Skip to main content
Log in

Spatially resolved degradation in heterophasic polymers by ESR imaging and FTIR: The case of propylene-ethylene copolymers

  • Published:
JCT Research Aims and scope Submit manuscript

Abstract

Heterophasic propylene-ethylene copolymers (HPEC) containing bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (Tinuvin 770) as a hindered amine stabilizer (HAS) were thermally aged at 393 and 433 K. Two types of HPEC were examined, containing 25% and 10% ethylene (E), respectively, as ethylene/propylene rubber (EPR). Electron spin resonance (ESR) spectra of nitroxide radicals in HPEC were studied in the temperature range 100–433 K; the nitroxides were derived from the HAS and are termed HAS-NO. The results were compared with ESR spectra of the same radicals obtained first by oxidation of Tinuvin 770 and then were doped in HPEC and related homopolymers, polyethylene (PE) and polypropylene (PP); these nitroxides are termed “spin probes.” ESR spectra indicated that HAS-NO and the spin probes reside in a range of amorphous sites differing in their dynamic properties. The relative population of the sites was explained by assuming that the crystalline domains exert a restraining effect on chains located in vicinal amorphous domains. Spatial and temporal effects of the aging process were studied by ESR and ESR imaging (ESRI) of HAS-derived nitroxide radicals, and by FTIR of films prepared by compression molding. 1D ESRI enabled the visualization of an outer region of thickness ≈100 μm that contained a lower amount of nitroxides, and is believed to result from the loss of the stabilizer by diffusion (“blooming”) and possibly also in chemical reactions during aging. Two-dimensional spectral-spatial ESRI indicated the presence of nitroxide radicals in two amorphous sites, fast and slow; the corresponding relative intensity varied with sample depth. Both ESRI and FTIR experiments suggested a faster degradation rate in HPEC containing 25% E, as compared to 10% E; moreover, a larger Tinuvin 770 content in the polymers led to less efficient stabilization. FTIR spectra indicated increased ordering of polypropylene segments in HPEC during aging at 433 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pukansky, B., in Polymeric Materials Encyclopedia, Salamone, J.C. (Ed.), CRC Press, Boca Raton, FL, 6615, 1996.

    Google Scholar 

  2. Tullo, A.H., Chem. Eng. News, 79, p. 10 (2001).

    Google Scholar 

  3. Albizzati, E., Giannini, U., Collina, G., Noristi, L., and Resconi, L., in Polypropylene Handbook, Moore, E.P. Jr. (Ed.), Hanser Publishers, Munich, Chapter 2, p. 92, 1996.

    Google Scholar 

  4. Mirabella, F.M. Jr. and McFaddin, D.C., Polymer, 37, 931, and references therein (1996).

    Article  CAS  Google Scholar 

  5. Xu, J., Feng, L., Yang, S., Wu, Y., Yang, Y., and Kong, X., Polymer, 38, 4381 (1997).

    Article  CAS  Google Scholar 

  6. Zhu, X., Yan, D., and Fang, Y., J. Phys. Chem. B, 105, 12461 (2001).

    Article  CAS  Google Scholar 

  7. Fan, Z.Q., Zhang, Y.-Q., Xu, J.-T., Wang, H.-Tao., and Feng, L.-X., Polymer, 42, 5559 (2001).

    Article  CAS  Google Scholar 

  8. Morris, H.R., Monroe, B., Ryntz, R.A., and Treado, P.J., Langmuir, 14, 2426 and references therein (1998).

    Article  CAS  Google Scholar 

  9. Pennington, B.D., Ryntz, R.A., and Urban, M.W., Polymer, 40, 4795 (1999).

    Article  CAS  Google Scholar 

  10. Fitchmun, D.R. and Mencik, Z., J. Polym. Sci. Polym. Phys. Ed., 11, 951 (1973).

    CAS  Google Scholar 

  11. Kruczala, K., Varghese, B., Bokria, J.G., and Schlick, S., Macromolecules, 36, 1899 (2003).

    Article  CAS  Google Scholar 

  12. Kruczala, K., Bokria, J.G., and Schlick, S., Macromolecules, 36, 1909 (2003).

    Article  CAS  Google Scholar 

  13. Motyakin, M.V., Gerlock, J.L., and Schlick, S., Macromolecules, 32, 5463 (1999). (b) Kruczala, K., Motyakin, M.V., and Schlick, S., J. Phys. Chem. B, 104, 3387 (2000). (c) Motyakin, M.V. and Schlick, S., Macromolecules, 34, 2854 (2001). (d) Motyakin, M.V. and Schlick, S., Polym. Degrad. Stab., 76, 25 (2002). (e) Motyakin, M.V., and Schlick, S., Macromolecules, 35, 3984 (2002).

    Article  CAS  Google Scholar 

  14. Varghese, B. and Schlick, S., J. Polym. Sci. Part B: Polym. Phys., 40, 415 (2002); (b) Varghese, B. and Schlick, S., J. Polym. Sci. Part B: Polym. Phys., 40, 424 (2002).

    Article  CAS  Google Scholar 

  15. Lucarini, M. and Pedulli, G.F., Makromol. Chem., 252, 179, and references therein, (1997).

    Article  CAS  Google Scholar 

  16. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, 1989, (b) Michalewicz, Z., Genetic Algorithms+Data Structures=Evolution Programs, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  17. Hartke, B., J. Chem. Phys., 97, 9973 (1993).

    Article  CAS  Google Scholar 

  18. Maltempo, M.M., Eaton, S.S., and Eaton, G.R., in EPR Imaging and In Vivo EPR, Eaton S.S., Eaton, G.R., and Ohno, K. (Eds.), CRC Press, Boca Raton, FL, Chapter 14, p. 145, 1991.

    Google Scholar 

  19. Marek, A. and Schlick, S., unpublished work from this laboratory.

  20. Gillen, K.T. and Clough, R.L., Polymer, 33, 4359 (1992).

    Article  Google Scholar 

  21. Cheng, S.Z.D. and Wunderlich, B., Macromolecules, 21, 789 (1988).

    Article  CAS  Google Scholar 

  22. Wunderlich, B., Thermal Analysis, Academic Press, Boston, 1990, (b) Prog. Polym. Sci., 28, 383 (2003).

    Google Scholar 

  23. Flory, P.J., J. Phys. Chem., 17, 233 (1949).

    Google Scholar 

  24. Malik, J., Hrivik, A., and Tuan, D.Q., in Polymer Durability: Degradation, Stabilization and Lifetime Prediction, Clough, R.C., Billingham, N.C., and Gillen K.T. (Eds.), Advances in Chemistry Series 249, American Chemical Society, Washington, D.C., Chapter 29, p. 455, 1996.

    Google Scholar 

  25. Franchi, P., Lucarini, M., Pedulli, G.F., Bonora, M., and Vitali, M., Macromol. Chem. Phys., 202, 1246, and references therein (2001).

    Article  CAS  Google Scholar 

  26. Dudler, V., Polym. Degrad. Stab., 42, 205 (1993).

    Article  CAS  Google Scholar 

  27. Delprat, P., Duteurtre, X., and Gardette, J.-L., Polym. Degrad. Stab., 50, 1 (1995).

    Article  CAS  Google Scholar 

  28. Gensler, R., Plummer, C.J.G., Kausch, H.-H., Kramer, E., Pauquet, J.-R., and Zweifel, H., Polym. Degrad. Stab., 67, 195 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulamith Schlick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlick, S., Kruczala, K. Spatially resolved degradation in heterophasic polymers by ESR imaging and FTIR: The case of propylene-ethylene copolymers. J Coat. Technol. Res. 2, 389–397 (2005). https://doi.org/10.1007/s11998-005-0006-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-005-0006-x

Keywords

Navigation