Skip to main content
Log in

Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In the present study, attempts were made to enhance conductivity of electrocoats (based on epoxy amine adduct) containing NH2-multiwalled carbon nanotubes (MWCNTs). The weight percent of incorporated MWCNTS into the electrocoat matrix varied in the range of 0.6–3.6 wt% to obtain a series of electrocoatings. These were then applied on steel substrates by a cathodic electrodeposition technique. Electrocoated films were characterized utilizing scanning electron microscopy and optical microscopy. The results illustrated that electrical conductivity was enhanced by increasing of the MWCNT load. At the percolation threshold, throwing power was dropped while the recoating ability was enhanced. Mechanical behavior of nanocomposites containing MWCNTs in the range of 0–2.8 wt% was investigated by dynamic mechanical thermal analysis (DMTA) and nanoindentation test methods. DMTA analysis revealed that the width of tan δ was increased by the addition of nanotubes up to 2.8 (wt%). Also, the results obtained from the nanoindentation test showed that the elastic modulus and hardness of the nanocomposites were decreased by the addition of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu, Z, Jie, X, Lu, G, “Corrosion Resistance of Pb–Sn Composite Coatings Reinforced by Carbon Nanotubes.” J. Coat. Technol. Res., 7 809–814 (2010)

    Article  Google Scholar 

  2. Geng, HZ, Kim, KK, So, KP, Lee, YS, Chang, Y, Lee, YH, “Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films.” J. Am. Chem. Soc., 129 7758–7759 (2007)

    Article  Google Scholar 

  3. Carroll, DL, Czerw, R, Webster, S, “Polymer–Nanotube Composites for Transparent, Conducting Thin Films.” Synth. Met., 155 694–697 (2005)

    Article  Google Scholar 

  4. Funchini, G, Miller, S, Parekh, BB, Chhowalla, M, “Optical Anisotropy in Single-Walled Carbon Nanotube Thin Films: Implications for Transparent and Conducting Electrodes in Organic Photovoltaics.” Nano Lett., 8 2176–2179 (2008)

    Article  Google Scholar 

  5. Johnson, JA, Barbato, MJ, Hopkins, SR, O’Malley, MUJ, “Dispersion and Film Properties of Carbon Nanofiber Pigmented Conductive Coatings.” Prog. Org. Coat., 47 198–206 (2003)

    Article  Google Scholar 

  6. Sandler, JKW, Kirk, JE, Kinloch, IA, Shaffer, MSP, Windle, AH, “Ultra-Low Electrical Percolation Threshold in Carbon-Nanotube-Epoxy Composites.” Polymer, 44 5893–5899 (2003)

    Article  Google Scholar 

  7. Nilsson, S, Wetterhall, M, Bergquist, J, Nyholm, L, Markides, KE, “A Simple and Robust Conductive Graphite Coating for Sheathless Electrospray Emitters Used in Capillary Electrophoresis/Mass Spectrometry.” Rapid Commun. Mass Spectrom., 15 1997–2000 (2001)

    Article  Google Scholar 

  8. Afshar, A, Ghorbani, M, Mazaheri, M, “Electrodeposition of Graphite/Bronze Composite Coatings and Study of Electroplating Characteristics.” Surf. Coat. Technol., 187 293–300 (2004)

    Article  Google Scholar 

  9. Peulon, S, Lincot, D, “Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions.” J. Electrochem. Soc., 145 864–874 (1998)

    Article  Google Scholar 

  10. Hamid, ZA, “Review Article: Composite and Nanocomposite Coatings.” Metall. Eng., 3 29–42 (2014)

    Article  Google Scholar 

  11. Gojny, FH, Wichmann, MHG, Fiedler, B, Schulte, K, “Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study.” Compos. Sci. Technol., 65 2300–2313 (2005)

    Article  Google Scholar 

  12. Guo, P, Chen, X, Gao, X, Song, H, Shen, H, “Fabrication and Mechanical Properties of Well-Dispersed Multiwalled Carbon Nanotubes/Epoxy Composites.” Compos. Sci. Technol., 67 3331–3337 (2007)

    Article  Google Scholar 

  13. Chen, H, Muthuraman, H, Stokes, P, Zou, J, Liu, X, Wang, J, Huo, Q, Khondaker, SI, Zhai, L, “Dispersion of Carbon Nanotubes and Polymer Nanocomposite Fabrication Using Trifluoroacetic Acid as a Co-solvent.” Nanotechnology, 18 415606 (2007)

    Article  Google Scholar 

  14. Blanchet, GB, Fincher, CR, Gao, F, “Polyaniline Nanotube Composites: A High-Resolution Printable Conductor.” Appl. Phys. Lett., 82 1290–1292 (2003)

    Article  Google Scholar 

  15. Qunaies, Z, Park, C, Wise, KE, Siochi, EJ, Harrison, JS, “Electrical Properties of Single Wall Carbon Nanotube Reinforced Polyimide Composites.” Compos. Sci. Technol., 63 (11) 1637–1646 (2003)

    Article  Google Scholar 

  16. Jiang, X, Bin, Y, Matsuo, M, “Electrical and Mechanical Properties of Polyimide–Carbon Nanotubes Composites Fabricated by In Situ Polymerization.” Polymer, 46 7418–7424 (2005)

    Article  Google Scholar 

  17. Zhu, B-K, Xie, S-H, Xu, Z-K, Xu, Y-Y, “Preparation and Properties of the Polyimide/Multi-walled Carbon Nanotubes (MWNTs) Nanocomposites.” Compos. Sci. Technol., 66 548–554 (2006)

    Article  Google Scholar 

  18. Kim, YJ, An, KJ, Suh, K-S, Choi, H-D, Kwon, J-H, Chung, Y-C, Kim, WN, Lee, A-K, Choi, J-I, Yoon, HG, “Hybridization of Oxidized MWNT and Silver Powder in Polyurethane Matrix for Electromagnetic Interference Shielding Application.” IEEE Trans. Electromagn. Compat., 47 872–879 (2005)

    Article  Google Scholar 

  19. Koerner, H, Liu, W, Alexander, M, Mirau, P, Dowty, H, Vaia, RA, “Deformation—Morphology Correlations in Electrically Conductive Carbon Nanotube—Thermoplastic Polyurethane Nanocomposites.” Polymer, 46 4405–4420 (2005)

    Article  Google Scholar 

  20. Seo, M-K, Park, S-J, “Electrical Resistivity and Rheological Behaviors of Carbon Nanotubes-Filled Polypropylene Composites.” Chem. Phys. Lett., 395 44–48 (2004)

    Article  Google Scholar 

  21. Gorrasi, G, Romeo, V, Sannino, D, Sarno, M, Ciambelli, P, Vittoria, V, Vivo, BD, Tucci, V, “Carbon Nanotube Induced Structural and Physical Property Transitions of Syndiotactic Polypropylene.” Nanotechnology, 18 275703 (2007)

    Article  Google Scholar 

  22. Tjong, SC, Liang, GD, Bao, SP, “Electrical Behavior of Polypropylene/Multiwalled Carbon Nanotube Nanocomposites with Low Percolation Threshold.” Scr. Mater., 57 461–464 (2007)

    Article  Google Scholar 

  23. Ma, P-C, Siddiqui, NA, Marom, G, Kim, J-K, “Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review.” Compos. Part A., 41 1345–1367 (2010)

    Article  Google Scholar 

  24. Zhou, YX, Wu, PX, “Improvement in Electrical, Thermal and Mechanical Properties of Epoxy by Filling Carbon Nanotube.” Polym. Lett., 2 40–48 (2008)

    Article  Google Scholar 

  25. Li, J, Ma, PC, Chow, WS, To, CK, Tang, BZ, Kim, J-K, “Correlations Between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes.” Adv. Funct. Mater., 17 3207–3215 (2007)

    Article  Google Scholar 

  26. Austin, DW, Puretzky, AA, Geohegan, DB, Britt, PF, Guillorn, MA, Simpson, ML, “The Electrodeposition of Metal at Metal/Carbon Nanotube Junctions.” Chem. Phys. Lett., 361 525–529 (2002)

    Article  Google Scholar 

  27. Eda, G, Solution-Processed Thin Films for Electronics Single-Walled Carbon Nanotubes and Graphene. New Brunswick, New Jersey (2009)

    Google Scholar 

  28. Frankland, SJV, Caglar, A, Brenner, DW, Griebel, M, “Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube–Polymer Interfaces.” J. Phys. Chem. B, 106 3046–3048 (2002)

    Article  Google Scholar 

  29. Krylova, I, “Painting by Electrodeposition on the Eve of the 21st Century.” Prog. Org. Coat., 42 119–131 (2001)

    Article  Google Scholar 

  30. Kim, S-K, Oh, T-S, “Electrodeposition Behavior and Characteristics of Ni-Carbon Nanotube Composite Coatings.” Trans. Nonferr. Met. Soc., 21 68–72 (2011)

    Article  Google Scholar 

  31. Zanganeh, N, Rajabi, A, Torabi, M, Allahkarami, M, Moghaddas, A, Sadrnezhaad, SK, “Growth and Microstructural Investigation of Multiwall Carbon Nanotubes Fabricated Using Electrodeposited Nickel Nanodeposits and Chemical Vapor Deposition Method.” J. Mol. Struct., 1074 250–254 (2014)

    Article  Google Scholar 

  32. Furuno, N, Ohyabu, Y, “Methods for Measuring Throwing Power in Electro-deposition Coating.” Prog. Org. Coat., 5 201–217 (1977)

    Article  Google Scholar 

  33. Muller, B, Poth, U, Coatings Formulation, p. 237. Vincentz, Hannover (2006)

    Google Scholar 

  34. Jafari, S, Rozati, SM, “Characterization of Black Chrome Films Prepared by Electroplating Technique.” Solar Therm. Appl., 3999–4005 (2011)

  35. www.timesnano.com

  36. Blackley, DC, Polymer Latices. Springer Science & Business Media, Dordrecht (1997)

    Book  Google Scholar 

  37. Stauffer, D, Aharony, A, Introduction to Percolation Theory. Francis and Taylor, London (1991)

    Google Scholar 

  38. Barrau, S, Demont, P, Peigney, A, Laurent, C, Lacabanne, C, “DC and AC Conductivity of Carbon Nanotubes–Polyepoxy Composites.” Macromolecules, 36 5187–5194 (2003)

    Article  Google Scholar 

  39. Bauhofer, W, Kovacs, JZ, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites.” Compos. Sci. Technol., 69 1486–1498 (2009)

    Article  Google Scholar 

  40. Huang, YY, Terentjev, EM, “Tailoring the Electrical Properties of Carbon Nanotube-Polymer Composites.” Adv. Funct. Mater., 20 4062–4068 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zabet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabet, M., Moradian, S., Ranjbar, Z. et al. Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings. J Coat Technol Res 13, 191–200 (2016). https://doi.org/10.1007/s11998-015-9723-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-015-9723-y

Keywords

Navigation