords

Navigation