Skip to main content
Log in

In vitro bactericidal effect of ultrasonically sol–gel-coated novel CuO/TiO2/PEG/cotton nanocomposite for wound care

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Protection against bacterial contamination remains a demand for healthcare textiles such as wound dressings to reduce or eliminate hospital-acquired infections related to antibiotic-resistant bacteria. We report herein a simple and straightforward in situ approach to deposit copper oxide and titanium oxide nanoparticles onto cotton fabric using a sonochemical-mediated sol–gel method. Modification of the cotton surface was achieved by incorporation of citric acid (CA) and polyethylene glycol (PEG) to improve the attachment of the nanoparticles and reduce the attachment of bacteria to the cotton surface, respectively. The resultant cotton fabric was used against Escherichia coli as a Gram-negative bacterium and Staphylococcus aureus as a Gram-positive bacterium in dark condition as an in vitro model for treatment of bacterial wound infection. The effects of different treatment parameters including duration and frequency of ultrasonic irradiation, surface modification with PEG and/or CA, and cotton chemical composition with different metal oxide molar ratios on the antibacterial activity of the treated cotton fabric were studied. All treated cotton fabrics showed antibacterial activity, with higher efficiency for those coated with CuO or CuO/TiO2 (1:1 molar ratio) among the single metal oxide and composite-modified cotton fibers, respectively. Our results show that such functionalized cotton fibers could actively fight the spread of bacterial infections by preventing bacterial adhesion, enabling more efficient bonding, and ultrasonically promoting generation of nanoparticles and their strong adhesion to the fabric surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lim, SH, Hudson, SM, “Application of a Fiber-Reactive Chitosan Derivative to Cotton Fabric as an Antimicrobial Textile Finish.” Carbohydr. Polym., 56 227–234 (2004)

    Article  Google Scholar 

  2. Fei, B, Deng, Z, Xin, JH, Zhang, Y, Pang, G, “Room Temperature Synthesis of Rutile Nanorods and Their Applications on Cloth.” Nanotechnology, 17 1927–1931 (2006)

    Article  Google Scholar 

  3. Nonami, T, Hase, H, Funakoshi, K, “Apatite-Coated Titanium Dioxide Photocatalyst for Air Purification.” Catal. Today, 96 113–118 (2004)

    Article  Google Scholar 

  4. Qi, K, Daoud, WA, Xin, JH, et al., “Self-Cleaning Cotton.” J. Mater. Chem., 16 4567–4574 (2006)

    Article  Google Scholar 

  5. Foster, HA, Ditta, IB, Varghese, S, Steele, A, “Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity.” Appl. Microbiol. Biotechnol., 90 847–868 (2011)

    Article  Google Scholar 

  6. Karunakaran, C, Abiramasundari, G, Gomathisankar, P, et al., “Cu-Doped TiO2 Nanoparticles for Photocatalytic Disinfection of Bacteria Under Visible Light.” Colloid Interface Sci., 352 68–74 (2010)

    Article  Google Scholar 

  7. Pham, T-D, Lee, B-K, “Cu Doped TiO2/GF for Photocatalytic Disinfection of Escherichia coli in Bioaerosols Under Visible Light Irradiation: Application and Mechanism.” Appl. Surf. Sci., 296 15–23 (2014)

    Article  Google Scholar 

  8. Khan, MM, Ansari, SA, Pradhan, D, et al., “Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies.” J. Mater. Chem. A, 2 637–644 (2014)

    Article  Google Scholar 

  9. Yadav, HM, Otari, SV, Bohara, RA, et al., “Synthesis and Visible Light Photocatalytic Antibacterial Activity of Nickel-Doped TiO2 Nanoparticles Against Gram-Positive and Gram-Negative Bacteria.” J. Photochem. Photobiol. A Chem., 15 130–136 (2014)

    Article  Google Scholar 

  10. Ashkarran, AA, Hamidinezhad, H, Haddadi, H, et al., “Double-Doped TiO2 Nanoparticles as an Efficient Visible-Light-Active Photocatalyst and Antibacterial Agent Under Solar Simulated Light.” Appl. Surf. Sci., 301 (15) 338–345 (2014)

    Article  Google Scholar 

  11. Ananpattarachai, J, Boonto, Y, Kajitvichyanukul, P, “Visible Light Photocatalytic Antibacterial Activity of Ni-Doped and N-Doped TiO2 on Staphylococcus aureus and Escherichia coli Bacteria.” Environ. Sci. Pollut. Res., (2015). doi:10.1007/s11356-015-4775-1

    Google Scholar 

  12. Hostynek, JJ, Maibach, HI, “Copper Hypersensitivity: Dermatologic Aspects—An Overview.” Rev. Environ. Health, 18 (3) 153–183 (2003)

    Article  Google Scholar 

  13. Uauy, R, Olivares, M, Gonzalez, M, “Essentiality of Copper in Humans.” Am. J. Clin. Nutr., 67 952S–959S (1998)

    Google Scholar 

  14. Pereira, CE, Felcman, E, “Correlation Between Five Minerals and the Healing Effect of Brazilian Medicinal Plants.” J. Biol. Trace Elem. Res., 65 251–259 (1998)

    Article  Google Scholar 

  15. Micheals, HT, “Anti-microbial Characteristics of Copper.” Stand. News, 34 28–31 (2006)

    Google Scholar 

  16. Hostynek, JJ, Dreher, F, Maibach, HI, “Human Stratum Corneum Penetration by Copper: In vivo Study After Occlusive and Semi-Occlusive Application of the Metal as Powder.” Food Chem. Toxicol., 44 1539–1543 (2006)

    Article  Google Scholar 

  17. Pickart, L, “The Human Tri-peptide GHK and Tissue Remodeling.” J. Biomater. Sci. Polym. Ed., 19 969–988 (2008)

    Article  Google Scholar 

  18. Borkow, G, Gabbay, J, Zatcoff, RC, “Could Chronic Wounds Not Heal Due to Too Low Local Copper Levels?” Med. Hypotheses, 70 610–613 (2008)

    Article  Google Scholar 

  19. Chen, S, Guo, Y, Chen, S, et al., “Fabrication of Cu/TiO2 Nanocomposite: Toward an Enhanced Antibacterial Performance in the Absence of Light.” Mater. Lett., 83 154–157 (2012)

    Article  Google Scholar 

  20. Baghriche, O, Rtimi, S, Pulgarin, C, et al., “Innovative TiO2/Cu Nanosurfaces Inactivating Bacteria in the Minute Range Under Low-Intensity Actinic Light.” ACS Appl. Mater. Interfaces, 10 5234–5240 (2012)

    Article  Google Scholar 

  21. Schmidt, F, Fischer, A, Haufe, H, Leisegang, T, Mahltig, B, “Solvothermally Prepared Copper Modified TiO2 Composite Sols—A Coating Agent for Textiles to Realize Photocatalytic Active and Antimicrobial Fabrics” Chapter 13 in: Textiles: Types, Uses and Production Methods, pp. 439–466. Nova Science Publishers Inc., (2012)

  22. Ramesh, S, Koltypin, Y, Prozorov, R, et al., “Sonochemical Impregnation of Submicron Silica Spheres with Ni Nanoparticles.” Chem. Mater., 9 546–551 (1997)

    Article  Google Scholar 

  23. Sadr, FA, Montazer, M, “In situ Sonosynthesis of Nano TiO2 on Cotton Fabric.” Ultrason. Sonochem., 21 681–691 (2014)

    Article  Google Scholar 

  24. Prasad, K, Pinjari, DV, Pandit, AB, et al., “Phase Transformation of Nanostructured Titanium Dioxide from Anatase-To-Rutile via Combined Ultrasound Assisted Sol–Gel Technique.” Ultrason. Sonochem., 17 409–415 (2010)

    Article  Google Scholar 

  25. Prasad, K, Pinjari, DV, Pandit, AB, et al., “Synthesis of Titanium Dioxide by Ultrasound Assisted Sol–Gel Technique: Effect of Amplitude (Power Density) Variation.” Ultrason. Sonochem., 17 697–703 (2010)

    Article  Google Scholar 

  26. Ghows, N, Entezari, MH, “Fast and Easy Synthesis of Core-Shell Nanocrystals (CdS/TiO2) at Low Temperature by Micro-Emulsion Under Ultrasound.” Ultrason. Sonochem., 18 629–634 (2011)

    Article  Google Scholar 

  27. Guo, J, Zhu, S, Chen, Z, et al., “Sonochemical Synthesis of TiO2 Nanoparticles on Graphene for Use as Photocatalyst.” Ultrason. Sonochem., 18 1082–1090 (2011)

    Article  Google Scholar 

  28. Nguyen, QV, “Hospital-Acquired Infections” (2006). http://www.emedicine.com/ped/topic1691.htm. Accessed 21 April 2008

  29. Hospital-Acquired Infections-Trends Across Europe, Frost and Sullivan,/http://www.reportlinker.com/p0249335-summary/Hospital-acquired-infections-trends-across-Europe.htmlS; June 2010. Accessed 1 Nov 2012

  30. Kyriacou, SV, Brownlow, WJ, Xu, XH, “Using Nanoparticle Optics Assay for Direct Observation of Function of Antimicrobial Agents in Single Live Bacterial Cells.” Biochemistry, 43 140–147 (2004)

    Article  Google Scholar 

  31. Selvam, S, Sundrarajan, M, “Functionalization of Cotton Fabric with PVP/ZnO Nanoparticles for Improved Reactive Dyeability and Antibacterial Activity.” Carbohydr. Polym., 87 1419–1424 (2012)

    Article  Google Scholar 

  32. Cheng, Q, Li, C, Pavlinek, V, et al., “Surface-Modified Antibacterial TiO2/Ag Nanoparticles: Preparation and Properties.” Appl. Surf. Sci., 252 4154–4160 (2006)

    Article  Google Scholar 

  33. Boekema, BKHL, Pool, L, Ulrich, MMW, “The Effect of a Honey Based Gel and Silver Sulphadiazine on Bacterial Infections of In Vitro Burn Wounds.” Burns, 39 754–759 (2013)

    Article  Google Scholar 

  34. Gupta, B, Arora, A, Saxena, S, et al., “Preparation of Chitosan–Polyethylene Glycol Coated Cotton Membranes for Wound Dressings: Preparation and Characterization.” Polym. Adv. Technol., 20 58–65 (2009)

    Article  Google Scholar 

  35. Shingel, KI, Di Stabile, L, Marty, JP, et al., “Inflammatory Inert Poly(ethylene glycol)–Protein Wound Dressing Improves Healing Responses In Partial- and Full-Thickness Wounds.” Int. Wound J., 3 332–342 (2006)

    Article  Google Scholar 

  36. Sinha, M, Banik, RM, Haldar, C, et al., “Development of Ciprofloxacin Hydrochloride Loaded Poly(Ethylene Glycol)/Chitosan Scaffold as Wound Dressing.” J. Porous Mater., 20 799–807 (2013)

    Article  Google Scholar 

  37. Bader, RA, Herzog, KT, Kao, WJ, “A Study of Diffusion in Poly(Ethyleneglycol)-Gelatin Based Semi-Interpenetrating Networks for Use in Wound Healing.” Polym. Bull., 62 381–389 (2009)

    Article  Google Scholar 

  38. Klemm, D, Heublein, B, Fink, H-P, et al., “Cellulose: Fascinating Biopolymer and Sustainable Raw Material.” Angew. Chem. Int. Ed., 44 3358–3393 (2005)

    Article  Google Scholar 

  39. Jin, C, Jiang, Y, Niu, T, Huang, J, “Cellulose-Based Material with Amphiphobicity to Inhibit Bacterial Adhesion by Surface Modification.” Mater. Chem., 22 2562–12567 (2012)

    Google Scholar 

  40. Huang, J, Gu, Y, “Self-Assembly of Various Guest Substrates in Natural Cellulose Substances to Functional Nanostructured Materials.” Curr. Opin. Colloid Interface Sci., 16 470–481 (2011)

    Article  Google Scholar 

  41. Alongi, J, Ciobanu, M, Tata, J, et al., “Thermal Stability and Flame Retardancy of Polyester, Cotton, and Relative Blend Textile Fabrics Subjected to Sol-Gel Treatments.” J. Appl. Polym. Sci., 119 1961–1969 (2011)

    Article  Google Scholar 

  42. Uddin, MJ, Cesano, F, Bonino, F, et al., “A Tailoring the Activity of Ti-Based Photocatalysts by Playing with Surface Morphology and Silver Doping.” J. Photochem. Photobiol. A Chem., 196 165–173 (2008)

    Article  Google Scholar 

  43. Bauer, W, Kirby, WM, Sherris, JC, et al., “Antibiotic Susceptibility Testing by a Standardized Single Disk Method.” Am. J. Clin. Pathol., 45 493–496 (1966)

    Google Scholar 

  44. Gao, Y, Cranston, R, “Recent Advances in Antimicrobial Treatments of Textiles.” Text. Res. J., 8 60–72 (2008)

    Google Scholar 

  45. Perelshtein, I, Applerot, G, Perkas, N, et al., “A One-Step Process for the Antimicrobial Finishing of Textiles with Crystalline TiO2 Nanoparticles.” Chem. Eur. J., 18 4575–4582 (2012)

    Article  Google Scholar 

  46. Applerot, G, Lellouche, J, Lipovsky, A, et al., “Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress.” Small, 8 3326–3337 (2012)

    Article  Google Scholar 

  47. Gunawan, C, Teoh, WY, Marquis, CP, et al., “Cytotoxic Origin of Copper (II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts.” ACS Nano., 5 7214–7225 (2011)

    Article  Google Scholar 

  48. Ludmil, T, Benov, S, Fridovich, I, “Escherichia coli Expresses a Copper- and Zinc Containing Superoxide Dismutase.” J. Biol. Chem., 269 25310–25314 (1994)

    Google Scholar 

  49. Hu, XK, Cook, S, Wang, P, Hwang, HM, “In Vitro Evaluation of Cytotoxicity of Engineered Metal Oxide Nanoparticles.” Sci. Total Environ., 407 3070–3072 (2009)

    Article  Google Scholar 

  50. Orhan, M, Kut, D, Gunesoglu, C, “Improving the Antibacterial Activity of Cotton Fabrics Finished with Triclosan by the Use of 1,2,3,4-Butanetetracarboxylic Acid and Citric Acid.” J. Appl. Polym. Sci., 111 1344–1352 (2009)

    Article  Google Scholar 

  51. Banerjee, I, Pangule, RC, Kane, RS, “Antifouling Coatings: Recent Developments in the Design of Surfaces that Prevent Fouling by Proteins, Bacteria, and Marine Organisms.” Adv. Mater., 23 690–718 (2011)

    Article  Google Scholar 

  52. Kenawy, E-R, Worley, SD, Broughton, R, “The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review.” Biomacromolecules, 8 1359–1384 (2007)

    Article  Google Scholar 

  53. Wach, J-Y, Bonazzi, S, Gademann, K, “Antimicrobial Surfaces Through Natural Product Hybrids.” Angew. Chem. Int. Ed., 47 7123–7126 (2008)

    Article  Google Scholar 

  54. Dexter, SC, Sullivan, JD, William, J, Watson, SW, “Influence of Substrate Wettability on the Attachment of Marine Bacteria to Various Surfaces.” Appl. Microbiol., 30 298–308 (1975)

    Google Scholar 

  55. Adams, AP, Santschi, EM, Mellencamp, MA, “Antibacterial Properties of a Silver Chloride-Coated Nylon Wound Dressing.” Vet. Surg., 28 219–225 (1999)

    Article  Google Scholar 

  56. Kingshott, P, Griesser, HJ, “Surfaces that Resist Bioadhesion.” Curr. Opin. Solid State Mater. Sci., 4 403–412 (1999)

    Article  Google Scholar 

  57. Liu, Y, Kim, H-I, “Characterization and Antibacterial Properties of Genipin-Crosslinked Chitosan/Poly(Ethylene Glycol)/ZnO/Ag Nanocomposites.” Carbohydr. Polym., 89 (1) 111–116 (2012)

    Article  Google Scholar 

  58. Park, KD, Kim, YS, Han, DK, “Bacterial Adhesion on PEG Modified Polyurethane Surfaces.” Biomaterials, 19 (7) 851–859 (1998)

    Article  Google Scholar 

  59. Harris, JM, Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications. Plenum, New York (1992)

    Book  Google Scholar 

  60. Wu, B, Huang, R, Sahu, M, Feng, X, Biswas, P, Tang, YJ, “Cu-Doped TiO2 Nanoparticles Enhance Survival of Shewanella oneidensis MR-1 Under Ultraviolet Light (UV) Exposure.” Sci. Total Environ., 408 1755–1758 (2010)

    Article  Google Scholar 

  61. Hassan, MS, Amna, T, Kim, HY, Khil, M-S, “Enhanced Bactericidal Effect of Novel CuO/TiO2 Composite Nanorods and a Mechanism Thereof.” Compos. Part B, 45 904–910 (2013)

    Article  Google Scholar 

  62. Guo, YG, Cao, FF, Xin, S, Wan, LJ, “Wet Chemical Synthesis of Cu/TiO2 Anocomposites with Integrated Nano-Current-Collectors as High-Rate Anode Materials in Lithium-Ion Batteries.” Phys. Chem. Chem. Phys., 13 2014–2020 (2011)

    Article  Google Scholar 

  63. Perelshtein, I, Applerot, G, Perkas, N, et al., “CuO-Cotton Nanoparticles: Formation, Morphology and Antibacterial Activity.” Surf. Coat. Technol., 204 54–57 (2009)

    Article  Google Scholar 

  64. Borkow, G, Gavia, J, “Copper as a Biocidal Tool.” Curr. Med. Chem., 12 2163–2175 (2005)

    Article  Google Scholar 

  65. Stoimenov, PK, Klinger, RL, Marchin, GL, Klabunde, KJ, “Metal Oxide Nanoparticles as Bactericidal Agents.” Langmuir, 18 6679–6686 (2002)

    Article  Google Scholar 

  66. Gao, Y, Cranston, R, “Recent Advances in Antimicrobial Treatments of Textiles.” Text. Res. J., 78 (1) 60–72 (2008)

    Article  Google Scholar 

  67. Han, S, Yang, Y, “Antimicrobial Activity of Wool Fabric Treated with Curcumin.” Dyes Pigm., 64 157–161 (2005)

    Article  Google Scholar 

  68. Meilert, KT, Laub, D, Kiwi, J, “Photocatalytic Self-Cleaning of Modified Cotton Textiles by TiO2 Clusters Attached by Chemical Spacers.” J. Mol. Catal. A Chem., 237 101–108 (2005)

    Article  Google Scholar 

  69. Yuranova, T, Laub, D, Kiwi, J, “Synthesis, Activity and Characterization of Textiles Showing Self-Cleaning Activity Under Daylight Irradiation.” Catal. Today, 122 109–117 (2007)

    Article  Google Scholar 

  70. Nazari, A, Montazer, M, Yazdanshenas, ME, et al., “Nano TiO2 Photo-Catalyst and Sodium Hypophosphite for Cross-Linking Cotton with Poly Carboxylic Acids Under UV and High Temperature.” Appl. Catal. A Gen., 371 10–16 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Islamic Azad University, Shahreza Branch for financial support to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Talebian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani, A., Talebian, N. In vitro bactericidal effect of ultrasonically sol–gel-coated novel CuO/TiO2/PEG/cotton nanocomposite for wound care. J Coat Technol Res 14, 651–663 (2017). https://doi.org/10.1007/s11998-016-9870-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9870-9

Keywords

Navigation