Skip to main content

Advertisement

Log in

Fire-proof silicate coatings with magnesium-containing fire retardant

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

A formula for an environmentally friendly and safe fire-proof paint was developed based on a potassium silicate aqueous solution with addition of a magnesium-containing fire retardant. The predominant use in paint of magnesium-containing fire retardant such as hydromagnesite compared to brucite and magnesite was demonstrated. It was established that a paint containing 5.5 wt% of hydromagnesite provides the first group of fire resistance for a wooden surface. The high fire resistance of the paint with this formula is proven by the high intumescence ratio (150%) and low weight losses (8.4%) after tests in a ceramic tube. When the paint is heated, a gradual loss of weight is detected, which is related to the characteristics of the hydromagnesite structure and helps to obtain an effectively foamed protective layer that prevents the diffusion of combustible gases and flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang, DB, “The Impacts of Fires and Fire Operations on Environment.” Adv. Mater. Res., 113–116 434–436 (2010). https://doi.org/10.4028/www.scientific.net/AMR.113-116.434

    Article  Google Scholar 

  2. Goldammer, JG, Statheropoulos, M, “Andreae MO Impacts of Vegetation Fire Emissions on the Environment, Human Health, and Security: A Global Perspective.” Dev. Environ. Sci., 8 3–36 (2008). https://doi.org/10.1016/S1474-8177(08)00001-6

    Google Scholar 

  3. Poon, L, “Assessing the Reliance of Sprinklers for Active Protection of Structures.” Procedia Eng., 62 618–628 (2013). https://doi.org/10.1016/j.proeng.2013.08.107

    Article  Google Scholar 

  4. Duquesne, S, Magnet, S, Jama, C, Delobel, R, “Intumescent Paints: Fire Protective Coatings For Metallic Substrates.” Surf. Coat. Technol., 180–181 302–370 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.075

    Article  Google Scholar 

  5. Yew, MC, Ramli Sulong, NH, “Fire-Resistive Performance of Intumescent Flame-Retardant Coatings for Steel.” Mater. Design, 34 (719–724) 1 (2012). https://doi.org/10.1016/j.matdes.2011.05.032

    Google Scholar 

  6. Bilotta, A, de Silva, D, Nigro, E, “General Approach for the Assessment of the Fire Vulnerability of Existing Steel and Composite Steel-Concrete Structures.” J. Build. Eng., 8 198–207 (2016). https://doi.org/10.1016/j.jobe.2016.10.011

    Article  Google Scholar 

  7. Wang, L, Dong, Y, Zhang, C, Zhang, D, “Experimental Study of Heat Transfer in Intumescent Coatings Exposed to Non-Standard Furnace Curves.” Fire Technol., 51 627–643 (2015). https://doi.org/10.1007/s10694-015-0460-7

    Article  Google Scholar 

  8. Mariappan, T, “Recent Developments of Intumescent Fire Protection Coatings for Structural Steel: A Review.” J. Fire Sci., 34 (2) 120–163 (2016). https://doi.org/10.1177/0734904115626720

    Article  Google Scholar 

  9. Luo, J, “Ignition Properties of Panels Coated with Finishing Fire-Retardant Paints Under External Radiation.” Procedia Eng., 135 123–127 (2016). https://doi.org/10.1016/j.proeng.2016.01.089

    Article  Google Scholar 

  10. Calabrese, L, Bozzoli, F, Bochicchio, G, Tessadri, B, Vocale, P, Rainieri, S, “Parameter Estimation Approach to the Thermal Characterization of Intumescent Fire Retardant Paints.” J. Phys.: Conf. Series, 655 012048 (2015). https://doi.org/10.1088/1742-6596/655/1/012048

    Google Scholar 

  11. Hörold, S, Chapter 6: Phosphorus-Based and Intumescent Flame Retardants, Polymer Green Flame Retardants, pp. 221–254, 2014. https://doi.org/10.1016/B978-0-444-53808-6.00006-8

  12. Calabrese, L, Bozzoli, F, Bochicchio, G, Tessadri, B, Rainieri, S, Pagliarini, G, “Thermal Characterization of Intumescent Fire Retardant Paints.” J. Phys.: Conf. Series, 547 012005 (2014). https://doi.org/10.1088/1742-6596/547/1/012005

    Google Scholar 

  13. Calabrese, L, Cattani, L, Vocale, P, “Parameter Estimation Approach Applied to the Characterization of an Intumescent Fire Retardant Paint.” JP J. Heat Mass Transfer, 9 (2) 101–116 (2014)

    Google Scholar 

  14. Chang, B-L, Tseng, Y-T, Kuo, S-Y, “Indicative Fire Tests to Investigate Heat Insulation Scenario of Fixed Iron Window Blinds Sprayed with Fire Retardant Paint.” J. Appl. Fire Sci., 23 (1) 77–90 (2013). https://doi.org/10.2190/AF.23.1

    Article  Google Scholar 

  15. Noreen, A, Zia, KM, Zuber, M, Tabasum, S, Saif, MJ, “Recent Trends in Environmentally Friendly Water-Borne Polyurethane Coatings: A Review.” Korean J. Chem. Eng., 33 (2) 388–400 (2016). https://doi.org/10.1007/s11814-015-0241-5

    Article  Google Scholar 

  16. Khaydarov, RR, Khaydarov, RA, Gapurova, O, Evgrafova, S, Cho, SY, The Preparation of Ag-Nanoparticle-Embedded Paints and Their Antimicrobial Activity, Book Chapter "Paints: Types, Components and Applications," pp. 1–244, 2011.

  17. Aziz, H, Ahmad, F, “Effects from Nano-Titanium Oxide on the Thermal Resistance of an Intumescent Fire Retardant Coating for Structural Applications.” Prog. Org. Coat., 101 431–439 (2016). https://doi.org/10.1016/j.porgcoat.2016.09.017

    Article  Google Scholar 

  18. Gu, J-W, Zhang, G-C, Dong, S-L, Zhang, Q-Y, Kong, J, “Study on Preparation and Fire-Retardant Mechanism Analysis of Intumescent Flame-Retardant Coatings.” Surf. Coat. Technol., 201 (18) 7835–7841 (2007). https://doi.org/10.1016/j.surfcoat.2007.03.020

    Article  Google Scholar 

  19. Pang, X, Shi, X, Kang, X, Duan, M, “Mengqi Weng Preparation of Borate–Modified Expandable Graphite and Its Flame Retardancy on Acrylonitrile-Butadiene-Styrene Resin.” Polym. Compos., 37 (9) 2673–2683 (2016)

    Article  Google Scholar 

  20. Gu, J, Yang, X, Lv, Z, Li, N, Liang, C, Zhang, Q, “Functionalized Graphite Nanoplatelets/Epoxy Resin Nanocomposites with High Thermal Conductivity.” Int. J. Heat Mass Transfer, 92 15–22 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.081

    Article  Google Scholar 

  21. Gu, J, Liang, C, Zhao, X, Gan, B, Qiu, H, Guo, Y, Yang, X, Zhang, Q, Wang, DY, “Highly Thermally Conductive Flame-Retardant Epoxy Nanocomposites with Reduced Ignitability and Excellent Electrical.” Conductivities Compos. Sci. Technol., 139 83–89 (2017)

    Article  Google Scholar 

  22. Zulkurnain, ES, Ahmad, F, Gillani, QF, “Effects of Nano-Sized Boron Nitride (BN) Reinforcement in Expandable Graphite Based in-Tumescent Fire Retardant Coating.” IOP Conf. Series: Mater. Sci. Eng., 146 012037 (2016). https://doi.org/10.1088/1757-899X/146/1/012037

    Article  Google Scholar 

  23. Korotkov, AS, “Melamine/Monoammonium Phosphate Complex as the Polyphosphate Substitute in Flame Retardant Coatings.” J. Fire Sci., 34 (2) 89–103 (2016). https://doi.org/10.1177/0734904115621583

    Article  Google Scholar 

  24. Zhang, Z, Wang, K, Mo, B, Li, X, Cui, X, “Preparation and Characterization of a Reflective and Heat Insulative Coating Based on Geopolymers.” Energ. Buildings, 87 220–225 (2015). https://doi.org/10.1016/j.enbuild.2014.11.028

    Article  Google Scholar 

  25. Pereyra, AM, Canosa, G, Giudice, CA, “Nanostructured Protective Coating Systems, Fireproof and Environmentally Friendly, Suitable for the Protection of Metallic Substrates.” Ind. Eng. Chem. Res., 49 (6) 2740–2746 (2010). https://doi.org/10.1021/ie901404s

    Article  Google Scholar 

  26. Kumar, SP, Takamori, S, Araki, H, Kuroda, S, “Flame Retardancy of Clay-Sodium Silicate Composite Coatings on Wood for Construction Purposes.” RSC Adv., 5 (43) 34109–34116 (2015). https://doi.org/10.1039/c5ra04682c

    Article  Google Scholar 

  27. Bulewicz, EM, Pelc, A, Kozlowski, R, Miciukiewicz, A, “Intumescent Silicate-Based Materials: Mechanism of Swelling in Contact with Fire.” Fire Mater. 9 (4) 171–175 (1985). https://doi.org/10.1002/fam.810090405

  28. Cheng, JJ, Zhou, FB, “Influence of Expandable Graphite on Flame Retardancy and Mechanical Properties of Organic-Inorganic Hybrid Material Based on Sodium Silicate and Polyisocyanate.” J. Therm. Anal. Calorim., (2016). https://doi.org/10.1007/s10973-016-5621-5

    Google Scholar 

  29. Hull, TR, Witkowski, A, Hollingbery, L, “Fire Retardant Action of Mineral Fillers.” Polym. Degrad. Stab., 96 (8) 1462e1469 (2011)

    Article  Google Scholar 

  30. Savas, LA, Deniz, TK, Tayfun, U, Dogan, M, “Effect of Microcapsulated Red Phosphorus on Flame Retardant, Thermal and Mechanical Properties of Thermoplastic Polyurethane Composites Filled with Huntite&Hydromagnesite Mineral.” Polym. Degrad. Stab., 135 121–129 (2017)

    Article  Google Scholar 

  31. Atay, HY, Çelik, E, “Use of Turkish Huntite/Hydromagnesite Mineral in Plastic Materials as a Flame Retardant.” Polym. Compos, 31 (10) 1692e1700 (2010)

    Article  Google Scholar 

  32. Dzulkafli, HH, Hussain, P, Mamat, O, Ahmad, F, “Preparation and Characterization of Intumescent Coating Using Talc [Mg3SiO4O10(OH2)] as a Filler.” Malaysian J. of Microscopy, 7 (1) 58–64 (2011)

    Google Scholar 

  33. Dietemann, M, Baillon, F, Espitalier, F, Calvet, R, Accart, P, Confetto, SD, “Greenhill-Hooper, M Evaluation of the Physico-Chemical Properties of an Amorphous Magnesium Silicate Synthesized by an Ultrasound-Assisted Precipitation.” Chem. Eng. J., 215-216 658–670 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The research is funded from Tomsk Polytechnic University Competitiveness Enhancement Program grant, Project Number (Grant No. TPU CEP-RIO-52/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kazmina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazmina, O., Lebedeva, E., Mitina, N. et al. Fire-proof silicate coatings with magnesium-containing fire retardant. J Coat Technol Res 15, 543–554 (2018). https://doi.org/10.1007/s11998-017-0010-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-017-0010-y

Keywords

Navigation