Skip to main content
Log in

Films formed from polystyrene latex/clay composites: A fluorescence study

  • Published:
JCT Research Aims and scope Submit manuscript

Abstract

This study reports a steady-state fluorescence (SSF) technique for studying film formation from surfactant-free polystyrene (PS) latex and Na-montmorillonite (SNaM) composites. The composite films were prepared from pyrene (P)-labeled PS particles and SNaM clay at room temperature and annealed at elevated temperatures in 10-min intervals above glass transition temperature (t3) of polystyrene. During the annealing processes, the transparency of the film improved considerably. Scattered light (Is) and fluorescence intensity (Ip) from P were measured after each annealing step to monitor the stages of film formation. Evolution of transparency of composite films was monitored by using photon transmission intensity, Itr. Scanning electron microscopy (SEM) was used to detect the variation in physical structure of annealed composite films. Minimum film formation temperature, Tq, and healing temperatures, Th, were determined. Void closure and interdiffusion stages were modeled and related activation energies were determined. It was observed that both activation energies increased as the percent of SNaM was increased in composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giannelis, E.P., Adv. Mater., 8, 29, 8 (1996).

    Article  Google Scholar 

  2. Le Baron, P.C., Wang, Z., and Pinnavaia, T.J., Appl. Clay. Sci., 15, 11 (1999).

    Article  Google Scholar 

  3. Alexandre, M. and Dubais, P., Mater. Sci. Eng., 28, 1 (2000).

    Article  Google Scholar 

  4. Collister, J., in: Polymer Nanocomposites, Synthesis, Characterization and Modeling, Vaia, R.A. and Krishnamoorti, R., (Eds.), Oxford University Press, London, Chapter 2, 2002.

    Google Scholar 

  5. Kawasumi, M., Kohzaki, M., Kojima, Y., Okada, A., and Kamiyouto, O., U.S. Patent 4,810,734, 1989.

  6. Usuki, A., Kojma, Y., Kawasumi, M., Okada, A., Fukuskima, Y., Kuvauchi, T., and Kamigato, O., J. Mater. Res., 8, 1179 (1993).

    Article  CAS  Google Scholar 

  7. Sperry, P.R., Synder, B.S., O’Dowd, M.L., and Lesko, P.M., Langmuir, 10, 2619 (1994).

    Article  CAS  Google Scholar 

  8. Mazur, S., “Coalescence of Polymer Particles,” Polymer Powder Processing, Rosenweig, N. (Ed.), Wiley and Sons, New York, 1995.

    Google Scholar 

  9. Mackenzie, J.K. and Shutleworth, R., Proc. Phys. Soc., London, 62, 838 (1946).

    Google Scholar 

  10. Vanderhoff, J.W., Br. Polym. J., 2, 161 (1970).

    Article  CAS  Google Scholar 

  11. Kanig, G. and Neff, H., Colloid Polym. Sci., 256, 1052 (1975).

    Google Scholar 

  12. Wang, Y., Kats, A., Juhue, D., Winnik, M.A., Shivers, R.R., and Dinsdale, C.J., Langmuit, 8, 1435 (1992).

    Article  CAS  Google Scholar 

  13. Roulstone, B.J., Wilkinson, M.C., Hearn, J., and Wilson, A.J., Polym. Int., 24, 87 (1991).

    Article  CAS  Google Scholar 

  14. Kim, K.D., Sperling, L.H., and Klein, A., Macromolecules, 26, 4624 (1993).

    Article  CAS  Google Scholar 

  15. Pekcan, Ö., Winnik, M.A., and Croucher, M.D., Macromolecules, 23, 2673 (1990).

    Article  CAS  Google Scholar 

  16. Wang, Y., Zaho, C.L., and Winnik, M.A., J. Chem. Phys., 95, 2143 (1991).

    Article  CAS  Google Scholar 

  17. Wang, Y. and Winnik, M.A., Macromolecules, 26, 3147 (1993).

    Article  CAS  Google Scholar 

  18. Pekcan, Ö. and Canpolat, M., J. Appl. Polym. Sci., 59, 277 (1996).

    Article  CAS  Google Scholar 

  19. Pekcan, Ö., Canpolat, M., and Göçmen, A., Polymer, 34, 3319 (1993).

    Article  CAS  Google Scholar 

  20. Canpolat, M. and Pekcan, Ö., J. Polym. Sci. B, Polym. Phys., 34, 691 (1996).

    Article  CAS  Google Scholar 

  21. Ardad, E., Bulmus, V., Piskin, E., and Pekcan, Ö., J. Colloid Interface Sci., 213, 160 (1999).

    Article  Google Scholar 

  22. Pekcan, Ö. and Arda, E., Colloids and Surf. A, 153, 537 (1999).

    Article  CAS  Google Scholar 

  23. Arranda, P. and Ruiz-Hitzky, E., Chem. Water, 4, 1395 (1992).

    Article  Google Scholar 

  24. Wu, J. and Lerner, M.M., Chem. Mater., 5, 835 (1993).

    Article  CAS  Google Scholar 

  25. Vaia, R.A., Vasudevan, S., Krawiec, W., Scalon, L.G., and Giannelis, E.P., Adv. Mater., 7, 154 (1995).

    Article  CAS  Google Scholar 

  26. Kawasumi, M., Hasegawa, N., Kato, M., Ususki, A., and Okada, A., Macromolecules, 30, 6333 (1997).

    Article  CAS  Google Scholar 

  27. Wang, Y., Zhang, Q., and Fu, Q., Macromol. Rapid Commun., 24, 231 (2003).

    Article  CAS  Google Scholar 

  28. alemdar, A., “The Effect of Organic and Inorganic Additives on the Rheological and Colloidal Properties of Bentonite and Montmorillonite Dispersions,” Ph.D. Thesis, (2001).

  29. Tributh, H. and Lagaly, G., “Aufbereitung und Identifizierung von Boden-und Lagerstattenttonen GIT Fachzeitschrift für das,” Laboratorium, 30, 524–529 771–776, (1986).

    CAS  Google Scholar 

  30. Stul, M.S. and Van Leemput, L., Clay Miner., 17, 209 (1982).

    Article  CAS  Google Scholar 

  31. Lagaly, G., “Layer Charge Determination by alkylammonium Ions,” CMS Workshop Lectures, Vol. 6, Mermut, A.R. (Ed.), 1994.

  32. Olphen, V.H., An Introduction to Clay Colloid Chemistry, 2nd Ed. Interscience Publishers, New York, 1977.

    Google Scholar 

  33. Grim, R.E., Applied Clay Minerology, McGraw-Jill book Company Inc., New York, 1962.

    Google Scholar 

  34. Ece, Ö.I., Alemdar, A., Güngör, N., and Hayashi, S., J. Appl. Polym. Sci., 86, 341 (2002).

    Article  CAS  Google Scholar 

  35. Keddie, J.L., Meredith, P., Jones, R.A.L., and Donald, A.M., Film Formation in Waterborne Coatings, Provder, T., Winnik, M.A. and Urban, M.W., (Eds.), ACS Symp. Ser., 648. pp. 332–348. Amer. Chem. Soc., 1996.

  36. McKenna, G.B., In Comprehensive Polymer Science, Vol. 2, Booth, C. and Price, C. (Eds.), Pergamon Press, Oxford UK, 1989.

    Google Scholar 

  37. Vogel, H., Phys. Z. 22, 645 (1925).

    Google Scholar 

  38. Fulcher, G.S., J. Phys. USSR, 9, 385 (1945).

    Google Scholar 

  39. Frenkel, J., J. Phys. USSR, 9, 385 (1945).

    Google Scholar 

  40. Voyutskii, S. Colloid Chemistry, MIR Publisher, Moscow, 1963.

    Google Scholar 

  41. Prager, S. and Tirrell, M., J. Chem. Phys., 75, 5194 (1981).

    Article  CAS  Google Scholar 

  42. Wool, R.P., Yuan, B.L., and McGarel, O.J., J. Polym. Eng. Sci., 29, 1340 (1989).

    Article  CAS  Google Scholar 

  43. de Gennes, P.G., J. Chem. Phys., 76, 3322 (1982).

    Article  Google Scholar 

  44. Kim, Y.H. and Wool, R.P., Macromolecules, 16, 1115 (1983).

    Article  CAS  Google Scholar 

  45. Wool, R.P. and O’Connor, K.M., J. Appl. Phys., 52, 5953 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ugur, S., Alemdar, A. & Pekcan, Ö. Films formed from polystyrene latex/clay composites: A fluorescence study. J Coat. Technol. Res. 2, 565–575 (2005). https://doi.org/10.1007/s11998-005-0016-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-005-0016-8

Keywords

Navigation