Skip to main content
Log in

Rheological studies of the cure of epoxy/polyester powder coatings containing titanium dioxide

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The cure characteristics of a series of powder coatings containing titanium dioxide dispersed in an epoxy/polyester matrix are reported. The titanium dioxide pigments were produced via both the chloride and sulfate routes and coated with varying amounts of alumina and silica. Comparison data for formulations containing zinc oxide and silica are also included. The time to gelation for these powder coatings depends on a number of factors. Increasing the level of flow agent significantly reduces the time to gelation. The presence of traces of zinc inhibits cure in the case of the sulfate-based pigments. Varying levels of alumina and silica in the coating on the titanium dioxide coating also influence the time to gelation. Increasing the level of silica on the chloride-based coating increases the time to gelation, whereas in the case of the sulfate based coating the time to gelation is shortened. These differences are attributed to the effects of zinc in the coating and the effectiveness of the dicyandiamide catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harris, ST, In: Robertson, EC (ed.) The Technology of Powder Coatings. Portcullis Press, London (1976)

    Google Scholar 

  2. Howell, DM, In: Sanders, JD (ed.) Powder Coatings: The Technology, Formulation and Application of Powder Coatings, Vol. 1. Wiley, London (2000)

    Google Scholar 

  3. Belder, EG, Rutten, HJJ, Perera, DY, “Cure Characterization of Powder Coatings.” Prog. Org. Coat., 42 142–149 (2001)

    Article  CAS  Google Scholar 

  4. Utech, B, A Guide to High-performance Powder Coating. Society of Manufacturing Engineers, Michigan (2002)

    Google Scholar 

  5. Pethrick, RA, Polymer Science and Technology. Whittles Publishing, Caithness, Scotland (2010)

    Google Scholar 

  6. Mafi, R, Mirabedini, SM, Naderi, R, Attar, MM, “Effect of Curing Characterization on the Corrosion Performance of Polyester and Polyester/Epoxy Powder Coatings.” Corros. Sci., 50 3280–3286 (2008)

    Article  CAS  Google Scholar 

  7. Entwistle, T, Gill, SJ, “Effect of Titanium-Dioxide Pigments on the Cure of Thermosetting Films.” J. Oil Colour Chem. Assoc., 69 (2) 25–42 (1986)

    CAS  Google Scholar 

  8. Weiss, KD, “Paint and Coatings: A Mature Industry in Transition.” Prog. Polym. Sci., 22 (2) 203–245 (1997)

    Article  CAS  Google Scholar 

  9. Braun, JH, Baidins, A, Marganski, RE, “TiO2 Pigment Technology: A Review.” Prog. Org. Coat., 20 (2) 105–138 (1992)

    Article  CAS  Google Scholar 

  10. Thames, SF, Panjnani, KG, Pace, SD, Blanton, MD, Cumberland, BR, “Novel Organosilane Cross-Linking Agents for Powder Coatings.” J. Coat. Technol., 67 (841) 39–45 (1995)

    CAS  Google Scholar 

  11. Panjnani, KG, Pace, SD, Thames, SF, “Correlation of Thermal History and Performance in Thermosetting Powder Coatings.” J. Coat. Technol., 67 (843) 23–27 (1995)

    CAS  Google Scholar 

  12. Affrossman, S, Collins, A, Hayward, D, Trottier, E, Pethrick, RA, “A Versatile Method of Characterizing Cure in Filled Reactive Polymer Systems.” J. Oil Colour Chem. Assoc., 72 (11) 452–453 (1989)

    CAS  Google Scholar 

  13. Pethrick, RA, Hayward, D, “Real Time Dielectric Relaxation Studies of Dynamic Polymeric Systems.” Prog. Polym. Sci., 27 (9) 1983–2017 (2002)

    Article  CAS  Google Scholar 

  14. Affrossman, S, Hayward, D, McKee, A, MacKinnon, A, Lairez, D, Pethrick, RA, Vatalis, A, Baker, FS, Carter, RE, “The Application of the Strathclyde Rheometer to a Variety of Curing Systems.” In: Carter, RE (ed.) Rheology of Food, Pharmaceutical and Biological Materials with General Rheology, pp. 304–314. Elsevier Appl. Sci. Publ. Ltd, London (1990)

    Google Scholar 

  15. Parfitt, GD, “The Role of the Surface in the Behaviour of Titanium Dioxide Pigments.” Croat. Chem. Acta., 52 333–335 (1980)

    Google Scholar 

  16. Garrido, M, Rius, FX, Larrechi, MS, “Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Applied to Spectroscopic Data from Monitoring Chemical Reactions Processes.” Anal. Bioanal. Chem., 390 (8) 2059–2066 (2008)

    Article  CAS  Google Scholar 

  17. Garden, LH, Hayward, D, Pethrick, RA, “Dielectric Non-destructive Testing Approach to Cure Monitoring of Adhesives and Composites.” Proc. Inst. Mech. E. Part G J. Aerospace Eng., 221 (4) 521–533 (2007)

    Article  CAS  Google Scholar 

  18. Hay, JN, O’Gara, P, “Recent Developments in Thermoset Curing Methods.” Proc. Inst. Mech. E. Part G J. Aerospace Eng., 220 (3) 187–195 (2006)

    Article  CAS  Google Scholar 

  19. Endruweit, A, Johnson, MS, Long, AC, “Curing of Composite Components by Ultraviolet Radiation: A Review.” Polym. Compos., 27 (2) 119–128 (2006)

    Article  CAS  Google Scholar 

  20. Cascaval, CN, Rosu, D, Mititelu-Mija, A, Rosu, L, “Kinetics of the Curing Reaction of Selected Epoxy Resin-Amine Systems.” Polimery, 51 (3) 199–205 (2006)

    CAS  Google Scholar 

  21. Cook, MI, Walker, FH, Dubowik, DA, “Recent Developments in Two-Pack Water-Based Epoxy Coatings.” JOCCA-Surf. Coat. Int., 82 (11) 528–535 (1999)

    Article  CAS  Google Scholar 

  22. Hamerton, I, Howlin, BJ, “Computer Modelling and Chemical Kinetics of the Cure of Aerospace Resin Systems.” Aircraft Eng. Aerospace Technol., 71 (5) 470–478 (1999)

    Article  Google Scholar 

  23. Yousefi, A, Lafleur, PG, Gauvin, R, “Kinetic Studies of Thermoset Cure Reactions: A Review.” Polym. Compos., 18 (2) 157–168 (1997)

    Article  CAS  Google Scholar 

  24. Halley, PJ, Mackay, ME, “Chemorheology of Thermosets—An Overview.” Polym. Eng. Sci., 36 (5) 593–609 (1995)

    Article  Google Scholar 

  25. Bolouri, H, Pethrick, RA, Affrossman, S, “Bonding of a Simulated Epoxy-Resin to Aluminum Surfaces Studied by XPS.” Appl. Surf. Sci., 17 (2) 231–240 (1983)

    Article  CAS  Google Scholar 

  26. Egerton, TA, Parfitt, GD, Kong, Y, Wightman, JP, “XPS Analysis of Uncoated and Silica-Coated Titanium-Dioxide Powders.” Colloids Surf., 7 311–323 (1983)

    Article  CAS  Google Scholar 

  27. Sham, TK, Lazerus, MS, “X-ray Photoelectron-Spectroscopy (XPS) Studies of Clean and Hydrated TiO2 (Rutile) Surfaces.” Chem. Phys. Lett., 68 426 (1979)

    Article  CAS  Google Scholar 

  28. Fisicaro, E, Visca, M, Garbassi, F, Ceresa, EM, “Acid Sites Titration and XPS Analysis of TiO2 Pigments.” Colloids Surf., 3 209–219 (1981)

    Article  CAS  Google Scholar 

  29. Rochester, CH, Smith, DG, “Infrared Study of Pyridine Adsorption on Rutile and Silica-Coated Rutile Immersed in Heptane.” J. Chem. Soc. Faraday Trans. 1, 82 2569–2575 (1986)

    Article  CAS  Google Scholar 

  30. Ingram, S, Dennis, H, Hunter, I, Liggat, JJ, McAdam, C, Pethrick, RA, Schaschke, C, Thomson, D, “Influence of Clay Type on Exfoliation, Cure and Physical Properties of In Situ Polymerised Poly(methyl methacrylate) Nanocomposites.” Polym. Int., 57 1118–1127 (2008)

    Article  CAS  Google Scholar 

  31. Gurino, AA, Rozhkova, YA, Zukal, A, Čejka, J, Shenderovich, IG, “Mutable Lewis and Brønsted Acidity of Aluminated SBA-15 as Revealed by NMR of Adsorbed Pyridine-15N.” Langmuir, 27 (19) 12115–12123 (2011)

    Article  Google Scholar 

  32. Kunmei, S, Zhenhuan, L, Bowen, C, Lei, Z, MaLiang, Z, Jun, M, “The Studies on the Friedel–Crafts Acylation of Toluene with Acetic Anhydride over HPW/TiO2.” Fuel Process. Technol., 92 (10) 2011–2015 (2011)

    Article  Google Scholar 

  33. Cai, C, Wang, H, Han, J, “Synthesis and Characterization of Ionic Liquid-Functionalized Alumino-Silicate MCM-41 Hybrid Mesoporous Materials.” Appl. Surf. Sci., 257 9802–9808 (2011)

    Article  CAS  Google Scholar 

  34. Jiao, Z, Mitsuru, K, Yi, W, Nishii, H, Miura, Y, Kamiya, Y, “Changes in Surface Acidity of Silica-Supported Dodecatungstosilicic Acid in Relation to the Loading Amount.” J. Phys. Chem. C, 115 (30) 14762–14769 (2011)

    Article  Google Scholar 

  35. Wischert, R, Coperet, C, Delbecq, F, Sautet, P, “Optimal Water Coverage on Alumina: A Key to Generate Lewis Acid–Base Pairs that are Reactive Towards the C–H Bond Activation of Methane.” Angew. Chem. Int. Ed., 50 (14) 3202–3205 (2011)

    Article  CAS  Google Scholar 

  36. Hess, A, Kemnitz, E, “Surface Acidity and Catalytic Behavior of Modified Zirconium and Titanium Dioxides.” Appl. Catal. A Gen., 149 (2) 373–389 (1997)

    Article  CAS  Google Scholar 

  37. Kailasam, K, Natile, MM, Glisenti, A, Mueller, K, “Fourier Transform Infrared Spectroscopy and Solid-State Nuclear Magnetic Resonance Studies of Octadecyl Modified Metal Oxides Obtained from Different Silane Precursors.” J. Chromatogr. A, 1216 (12) 2345–2354 (2009)

    Article  CAS  Google Scholar 

  38. Pattanaik, M, Bhaumik, SK, “Adsorption Behaviour of Polyvinyl Pyrrolidone On Oxide Surfaces.” Mater. Lett., 44 (6) 352–360 (2000)

    Article  CAS  Google Scholar 

  39. Bilgic, C, Yazici, DT, Vural, N, “Characterizing the Surface Acidity of Bentonite by Various Methods.” Surf. Interface Anal., 42 (6–7) 1000–1004 (2010)

    Article  CAS  Google Scholar 

  40. Saikia, L, Satyarthi, JK, Srinivas, D, Ratnasamy, P, “Activation and Reactivity of Epoxides on Solid Acid Catalysts.” J. Catal., 252 (2) 148–160 (2007)

    Article  CAS  Google Scholar 

  41. Kim, S, Sorescu, DC, Byl, O, Yates, JT, “Perturbation of Adsorbed CO by Amine Derivatives Coadsorbed on the γ-Al2O3 Surface:  FTIR and First Principles Studies.” J. Phys. Chem. B, 110 (10) 4742–4750 (2006)

    Article  CAS  Google Scholar 

  42. Taylor, H, Chadwick, DL, Law, WC, “Fracture of Epoxy Bonded Dynamic Peel Specimens Containing Interfacial Layers.” Mater. Sci. Technol., 14 524–526 (1998)

    Article  Google Scholar 

  43. Maeda, S, “Surface Chemistry of Galvanized Steel Sheets Relevant to Adhesion Performance.” Prog. Org. Coat., 28 227–238 (1996)

    Article  CAS  Google Scholar 

  44. Fitzpatrick, MF, Watts, JF, “Adhesive Bonding of Hot-Dipped Galvanized Steel: Use of ToF-SIMS for Forensic Analysis of Failed Joints.” Surf. Interface Anal., 27 705–715 (1999)

    Article  CAS  Google Scholar 

  45. Najari, A, Lang, P, Lacaze, PC, Mauer, D, “A New Organofunctional Methoxysilane Bilayer System for Promoting Adhesion of Epoxidized Rubber to Zinc: Part 1: Optimization of Practical Adhesion.” Prog. Org. Coat., 64 392–404 (2009)

    Article  CAS  Google Scholar 

  46. Muller, B, “Organic Corrosion Inhibitors for Zinc Pigment.” Brit. Corros. J., 35 (4) 311–314 (2000)

    Article  CAS  Google Scholar 

  47. Gundjian, M, Cole, KC, “Effect of Copper on the Curing and Structure of a DICY-Containing Epoxy Composite System.” J. Appl. Polym. Sci., 75 1458–1473 (2000)

    Article  CAS  Google Scholar 

  48. Carter, RO, Dickie, RA, Holubka, JW, Lindsay, NE, “Infrared Studies of Interfacial Reactions of Dicyandiamide on Zinc.” Ind. Eng. Chem. Res., 28 48–51 (1989)

    Article  CAS  Google Scholar 

  49. Sreeves, JE, Whitfield, L, “Epoxy-Polyester Powder Coatings—Economic and Technical Considerations in Their Usage.” J. Oil. Colour Chem. Assoc., 62 293–298 (1979)

    CAS  Google Scholar 

  50. Bengu, B, Boerio, FJ, “Interaction of Epoxy/Dicyandiamide Adhesives with Metal Substrates.” J. Adhesion, 82 (12) 1133–1155 (2006)

    Article  CAS  Google Scholar 

  51. Gaillard, F, Peillex, E, Romand, M, Verchere, D, Hocquaux, H, “Influence of Surface Treatments of Hot-Dip Galvanized Steels on Their Acid–Base Properties and on Their Reactions with some Organic-Compounds.” Surf. Interface Anal., 23 (5) 307–312 (1995)

    Article  Google Scholar 

  52. Lotsch, BV, Schnick, W, “Catalytic Formation and Crystal Structure of Cyanoguanylurea H2NC(=O)NHC(NH2)NCN.” Zeitschrift Fur Naturforschung B J. Chem. Sci., 60 (4) 377–382 (2005)

    CAS  Google Scholar 

Download references

Acknowledgments

One author (ECT) wishes to thank Tioxide and the EPSRC for maintenance support during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Pethrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trottier, E.C., Affrossman, S. & Pethrick, R.A. Rheological studies of the cure of epoxy/polyester powder coatings containing titanium dioxide. J Coat Technol Res 9, 725–733 (2012). https://doi.org/10.1007/s11998-012-9417-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-012-9417-7

Keywords

Navigation